1 Problems on coordinate changes and metrics Problem 1: Consider 3-d Cartesian coordinates ds2 = dx2 + dy 2 + dz 2 (1) If we have spherical symmetry in a physical problem, then one coordinate we would like to use i the radial distance r given by r2 = x2 + y 2 + z 2 (2) We need two other coordinates to complete the definition of spherical polar coordinates. We define a coordinate θ which breaks up the sum in (2) as z 2 = r2 cos2 θ, x2 + y 2 = r2 sin2 θ (3) Thus we have 0≤θ≤π z = r cos θ, (4) where the coordinate range for θ is seen to allow all the possible values for z. We now split the sum in x2 + y 2 = (r sin θ)2 in a similar way by introducing another coordinate φ x2 = (r2 sin2 θ) cos2 φ, y 2 = (r2 sin2 θ)2 sin2 φ (5) Thus we get x = r sin θ cos φ, y = r sin θ sin φ, 0 ≤ φ < 2π (6) where the coordinate range for φ given above is seen to cover all allowed values of x, y. (a) Find the points where the spherical polar coordinates break down. At the points θ = 0 and θ = π we find that all values 0 ≤ φ < 2π correspond to the same values of x, y, z. Thus the φ coordinate changes while none of the x, y, z coordinates move. This fact can be seen from the vanishing of the determinant ∂x ∂x ∂x cos(φ) sin(θ) r cos(θ) cos(φ) −r sin(θ) sin(φ) ∂r ∂θ ∂φ ∂y ∂y det ∂y = det sin(θ) sin(φ) r cos(θ) sin(φ) r cos(φ) sin(θ) = r2 sin θ ∂r ∂θ ∂φ ∂z ∂z ∂z cos(θ) −r sin(θ) 0 ∂r ∂θ ∂φ (7) which vanishes at θ = 0, π. (b) Find the metric in spherical polar coordinates. 1 We have dx = dr sin θ cos φ + r cos θ cos φdθ − r sin θ sin φdφ dy = dr sin θ cos φ + r cos θ sin φdθ + r sin θ cos φdφ dz = dr cos θ − r sin θdθ ds2 = dx2 + dy 2 + dz 2 = (dr sin θ cos φ + r cos θ cos φdθ − r sin θ sin φdφ)2 +(dr sin θ cos φ + r cos θ sin φdθ + r sin θ cos φdφ)2 +(dr cos θ − r sin θdθ)2 = dr2 + r2 dθ2 + r2 sin2 θdφ2 (8) Problem 2: A hypersurface with Euclidean signature Start with the space with metric ds2 = −dx21 + dx22 + dx23 + dx24 + dx25 (9) −x21 + x22 + x23 + x24 + x25 = −a2 (10) Consider the hypersurface Find the metric on this hypersurface, by breaking up the sum above as x21 = (acoshα)2 x22 + x23 + x24 + x25 = (asinhα)2 (11) The coordinates x2 , x3 , x4 , x5 make a S 3 . We write x1 = acoshα x2 = asinhα cos θ x3 = asinhα sin θ cos φ x4 = asinhα sin θ sin φ cos χ x5 = asinhα sin θ sin φ sin χ (12) ds2 = −dx21 + dx22 + dx23 + dx24 + dx25 i h = a2 dα2 + sinh2 α(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdχ2 ) h i = a2 dα2 + sinh2 α dΩ23 (13) We get 2 where dΩ23 is the metric of a uniform 3-sphere. Problem 3: De Sitter spacetime in open slicing Start with the space with metric ds2 = −dx21 + dx22 + dx23 + dx24 + dx25 (14) −x21 + x22 + x23 + x24 + x25 = a2 (15) Consider the hypersurface Find the metric on this hypersurface, by breaking up the sum above as x22 = (acoshα)2 −x21 + x23 + x24 + x25 = (asinhα)2 (16) We write x2 = acoshα x1 = asinhαcoshβ x3 = asinhαsinhβ cos φ x4 = asinhαsinhβ sin φ cos χ x5 = asinhαsinhβ sin φ sin χ (17) ds2 = −dx21 + dx22 + dx23 + dx24 + dx25 h i = a2 − dα2 + sinh2 α dβ 2 + sinh2 β(dφ2 + sin2 φdχ2 ) h i = a2 − dα2 + sinh2 α dH32 (18) dH32 = dβ 2 + sinh2 βdΩ22 (19) We get where is the metric of a hyperbolic 3-dimensional Euclidean space. Problem 4: Consider the way we put spherical polar coordinates on a S 2 of radius a. We start with x2 + y 2 + z 2 = a2 (20) and break this sum into two parts z 2 = a2 cos2 θ, x2 + y 2 = a2 sin2 θ 3 (21) Now suppose the problem has ellipsoidal symmetry; i.e., instead of the spherical surfaces we get for constant r, we want ellipsoidal surfaces. An ellipsoid with axial symmetry around the z axis has the form z 2 x2 + y 2 + =1 (22) a2 b2 Thus we write z 2 = a2 cos θ, x2 + y 2 = b2 sin2 θ (23) Followed by the further break up of the second sum x = b sin θ cos φ, y = b sin θ sin φ (24) We still have to choose a, b. Typically, as we go far from the origin, we recover spherical symmetry, so we would like ab → 1 at large distances. Suppose we want prolate spheroids; p i.e., z > x2 + y 2 . We choose a constant A, and write a = Acoshα, b = Asinhα (25) Thus α governs the overall scale of the ellipsoidal surface, and so is like a radial coordinate; further we see that limα→∞ ab = 1. Thus we have x = Asinhα sin θ cos φ y = Asinhα sin θ sin φ z = Acoshα cos θ p Suppose we want oblate spheroids; i.e. z < x2 + y 2 . Then we write a = Asinhα, b = Acoshα (26) (27) and get x = Acoshα sin θ cos φ y = Acoshα sin θ sin φ z = Asinhα cos θ (28) (a) Find the metric in prolate spheroidal coordinates. (b) Find the metric in oblate spheroidal coordinates. (a) We have h i ds2 = A2 (sinh2 α cos2 θ + cosh2 α sin2 θ)(dα2 + dθ2 ) + sinh2 α sin2 θdφ2 (29) (b) We have h i ds2 = A2 (cosh2 α cos2 θ + sinh2 α sin2 θ)(dα2 + dθ2 ) + cosh2 α sin2 θdφ2 4 (30)
© Copyright 2026 Paperzz