Directional Derivatives - (9.5) 1. Gradient of a Scalar Function: The Vector Differential Operator: , x y i j y x or i j k x y z Let fx, y and Fx, y, z be differentiable functions. Then fx, y f , f , and Fx, y, z x y , , . x y z F , F , F x y z . Vectors fx, y and Fx, y, z are called gradientvectors of f and F, respectively. Notations: f, grad f. Example Let Fx, y, z 3e x Fx, y, z 6xe x 2 y 2 y cos 2x z . Find F and F=, 1, 2 . cos 2x z 2 " 6z e x y 3x 2 x 2 sin 2x z , 2 y e y 6x x 2 cos 2x z , z2 e y sin 2x z 2 2 2 F=, 1, 2 "6=e = , " 3= e = , 0 2 Use the Scientific Notebook: define Fx, y, z first and then type Fx, y, z and click on Evaluate. Here is what you get: sin 2 xz 3 x 2 x 2 y 2 2 2 6x y e x y cos 2 xz " 6e x y cos 2 xz , 6e x y sin 2 xz x2 z ,2 y e z To evaluate F=, 1, 2 , first define gx, y, z Fx, y, z , that is, sin 2 xz 3 x 2 x 2 2 2 gx, y, z 6x y e x y cos 2 xz " 6e x y z ,2 y e y cos 2 xz , 6e x 2 y sin 2 xz x z2 and then type in g=, 1, 2 and click on Evaluate. Here is what you see: 2 2 g=, 1, 2 "6=e = , " 3 = 2 e = , 0 2 2. Directional Derivatives: Let Fx, y, z be differentiable. Partial derivatives F , F and F measure the rates of change of x y z Fx, y, z along the x "axis, y "axis and z "axis or in the direction u ¡1, 0, 0¢, v ¡0, 1, 0¢ and ¡0, 0, 1¢, respectively. How to evaluate the rate of change of F in a given direction w d? Definition Let u cos2 , sin2 be a unit vector in xy "plane and let z fx, y be a differentiable function. The directional derivative of f in the direction u is defined as: fx h cos2 , y h sin2 " fx, y D u fx, y lim hv0 h provided the limit exists. Note that when 2 0, D u fx, y f , and when 2 =, D u fx, y f . x y Observe that the following. a. 1 fx h cos2 , y h sin2 " fx, y h fx h cos2 , y h sin2 " fx, y h sin2 fx, y h sin2 " fx, y h fx h cos2 , y h sin2 " fx, y h sin2 fx, y h sin2 " fx, y h h where the first term involves the change of f along the x "axis and the second terms involves the change U gb " ga of f along the y " axis. By the Mean Value Theorem for differentiation (g c , we b"a know there exist x 1 between x and x h cos2 , and y 1 between y and y h sin2 such that fx h cos2 , y h sin2 " fx, y f x 1 , y h sin2 h cos2 f x, y 1 h sin2 . h x y Then as h v 0, x 1 v x and y 1 v y, and f x 1 , y h sin2 h cos2 f x, y 1 h sin2 x y D u fx, y lim hv0 h f x 1 , y h sin2 cos2 f x, y 1 sin2 x y f x, y cos2 f x, y sin2 fx, y u. x y lim hv0 u. In a similar way, we can derive a similar formula for computing D u Fx, y, z Fx, y, z b. Let 2 be the angle between vectors u and Fx, y, z . Then || cos2 ||Fx, y, z ||||u || cos2 . u ||Fx, y, z ||||u D u Fx, y, z Fx, y, z Since "1 t cos2 t 1, " ||Fx, y, z || t D u Fx, y, z t ||Fx, y, z ||. The maximum value of the directional derivative is ||Fx, y, z || and it occurs when u Fx, y, z and the maximum value of the directional derivative is "||Fx, y, z || and it occurs when u "Fx, y, z . So, the gradient vector F points in the direction in which F increases most rapidly whereas "Fx, y, z points in the direction of the most rapid decrease of F. x2 " y2 . Find the directional derivatives of F in the directions u i " 2j 3k z2 and v Fx, y, z at the point 2, 4, "1 . Example Let Fx, y, z Fx, y, z 2 2 2x , "2y , "2x " y z2 z3 z2 D u F2, 4, "1 4, " 8, " 24 Dv F2, 4, "1 4, " 8, " 24 1 ¡1, "2, 3¢ " 26 14 "13. 90 7 149 1 4 8 2 24 2 2 , F2, 4, "1 4, " 8, " 24 4, " 8, " 24 4 2 8 2 24 2 4 41 25. 61 xy Example Find a vector that gives the direction in which Fx, y, z ln z decreases most rapidly at 1, 1, 1 . 2 6 3 xy The u "F 1 , 1 , 1 is a direction in in which Fx, y, z ln z decreases most rapidly. 2 6 3 2 1, 1, " 1 , z x y Fx, y, z lnx lny " lnz , Fx, y, z F 1 , 1 , 1 2 6 3 u "2, " 6, 3 . 2, 6, " 3 , u so that a D u fa, b 0, and Example Suppose that fa, b 2, " 3 . Find a unit vector b D u fa, b is a maximum. a. Let u cos2 , sin2 . Then D u fa, b fa, b u 2 cos2 " 3 sin2 0 ® 2 cos2 3 sin2 , tan2 2 , 3 2 2 "1 2 "1 "1 , and u cos tan , sin tan 2 tan ¡0. 832 05, 0. 554 7¢. 3 3 3 b. u 1 fa, b ||fa, b || 1 49 2, " 3 ¡0. 554 7, "0. 832 05¢ Example The temperature T at a point x, y, z in space is inversely proportional to the square of the distance from x, y, z to the origin. It is known that T0, 0, 1 500. Find the rate of change of T at 2, 3, 3 in the direction of 3, 1, 1 . In which direction from 2, 3, 3 does the temperature T increases most rapidly and what is the maximum rate of change of T? The function T is Tx, y, z C . T0, 0, 1 C 500 ® C 500. 1 x2 y2 z2 "1000y "1000x "1000z , , 2 2 2 2 2 2 x y z x y 2 z 2 x 2 y 2 z 2 T2, 3, 3 g2, 3, 3 " 500 , " 750 , " 750 121 121 121 The direction from 2, 3, 3 in the direction of 3, 1, 1 is u ¡1, "2, "2¢. So the rate of change is 1 D u T2, 3, 3 " 500 , " 750 , " 750 ¡1, "2, "2¢ 2500 . 121 121 121 363 144 Tx, y, z gx, y, z 2 The temperature T increases most rapidly in the direction v T2, 3, 3 and the maximum rate of change of T is Dv T2, 3, 3 ||T2, 3, 3 || PwP 9. 690 94. Example Find a function f if possible such that fx, y 2x y e x 2 y , x 2 e x2 2 y y f 2x y e x 2 y ® fx, y ; 2x y e x 2 y dx e x 2 y Cy x f 1 x 2 e x 2 y C U y x 2 e x 2 y 2y cosy 2 2 y 2 y y C U y 2y cosy 2 , Cy fx, y e x 3 2 y siny 2 C ; 2y cosy 2 dy siny 2 C 2y cosy 2 .
© Copyright 2025 Paperzz