Stresses in a Plane • Some parts experience normal stresses in two directions. directions These types of problems are called – Plane Stress or – Biaxial Stress Mohr’s Circle MET 210W E. Evans Cross Section thru Body Tangent and normal to the surface z • Force ΔFy → τzy • Force ΔFx → τzx • Force ΔFz → σz Convenient coordinate system x y MET 210W – Mohr’s Circle • Make two more cuts in the original body, each perpendicular to the others. 1 General State of Stress General State of Stress & Strain • Cubic volume element • Characterized by three components on each face • Changes Ch with ith a different coord. system σy τyz τyx τzy σx τzx τxz σx τxy σz σy σ x νσ y νσ z − − E E E νσ x σ y νσ z εy = − + − E E E νσ x νσ y σ z εz = − − + E E E εx = + Positive orientations shown ε = strain ν = Poisson’s Ratio Rotating the element in any direction changes the state of stress. Finding Maximum Stress • There are three maximum stresses to be found: – The maximum normal stress, σ = P/A ± Mc/I – The orientation of maximum stress – Mohr’s Circle – Time Ti dependent d d t maximum i stress t – endurance d strength MET 210W – Mohr’s Circle Purpose of Mohr’s Circle • Visual tool used to determine the stresses that exist at a given point in relation to the angle of orientation of the stress element. • There are 4 possible variations in Mohr’s Circle depending on the positive directions are defined. 2 Mohr’s Circle Sample Problem τ (CW) σy = -2 ksi y A particular point on the part x-axis σx = 6 ksi (6 ksi, k i 3 ksi) k i) 2 6 3 τxy = 3 ksi x σ σy = -2 ksi Some Part σx = 6 ksi Mohr’s Circle (-2 ksi, -3 ksi) y-axis τxy = 3 ksi x & y Æ orientation τ (CW) (σavg, τmax) σy = -2 ksi Mohr’s Circle (σavg, τmax) (2 ksi, 5 ksi) τ (CW) σy = -2 ksi x-face σx = 6 ksi Center of Mohr’s Circle 3 x-face σx = 6 ksi (6 ksi, 3ksi) (6 ksi, 3ksi) R τxy = 3 ksi τxy = 3 ksi σ σ2 σavg = 2 ksi σ σ2 σ1 3 ksi 4 ksi σ1 R = (3 ksi k i) 2 + ( 4 ksi k i) 2 (-2 ksi, -3ksi) = 5 ksi R = τmax y-face σ avg = σx + σy 2 = 2 ksi MET 210W – Mohr’s Circle (σavg, τmin) y-face σ1 = σavg + R = 7 ksi σ2 = σavg – R = −2 ksi (σavg, τmin) (2 ksi, -5 ksi) 3 Mohr’s Circle (σavg, τmax) (2 ksi, 5 ksi) τ (CW) σy = -2 ksi Principle Stress 2θ σ2 3 ksi σ σ1 4 ksi ⎛ 3 ksi s ⎞ ⎜⎜ ⎟⎟ 2θ = Tan T ⎝ 4 ksi ⎠ 2θ = 36.869° y-face θ = 18.435° Shear Stress (σavg, τmax) (2 ksi, 5 ksi) σavg = 2 ksi φ = 26.565° τmax = 5 ksi 2φ = 90 − 36.869° 2φ = 53.130° σ τmax = 5 ksi σy = -2 ksi σx = 6 ksi φ = 26.565° σ1 θ = 18.435° y-face φ = 26.565° MET 210W – Mohr’s Circle (σavg, τmin) (2 ksi, -5 ksi) σ1 (σavg, τmin) (2 ksi, -5 ksi) τxy = 3 kksii 2φ = 90° − 2θ σ σavg = 2 ksi 3 ksi 4 ksi 3 ksi Relationship Between Elements (6 ksi, 3ksi) 2φ 2θ 4 ksi x-face 2θ σ2 σ2 Rotation on element is half of the rotation from the circle in same direction from x-axis (σavg, τmin) (2 ksi, -5 ksi) τ (CW) (6 ksi, 3ksi) θ = 18.435° σ1 = 7 ksi Principle Stress Element −1 σavg = 2 ksi x-face (6 ksi, 3ksi) τxy = 3 ksi Maximum Shear Stress Element (σavg, τmax) (2 ksi, 5 ksi) σ2 = -3 ksi x-face σx = 6 ksi τ (CW) θ + φ = 18.435 ° + 26.565 ° = 45 ° σavg = 2 ksi σ2 = -3 ksi σ1 = 7 ksi 4 What’s the stress at angle of 15° CCW from the x-axis? τ (CW) Rotation on Mohr’s Circle y (σU, τU) A particular i l point i on the part f x-face 30° V x σ σ2 σ = ? ksi Some Part σ = ? ksi 15° y-face 15° on part and element is 30° on Mohr’s Circle x U & V Æ new axes @ 15° from x-axis (σavg, τmax) τ (CW) σavg = 2 ksi (σV, τV) (σU, τU) y σU = 3.96 ksi 66.869° σ2 σ σavg = 2 ksi ( ) σV = σavg – R*cos(66.869°) τUV = 4.60 ksi A particular point on the part R σU = σavg + R*cos(66.869°) τUV = R*sin(66.869°) (σavg, τmin) What’s the stress at angle of 15° CCW from the x-axis? x-face f σV = 0.036 ksi σ1 U τ = ? ksi Rotation on Mohr’s Circle (σavg, τmax) x σ1 Some Part y-face (σV, τV) MET 210W – Mohr’s Circle (σavg, τmin) V σV = .036 ksi σU = 3.96 ksi U 15° x τ = 4.60 ksi 5 Special Case – Both Principle Stresses Have the Same Sign Y Questions? X σx = Z σy = Cylindrical Pressure Vessel Mohr’s Circle σy τ (CW) τ= σx σy This isn’t the whole story however… σx − σy σx 2 σ Mohr’s Circle for X-Y Planes σx = σ1 and σy = σ2 MET 210W – Mohr’s Circle σz = 0 τ (CW) σz = 0 since it is perpendicular to the free face of the element. σx τmax = τxz σx σz pD 4t Mohr’s Circle σy pD 2t σ3 σ1 σ σz = σ3 and σx = σ1 τmax = σ1 − σ 3 2 Mohr’s Circle for X-Z Planes 6 σz Pure Uniaxial Tension Mohr’s Circle σy τ (CW) τmax = τxz σx σy = 0 σ2 σ3 σz = 0 since it is perpendicular to the free face of the element. σ1 τmax = σx = P/A σ σ1= σx σ2 = 0 σ1 > σ2 > σ3 Note when σx = Sy, Sys = Sy/2 Ductile Materials Tend to Fail in SHEAR Pure Uniaxial Compression σx 2 Pure Torsion T σy = 0 τmax = σx 2 σx = P/A σ2= σx τmax = τ xy T τ xy = σ1 = 0 Tc J σ2 = -τxy σ1 CHALK MET 210W – Mohr’s Circle σ1 = τxy Brittle materials tend to fail in TENSION. 7 Uniaxial Tension & Torsional Shear Stresses • Rotating shaft with axial load. load • Basis for design of shafts. Equivalent Torque • Special case of body subjected to BENDING and TORSION. TORSION • Point on top of bar is in shear and in tension. τmax = R (σx, τxy) σx = P/A σ2 = σx/2-R τxy = Tc/J σx/2 σx = M/S τxy = T/Zp σ1 = σx/2+R T (0, τyx) Fixed 2 ⎛σ ⎞ R = ⎜ x ⎟ + τ 2xy = τmax ⎝ 2 ⎠ F Example Equivalent Torque 2 R= τmax = ⎛ M ⎞ ⎛⎜ T ⎞⎟ ⎟ + ⎜ ⎝ 2S ⎠ ⎜⎝ Z p ⎟⎠ τmax = T M2 + T 2 = e Zp Zp 2 Strain Gage Torque on nut is 10000 in-lbs τmax = R ( x, τxy) (σ ⎛ σx ⎞ ⎜ ⎟ + τ 2xy ⎝ 2 ⎠ 2 σ2 = σx/2-R σx/2 M = Bending Moment S = Section Modulus T = Torque Zp = Polar Section Modulus σ1 = σx/2+R (0, τyx) 1”- 8 Bolt We want to apply a strain gage to the bolt to measure the maximum strain. Determine the proper orientation and predict the strain to be measured. Te = M2 + T 2 For round bars, Zp = 2S, Te = Equivalent Torque MET 210W – Mohr’s Circle Strain gages only measure normal strain, NOT shear strain! 8 Axial Force in Bolt The axial force in the bolt can be found using Eqn. 18-3: T=K K*D*P D P (Pg 719) (Pg. where T = torque in in-lbs D = nominal outside diameter of threads, in. P = Clamping load, lbs p g on the lubrication present p K = constant depending K = .15 for average commercial applications with any lubrication present at all. K = .20 for well cleaned and dried threads. Values of K are approximate & should be verified MET 210W – Mohr’s Circle 9
© Copyright 2026 Paperzz