Rolf S. Arvidson

MARUM / Fachbereich Geowissenschaften
Universität Bremen
Klagenfurter Str.
D-28359 Bremen Germany
[email protected]
[email protected]
Rolf S. Arvidson
Senior Research Scientist
Education
• PhD Oceanography, University of Hawaii. Dissertation: The kinetics of dolomite precipitation with application to changes in seawater saturation state over the past 100 Ma. Thesis supervisor: Fred T. Mackenzie
• MS Geology, University of Iowa. Thesis: Stratigraphy, carbonate petrology, diagenesis, and trace element
geochemistry of the Wyandotte Limestone (Upper Pennsylvanian), Miami County, Kansas. Thesis supervisor:
Philip H. Heckel
• BS Geology, University of Washington
1998
1990
1980
Academic Honors and Scholarship Awards
1995
1993
1992–1993
• ARCS Scholar for 1995 Award (ARCS Foundation)
• Outstanding Student Research Award (Geological Society of America)
• J. Watamull Scholarship Award (Watamull Foundation)
Professional Experience
2012–
2001–2012
1999–2001
1997–1999
1997
1989–1996
1986–1989
1985–1986
1980–1985
• Senior Research Scientist, MARUM / Fachbereich Geowissenschaften (FB5), Universität Bremen
• Senior Research Scientist, Dept. of Earth Science, Rice University
• Postdoctoral Research Associate, Dept. of Geology & Geophysics, Rice University
• Postdoctoral Research Associate, Dept. of Oceanography, Texas A&M University
• Teaching Assistant, Dept. of Oceanography, University of Hawaii
• Research Assistant, Dept. of Oceanography, University of Hawaii
• Teaching Assistant, Dept. of Geology, University of Iowa
• Consulting Geologist, Sharon Resources, Inc., Denver
• Senior Geologist, Petroventures, Inc., Denver
Other Recent Professional Activities
2012
2010–
2006
2006
2005
2003
• Invited Tutorial Workshop Lecturer, American Ceramic Society/Cement Division, 3rd Advances in Cementbased Materials: Characterization, Processing, Modeling and Sensing. Novel Experimental and Computational Tools. Vertical scanning interferometry Application to fundamental problems involving cementitious
materials. June 10-12, 2012,
• Associate Editor, Aquatic Geochemistry
• Invited Short Course Lecturer, “Fundamentals of metal sulfide formation and reactions”, Brine Chemistry
Consortium, Rice University
• Mentor in CBEN-sponsored Nanotechnology Research Experience for Undergraduates Program (M.
Alexandre)
• Invited speaker at Bureau of Economic Geology Seminar and Workshop, The John A. and Katherine G.
Jackson School of Geosciences, The University of Texas at Austin
• Mentor in Rice Undergraduate Scholar Program (M. Collier)
Patents Granted
2012
• US Patent # 8164756, issued 24 April 2012, “System And Method Of Fluid Exposure And Data Acquisition”,
United States Patent and Trademark Office.
Research Interests
Molecular scale modeling of mineral-fuid reactions
I have a long term interest in the kinetics and thermodynamics of mineral interactions with natural fluids. Although I have
extensive expertise in experimental and analytical work in the laboratory, I am currently focused on (1) the development of
kinetic models for the study of mineral growth, dissolution, nucleation, recrystallization and related processes, and (2) the use
of these tools to drive the development of fundamental theories governing mineral properties and behavior. I see two current
problems in this area of geochemistry: first, despite an extensive and increasing catalog of published observations from both
the laboratory and the field, we have but a limited description of how processes such as growth and dissolution operate at a
mechanistic, molecular level. This limitation can be addressed through vigorous development of computer-based simulations
(molecular dynamics, kinetic Monte Carlo, etc.). This approach harnesses inexpensive computing power to produce simulations
of basic processes over a range of time and space scales. Rather than first produce observations in the laboratory and then
seek to understand these observations in the context of existing models, it is more beneficial to first produce simulations using
available energetic parameterizations. The results of such simulations can then be compared with existing experimental results;
a disparity between observed experimental and simulation results can then drive selection of new parameters in a recursive,
feedback approach. This approach can incoporate biological mediation reactions and processes as well. Second, these molecular
scale results must be linked to the complex, phenomenological, process-level observations in the field. This extrapolation across
time and space scales requires a new approach that incorporates the fundamentally stochastic nature of heterogeneous reaction
networks.
Biogeochemical cycling
I am also interested in the integration of the understanding provided by the above activities to reaction-based predictive models
of biogeochemical cycling. These efforts can range from short-term, ecosystem-level descriptions to long-term models that
permit an understanding of past, present, and future systems. I am the primary author of MAGic [72], a dynamical model
integrating long-term, global biogeochemical cycles over the Phanerozoic, incorporating basic reactions of silicate and carbonate
weathering, the exchange of seawater with MORB and clays, precipitation and dissolution of chemical sediments, organic matter
production, burial, and remineralization. A central motivation for this effort is to understand the nature of the overall linkage
between major reservoirs and the role of long-term cyclic versus secular change. The latest revision of this model [31] explores
the uncertainty in seawater-derived sedimentary dolomite fluxes, produces a baseline flux of dolomite that can then be compared
with observed mass in the rock record, and concludes that variations in dolomite production may have played a significant role
in terms of buffering of seawater saturation state over geologic time.
List of Publications and Abstracts
[1]
Rolf S. Arvidson, Cornelius Fischer, and Andreas Luttge. Calcite dissolution kinetics: A response to “Evidence and potential implications of exponential tails to concentration versus time plots for the batch dissolution of calcite” (Victor W.
Truesdale). Aquatic Geochemistry, 2015. In press.
[2]
Rolf S. Arvidson, Cornelius Fischer, Inna A. Kurganskaya, and Andreas Lüttge. Treatment of stochastic mineral surface
reactions. In 247th American Chemical Society National Meeting. Dallas, TX, March 16-20, 2014.
[3]
Rolf S. Arvidson, Cornelius Fischer, Dale S. Sawyer, Gavin Scott, Douglas Natelson, and Andreas Lüttge. Lateral resolution
enhancement of vertical scanning interferometry by sub-pixel sampling. Microscopy and Microanalysis, 20(1):90–98, 2014.
[4]
Rolf S. Arvidson, Fred T. Mackenzie, and Robert A. Berner. The sensitivity of the Phanerozoic inorganic carbon system to
the onset of pelagic sedimentation. Aquatic Geochemistry (invited paper, special issue for Owen Bricker), 20(2–3):343–362, 2014.
[5]
Rolf S. Arvidson, Fred T. Mackenzie, and Michael W. Guidry. A MAGic approach to Phanerozoic seawater evolution
(invited paper, Goldschmidt Conference, Sacramento California, June 8–13, 2014). Mineralogical Magazine, 77:71, 2014.
[6]
Rolf S. Arvidson and John W. Morse. Formation and diagenesis of carbonate sediments. In Karl K. Turekian and Heinrich D. Holland, editors, Treatise on Geochemistry, volume 9.3, pages 61–101. Elsevier, 2014.
[7]
Rolf S. Arvidson, Matthias Wagner, Stephan Lenz, Cornelius Fischer, and Andreas Lüttge. Crystallographic controls on the
intrinsic rate of aragonite dissolution. In Proceedings, 92nd Annual Meeting Deutsche Mineralogische Gesellschaft (Jena 2014),
page 222, 2014.
[8]
Inna Kurganskaya, Cornelius Fischer, Rolf S. Arvidson, and Andreas Lüttge. Kinetic monte carlo simulations predicting
the unpredictable? In Proceedings, 92nd Annual Meeting Deutsche Mineralogische Gesellschaft (Jena 2014), page 223, 2014.
List of Publications and Abstracts (continued)
[9]
Stephan Lenz, Cornelius Fischer, Rolf S. Arvidson, and Andreas Lüttge. Dissolution of polycrystalline material analyzed
by the rate spectra concept. In Proceedings, 92nd Annual Meeting Deutsche Mineralogische Gesellschaft (Jena 2014), page 290,
2014.
[10]
Matthias Wagner, Stephan Lenz, Rolf S. Arvidson, and Andreas Lüttge. New insight in the coupled dissolution and
precipitation of aragonite and calcite. In Proceedings, 92nd Annual Meeting Deutsche Mineralogische Gesellschaft (Jena 2014),
page 296, 2014.
[11]
D. T. Morris, C. L. Pint, R. S. Arvidson, A. Lüttge, R. H. Hauge, A. A. Belyanin, G. L. Woods, and J. Kono. Midinfrared
third-harmonic generation from macroscopically aligned ultralong single-wall carbon nanotubes. Phys. Rev. B, 87:161405,
Apr 2013.
[12]
Rolf S. Arvidson, Cornelius Fischer, and Andreas Lüttge. The stochastic treatment of mineral surface reaction kinetics.
Mineralogical Magazine, 77(5):621, 2013.
[13]
Rolf S. Arvidson, Michael Guidry, and Fred T. Mackenzie. Geologic history of seawater: A MAGic approach to carbon
chemistry and ocean ventilation. Chemical Geology (invited paper, Special Issue for H Holland), 362(20):287–304, 2013.
[14]
Cornelius Fischer, Könneke Martin, Rolf S. Arvidson, Hinrichs Kai-Uwe, and Andreas Lüttge. Can we learn about bacterial
attachment at mineral surfaces through colloid adsorption experiments? Mineralogical Magazine, 77(5):1087, 2013.
[15]
Inna Kurganskaya, Rolf S. Arvidson, and Andreas Luttge. QM-parameterization of Kinetic Monte Carlo models for silicate
dissolution. In Atomistic Computational Geochemistry: Atomic-Level Processes with Macroscopic Implications, 245th American
Chemical Society International meeting, Geochemistry Division, New Orleans, LA, 2013.
[16]
Andreas Lüttge, Rolf S. Arvidson, and Cornelius Fischer. A stochastic treatment of crystal dissolution kinetics. Elements,
9(3):183–188, 2013.
[17]
Andreas Lüttge, Rolf S. Arvidson, Cornelius Fischer, and Inna Kurganskaya. Driving mineral dissolution studies in a new
direction. Mineralogical Magazine, 77(5):1657, 2013.
[18]
Fred Mackenzie, Rolf Arvidson, and Michael Guidry. Co-evolution of the ocean-atmosphere-sediment system through
Phanerozoic time. Mineralogical Magazine, 77(5):1664, 2013.
[19]
Qi Zhang, Erik H. Hároz, Zehua Jin, Lei Ren, Xuan Wang, Rolf S. Arvidson, Andreas Lüttge, and Junichiro Kono. Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Letters, 13(12):5991–5996, 2013.
[20]
Fernando Andrade, Carrie Graham, Zalman Vaksman, Karen Gomez, Manuel VegaArroyo, Yesle Kim, Rolf S. Arvidson, Andreas Luttge, Catherine G. Ambrose, Gena Tribble, S. Ray Taylor, and Heidi B. Kaplan. Effects of sucrose exposure on the population dynamics of an in vitro fourspecies cariogenic biofilm model. In 2012 Molecular Basis of Infectious Diseases (MBID) Retreat, Friday, March 23, 2012, UTHealth (University of Texas Health Science
Center at Houston), Brown Foundation Institute of Molecular Medicine (IMM), 1825 Pressler Street, Houston, TX 77030,
http://www.uth.tmc.edu/pathology/MBID/2012MBIDRetreat/2012MBIDRetreatProgram120322 FINAL.pdf, 2012.
[21]
Rolf S. Arvidson. Vertical scanning interferometry. 3rd Advances in Cement-based Materials: Characterization, Processing,
Modeling and Sensing, June 10-12 2012, University of Texas. The American Ceramic Society, 2012.
[22]
Cornelius Fischer, Rolf S. Arvidson, and Andreas Lttge. How predictable are dissolution rates of crystalline material?
Geochimica et Cosmochimica Acta, 98(0):177 – 185, 2012.
[23]
Yesle Kim, Fernando Andrade, Heidi B. Kaplan, Gena D. Tribble, Rolf S. Arvidson, and Andreas Lüttge. The heterogeneous
attack of human tooth enamel by a multi-species oral biofilm. In Proceedings, European Mineralogical Conference (Frankfurt /
Main, Germany 2012), http://meetingorganizer.copernicus.org/EMC2012/EMC2012-185.pdf, 2012.
[24]
Inna Kurganskaya, Rolf S. Arvidson, Cornelius Fischer, and Andreas Luttge. Does the stepwave model predict mica
dissolution kinetics? Geochimica et Cosmochimica Acta, 97:120 – 130, 2012.
[25]
Andreas Lüttge and Rolf S. Arvidson.
How predictable are dissolution rates in natural and industrial systems?
In Proceedings, European Mineralogical Conference (Frankfurt / Main, Germany 2012),
http://meetingorganizer.copernicus.org/EMC2012/EMC2012-177.pdf, 2012.
[26]
Andreas Lüttge and Rolf S. Arvidson.
Is less more?
kinetic simulations of the dissolution of whole
mineral grains.
In Proceedings, European Mineralogical Conference (Frankfurt / Main, Germany 2012),
http://meetingorganizer.copernicus.org/EMC2012/EMC2012-179.pdf, 2012.
[27]
Andreas Lüttge and Rolf S. Arvidson.
The problematic use of transition
eral dissolution.
In Proceedings, European Mineralogical Conference (Frankfurt /
http://meetingorganizer.copernicus.org/EMC2012/EMC2012-182.pdf, 2012.
[28]
Dana Pop, Andreas Luttge, Cornelius Fischer, and Rolf S. Arvidson. Surface topography of glauconite grains: A preliminary interferometry study. In Acta Mineralogica-Petrographica Abstract Series. Department of Mineralogy, Geochemistry
and Petrology, University of Szeged (Hungary), 2012. Proceedings of the regional conference MSCC & CEMC (Miskolc,
Hungary - April 2012).
[29]
M. Vega-Arroyo, G. Tribble, R. Arvidson, A. Luttge, and S. Taylor. Density functional investigation of HAP dissolution
and the influence of organic materials. In 244th American Chemical Society National Meeting. Philadelphia, PA, August 19-23,
2012.
[30]
Fred T. Mackenzie, Andreas J. Andersson, Rolf S. Arvidson, Michael W. Guidry, and Abraham Lerman. Land-sea carbon
and nutrient fluxes and coastal ocean CO2 exchange and acidification: Past, present, and future. Applied Geochemistry,
26:S298–S302, June 2011.
state theory in minMain, Germany 2012),
List of Publications and Abstracts (continued)
[31]
Rolf S. Arvidson, Michael W. Guidry, and Fred T. Mackenzie. Dolomite controls on Phanerozoic seawater chemistry.
Aquatic Geochemistry, 17(4-5):735–747, 2011.
[32]
Rolf. S. Arvidson and Andreas Luttge. Modeling the dissolution and growth of whole mineral grains. Mineralogical Magazine, 75:456–456, 2011. published online 1 August 2011 (p. 398-464).
[33]
Inna Kurganskaya, Rolf. S. Arvidson, and Andreas Luttge. Phyllosilicate dissolution kinetics: Experimental observations
and kinetic monte carlo modeling. Mineralogical Magazine, 75:1255–1255, 2011. published online 1 August 2011 (p. 11331260).
[34]
Inna Kurganskaya, Andreas Luttge, and Rolf S. Arvidson. Experimental studies and kinetic Monte Carlo simulations of
phyllosilicate dissolution. Abstracts of Papers of the American Chemical Society, 242, 2011.
[35]
Andreas Luttge, Rolf. S. Arvidson, Inna Kurganskaya, and Cornelius Fischer. How crystalline matter dissolves: Contours
of a comprehensive stochastic model. Mineralogical Magazine, 75:1371–1371, 2011. published online 1 August 2011 (p.
1261-1373).
[36]
Manuel Vega-Arroyo, S. Ray Taylor, Rolf S. Arvidson, Heidi B. Kaplan, Gena D. Tribble, and Andreas Luttge. Exploration
of interactions involving human tooth enamel and dental composites using vertical scanning interferometry. Mineralogical
Magazine, 75(3):2078, 2011. published online 1 August 2011 (p. 2056-2105).
[37]
Andreas Luttge and Rolf S. Arvidson. Reactions at surfaces: A new approach integrating interferometry and kinetic
simulations. Journal of the American Ceramic Society, 93(11):3519–3530, November 2010.
[38]
Andreas Luttge and Rolf S. Arvidson. Kink site reaction kinetics: A new model unifies crystal dissolution and growth
theory. Geochimica et Cosmochimica Acta, 74(12):A645–A645, June 2010.
[39]
Everett C. Salas, Cornelius Fischer, Rolf S. Arvidson, and Andreas Luttge. Quantitative studies on the relationship between
surface roughness and bacterial adhesion. Geochimica et Cosmochimica Acta, 74(12):A902–A902, June 2010.
[40]
Rolf S. Arvidson and Andreas Luttge. Mineral dissolution kinetics as a function of distance from equilibrium - new
experimental results. Chemical Geology, 269(1-2):79–88, 2010. (invited paper).
[41]
Rolf S. Arvidson and Andreas Luttge. Unification of growth and dissolution models: A carbonate example. Geochimica et
Cosmochimica Acta, 74(12):A34–A34, 2010.
[42]
Jordi Cama, Li Zhang, Josep M. Soler, Giovanni De Giudici, Rolf S. Arvidson, and Andreas Luttge. Fluorite dissolution
at acidic pH: in situ AFM and ex situ VSI experiments and monte carlo simulations. Geochimica et Cosmochimica Acta,
74(15):4298–4311, 2010.
[43]
Cornelius Fischer, Rolf S. Arvidson, and Andreas Luttge. Are rock dissolution rates predictable from lab experiments?
Geochimica et Cosmochimica Acta, 74(12):A294–A294, 2010.
[44]
Inna Kurganskaya, Rolf S. Arvidson, and Andreas Luttge. Crystallographic control of sheet silicate dissolution. Geochimica
et Cosmochimica Acta, 74(12):A548–A548, 2010.
[45]
Andreas Luttge and Rolf S. Arvidson. Toward a stochastic treatment of crystal dissolution. Abstracts of Papers of the
American Chemical Society, 237, March 2009.
[46]
Fred T. Mackenzie, Rolf S. Arvidson, and Michael Guidry. 500 million years of ocean-atmosphere-sediment evolution.
Abstracts of Papers of the American Chemical Society, 237, March 2009.
[47]
Rolf S. Arvidson. Citationist remarks for Fred T. Mackenzie 2007 IAGC Vernadsky Medalist. Applied Geochemistry,
24(6):1093–1093, 2009.
[48]
Jordi Cama, Li Zhang, Giovanni De Giudici, Josep M. Soler, Rolf S. Arvidson, and Andreas Luttge. Dissolution of fluorite
(111) cleavage surface in acid pH: VSI, AFM and monte carlo simulations. Geochimica et Cosmochimica Acta, 73(13):A187–
A187, 2009.
[49]
Andreas Luttge, Rolf S. Arvidson, and Cornelius Fischer. Towards a comprehensive theory of crystal dissolution. Geochimica et Cosmochimica Acta, 72(12):A576–A576, July 2008.
[50]
Eva Machnikova, Rolf S. Arvidson, Cornelius Fischer, Andreas Luttge, and Kenton H. Whitmire. Insights into the kinetics
of acid corrosion reactions from direct analysis of surface morphology. Geochimica et Cosmochimica Acta, 72(12):A580–A580,
July 2008.
[51]
John W. Morse, David W. Finneran, Katherine Walton, and Rolf S. Arvidson. Calcite nucleation and epitaxial growth from
high ionic strength NaCl solutions. Geochimica et Cosmochimica Acta, 72(12):A653–A653, July 2008.
[52]
Kenneth H. Nealson, Mchael S. Waters, Moh Y. El-Naggar, Cornelius Fischer, Rolf S. Arvidson, and Andreas Luttge. In
search of the microbe/solid interface: A new approach using super-resolution vertical scanning interferometry measurements. Geochimica et Cosmochimica Acta, 72(12):A675–A675, July 2008.
[53]
Alexis D. Offner, Rolf S. Arvidson, and Andreas Luttge. Near-equilbrium albite dissolution kinetics. Geochimica et Cosmochimica Acta, 72(12):A699–A699, July 2008.
[54]
Carter A. Sturm, Michael S. Waters, Rolf S. Arvidson, Kenneth H. Nealson, Andreas Luttge, and Firdaus E. Udwadia.
Location, location, location: Does surface deformation (both elastic and inelastic) affect microbial attachment? Geochimica
et Cosmochimica Acta, 72(12):A910–A910, July 2008.
[55]
Fred T. Mackenzie, Rolf S. Arvidson, and Mchael Guidry. Chemostatic modes of the ocean-atmosphere-sediment system
through Phanerozoic time. Mineralogical Magazine, 72(1):329–332, February 2008.
List of Publications and Abstracts (continued)
[56]
Rolf S. Arvidson, Cornelius Fischer, and Andreas Luttge. Resolution of crystal dissolution and growth processes at multiple scales. Geochimica et Cosmochimica Acta, 72(12):A34–A34, 2008.
[57]
M. Pilar Asta, Jordi Cama, Josep M. Soler, Rolf S. Arvidson, and Andreas Luttge. Interferometric study of pyrite surface
reactivity in acidic conditions. American Mineralogist, 93(4):508–519, 2008.
[58]
Maria Dittrich, Cornelius Fischer, Rolf S. Arvidson, and Andreas Luttge. Formation of membrane vesicles on cyanobacteria
surfaces. Geochimica et Cosmochimica Acta, 72(12):A219–A219, 2008.
[59]
Michael D. Vinson, Rolf S. Arvidson, and Andreas Luttge. Kinetic inhibition of calcite (104) dissolution by aqueous manganese(II). Journal of Crystal Growth, 307(1):116–125, September 2007.
[60]
Andreas Luttge, Cornelius Fischer, Li Zhang, and Rolf S. Arvidson. Kink sites: A key to surface reactivity and dissolution
kinetics. Geochimica et Cosmochimica Acta, 71(15):A603–A603, August 2007.
[61]
Carter A. Sturm, Michael S. Waters, Rolf S. Arvidson, Moh El-Naggar, Steven D. Goodman, Kenneth H. Nealson, Andreas
Luttge, and Firdaus E. Udwadia. Bugs in stress: Microbial control of surface reactivity in a stress field. Geochimica et
Cosmochimica Acta, 71(15):A982–A982, August 2007.
[62]
John W. Morse, Rolf S. Arvidson, and Andreas Luttge. Calcium carbonate formation and dissolution. Chemical Reviews,
107(2):342–381, February 2007.
[63]
Rolf S. Arvidson and Andreas Luttge. The role of cations versus anions in the dissolution of ionic crystals. Geochimica et
Cosmochimica Acta, 71(15):A38–A38, 2007.
[64]
Rolf S. Arvidson, Fred T. MacKenzie, and Michael Guidry. MAGic: A Phanerozoic model for the geochemical cycling of
major rock-forming components - Reply. American Journal of Science, 307(5):858–859, 2007.
[65]
Michael W. Guidry, Rolf S. Arvidson, and Fred T. Mackenzie. Biological and geochemical forcings to Phanerozoic change in
seawater, atmosphere, and carbonate precipitate composition. In Paul Falkowski and Andrew H. Knoll, editors, Evolution
of Primary Producers in the Sea, volume XV-XX, chapter 17, pages 377–403. Academic Press, San Diego, 2007.
[66]
Andreas Luttge and Rolf S. Arvidson. The mineral-water interface. In Susan L. Brantley, James Kubicki, and Art White,
editors, Kinetics of Water Rock Interaction, pages 73–108. Springer, 2007.
[67]
Andreas Luttge, Rolf S. Arvidson, and Michael D. Vinson. General model for impurity metal control of carbonate mineral
reaction kinetics. Geochimica et Cosmochimica Acta, 70(18):A378–A378, September 2006.
[68]
Andreas Luttge, Li Zhang, and Rolf S. Arvidson. What is the role of free energy in reaction mechanism? Geochimica et
Cosmochimica Acta, 70(18):A378–A378, September 2006.
[69]
Rolf S. Arvidson, Martin Collier, Kevin J. Davis, Michael D. Vinson, James E. Amonette, and Andreas Luttge. Magnesium
inhibition of calcite dissolution kinetics. Geochimica et Cosmochimica Acta, 70(3):583–594, February 2006.
[70]
Rolf S. Arvidson, Michael Guidry, and Fred T. Mackenzie. The control of Phanerozoic atmosphere and seawater composition by basalt-seawater exchange reactions. Journal of Geochemical Exploration, 88(1-3):412–415, 2006.
[71]
Rolf S. Arvidson, Fred T. Mackenzie, and Michael Guidry. Comment: Mesozoic atmospheric oxygen - (Comment on
“MAGic: a Phanerozoic model for the geochemical cycling of major rock-forming components” by Rolf S. Arvidson, Fred
T. Mackenzie and Michael Guidry, American Journal of Science, v. 306, p. 135-190.) - Reply. American Journal of Science,
306(9):772–773, 2006.
[72]
Rolf S. Arvidson, Fred T. Mackenzie, and Michael Guidry. MAGic: a Phanerozoic model for the geochemical cycling of
major rock-forming components. American Journal of Science, 306(3):135–190, 2006.
[73]
Soma Chakraborty, Jayanta Chattopadhyay, Haiqing Peng, Zheyi Chen, Arnab Mukherjee, Rolf S. Arvidson, Robert H.
Hauge, and W. E. Billups. Surface area measurement of functionalized single-walled carbon nanotubes. Journal of Physical
Chemistry B, 110(49):24812–24815, 2006.
[74]
Rolf S. Arvidson and Andreas Luttge. Relationship between step velocity and bulk mineral dissolution rate: Observations
and modeling results. Abstracts of Papers of the American Chemical Society, 229:U899–U899, March 2005.
[75]
Eric E. Cordes, Michael A. Arthur, Katriona Shea, Rolf S. Arvidson, and Charles R. Fisher. Modeling the mutualistic
interactions between tubeworms and microbial consortia. PLOS Biology, 3(3):497–506, March 2005.
[76]
Andreas Luttge and Rolf S. Arvidson. Nondeterministic aspects of crystal dissolution kinetics. Abstracts of Papers of the
American Chemical Society, 229:U899–U899, March 2005.
[77]
Carter A. Sturm, Rolf S. Arvidson, James E. Amonette, and Andreas Luttge. Control of humification reactions by manganese oxide structure. Abstracts of Papers of the American Chemical Society, 229:U881–U881, March 2005.
[78]
Rolf S. Arvidson, Kevin J. Davis, and Andreas Luttge. The relationship between cation/anion ratio, step velocities and
bulk dissolution rate in calcite. Geochimica et Cosmochimica Acta, 69(10):A779–A779, 2005.
[79]
Kevin J. Davis, Rolf S. Arvidson, and Andreas Luttge. Resolving the role of Ca2+ /CO32− ratio in calcite dissolution and
growth: Consequences for biomineral formation. Abstracts of Papers of the American Chemical Society, 229:U884–U884, 2005.
[80]
Michael Guidry, Rolf S. Arvidson, and Fred T. Mackenzie. How tightly coupled are seafloor spreading rates and seawateratmosphere composition? Geochimica et Cosmochimica Acta, 69(10):A726–A726, 2005.
[81]
Corina Lupu, Rolf S. Arvidson, Andreas Luttge, and Andrew R. Barron. Phosphonate mediated surface reaction and
reorganization: implications for the mechanism controlling cement hydration inhibition. Chemical Communications,
2005(18):2354–2356, 2005.
List of Publications and Abstracts (continued)
[82]
Corina Lupu, Andrew R. Barron, Christopher L. Edwards, Rolf S. Arvidson, and Andreas Luttge. Surface characterization of solid-liquid interfaces: A new approach to investigate reaction kinetics of CaCO3 surfaces exposed to hydration
retarders. Abstracts of Papers of the American Chemical Society, 228:U701–U701, August 2004.
[83]
Rolf S. Arvidson and Andreas Luttge. Kinetic monte carlo modeling of calcite dissolution kinetics. Geochimica et Cosmochimica Acta, 68(11):A125–A125, June 2004.
[84]
Andreas Luttge and Rolf S. Arvidson. Development of surface reactivity during crystal dissolution: Direct observations
vs. model predictions. Geochimica et Cosmochimica Acta, 68(11):A124–A124, June 2004.
[85]
Andreas Luttge, Rolf S. Arvidson, Thomas A. Fewless, Kevin J. Davis, Li Zhang, Mikala S. Beig, Michael D. Vinson, and
Dale S. Sawyer. Quantification of dissolution/growth processes at the fluid-mineral interface: An integrated approach.
Abstracts of Papers of the American Chemical Society, 227:U1219–U1219, March 2004.
[86]
Rolf S. Arvidson, Mikala S. Beig, and Andreas Luttge. Single-crystal plagioclase feldspar dissolution rates measured by
vertical scanning interferometry. American Mineralogist, 89(1):51–56, 2004.
[87]
Rolf S. Arvidson, Kevin J. Davis, Martin Collier, Andreas Luttge, and James E. Amonette. Etch pit morphology and
magnesium inhibition of calcite dissolution. In Richard R. Seal and Robert B. Wanty, editors, 11th International Symposium
on Water-Rock Interaction WRI-11, pages 721–725. A.A. Balkema, Saratoga Springs, New York, USA, 2004.
[88]
Rolf S. Arvidson, Kevin J. Davis, Michael D. Vinson, and Andreas Luttge. Control of mineral surface reactions: Surface
activation and passivation by dissolved components. Abstracts of Papers of the American Chemical Society, 227:U1219–U1219,
2004.
[89]
Rolf S. Arvidson, John W. Morse, and Samantha B. Joye. The sulfur biogeochemistry of chemosynthetic cold seep communities, gulf of mexico, USA. Marine Chemistry, 87(3-4):97–119, 2004.
[90]
Rolf S. Arvidson, Inci E. Ertan, James E. Amonette, and Andreas Luttge. Variation in calcite dissolution rates: A fundamental problem? Geochimica et Cosmochimica Acta, 67(9):1623–1634, 2003.
[91]
Andreas Luttge, Rolf S. Arvidson, Mikala S. Beig, and Thomas A. Fewless. Crystal dissolution kinetics: Is there light at the
end of the tunnel? Geochimica et Cosmochimica Acta, 66(15A):A465–A465, August 2002.
[92]
John W. Morse and Rolf S. Arvidson. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science
Reviews, 58(1-2):51–84, July 2002.
[93]
John W. Morse, Dwight K. Gledhill, Karen S. Sell, and Rolf S. Arvidson. Pyritization of iron in sediments from the continental slope of the northern gulf of mexico. Aquatic Geochemistry, 8(1):3–13, March 2002.
[94]
Rolf S. Arvidson, James E. Amonette, and Andreas Luttge. Kinetics of coupled manganese oxide dissolution and enzymemediated humification reactions. Abstracts of Papers of the American Chemical Society, 223:U606–U606, 2002.
[95]
Rolf S. Arvidson and Andreas Luttge. Variations in carbonate mineral dissolution rates: experimental uncertainty or
fundamental property? Geochimica et Cosmochimica Acta, 66(15A):A32–A32, 2002.
[96]
Jonathan P. Icenhower, Andreas Luttge, B. Peter McGrail, Mikala S. Beig, Rolf S. Arvidson, Elsa A. Rodriguez, Jackie L.
Steele, and Steven R. Baum. Results of vertical scanning interferometry (VSI) of dissolved borosilicate glass: Variable surface features and global surface retreat. In R. J. Finch and D. B. Bullen, editors, Scientific Basis for Nuclear Waste Management
XXVI, volume 757 of 2002 Fall Meeting Proceedings, page 115. Materials Research Society, 2002.
[97]
Rolf S. Arvidson and Fred T. Mackenzie. Temperature dependence of mineral precipitation rates along the CaCO3 -MgCO3
join. Aquatic Geochemistry, 6(2):249–256, 2000.
[98]
Rolf S. Arvidson, Fred T. Mackenzie, and Michael W. Guidry. Ocean/atmosphere history and carbonate precipitation
rates: a solution to the “dolomite problem”? (invited paper). In C. R. Glenn, L. Prévôt-Lucas, and J. Lucas, editors, Marine
Authigenesis: From Global to Microbial, Special Publication No. 65, pages 1–5. Society of Economic Paleotologists and
Mineralogists, 2000.
[99]
Michael W. Guidry, Fred T. Mackenzie, and Rolf S. Arvidson. The role of tectonics in Phanerozoic phosphorus distribution
and cycling. In C. R. Glenn, L. Prévôt-Lucas, and J. Lucas, editors, Marine Authigenesis: From Global to Microbial, Special
Publication No. 65, pages 35–51. Society of Economic Paleotologists and Mineralogists, 2000.
[100]
Rolf S. Arvidson and Fred T. Mackenzie. The dolomite problem: Control of precipitation kinetics by temperature and
saturation state. American Journal of Science, 299:257–288, 1999.
[101]
Rolf S. Arvidson and Fred T. Mackenzie. Tentative kinetic model for dolomite precipitation rate and its application to
dolomite distribution. Aquatic Geochemistry, 2:273–298, 1997.
[102]
Jane S. Tribble, Wilkens Roy H., Rolf S. Arvidson, and Christopher J. Busing. Sediments of the Hawaiian Arch: X-ray
mineralogy and microfabric. In R.H. Wilkens, J. Firth, J. Bender, and et al., editors, Scientific Basis for Nuclear Waste Management XXVI, volume 136 of Proc. Ocean Drilling Prog. Sci. Results, pages 65–76, College Station, TX USA (Ocean Drilling
Program), 1997. Materials Research Society.
[103]
Jane S. Tribble, Rolf S. Arvidson, Michael Lane, and Fred T. Mackenzie. Crystal chemistry, and thermodynamic and kinetic
properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems. Sedimentary Geology, 95(12):11–37, February 1995.