Objective - To solve a system of linear equations using linear combinations (Elimination). Graphic Method Algebraic Approaches Substitution solution If a = b, and b = c then a = c. Elimination - Time consuming - Not always accurate If a=b and c=d then a + c = b + d. Solve using elimination. 2x y 6 3x y 4 2x 3x y y 5x 5 x 6 4 10 5 2 Solution is 2x 2 2 4 4 (2,2) y 6 y 6 y 6 4 y 2 Check! Solve using elimination. x x 3y 5 y 3 x 3y x y 5 3 4y 8 4 4 y x x 3y 3 2 x 2 Solution is ( 1, 2) 5 5 6 6 5 6 x 1 Check! Solve using elimination. y 3x 4 2x y 5 y 3x 4 3x y 4 y 5 2x y 5 x 9 x 9 2x y 3x y 3 1 4 9 y 27 y 23 4 x 1 9 4 Solution is ( 9, 23) Check! Solve using elimination. 2x x 3y 4y 4 9 2x 3y x 4y 9 y 5 3x 4 Solve using elimination. 2x x 3y 4y 4 9 2x 3y 2(x 4y x x 4 4y 4( 2) x 9) 9 2x 3y 4 2x 8y 18 11y 11 22 11 y 9 8 9 x 1 Solution is 2 (1, 2) Check! Solve using elimination. 2x 5y 2x y 10 7 2x 5y 10 5(2x y 7) 2x 15 2 4 7 1 2 y 7 y 7 y 7 1 y 2 2x 5y 10 10 x 5y 35 12 x 12 45 12 x S o lu tio n is 45 15 12 4 3 1 3 , 4 2 Check! Solve using elimination. 2x 5x 3y 5 2y 4 5( 2x 3y 5) 2(5x 2 y 4) 5x 5x 2y 2 3 5x 10 x 10 x 4 4 6 6 4 6 5x 10 x 2 15 y 25 4y 8 11y 11 33 11 y Solution is 3 2, 3 Check!
© Copyright 2026 Paperzz