Name ________________________________________ Date __________________ Class__________________ Practice B LESSON 7-5 Rational Exponents Simplify each expression. All variables represent nonnegative numbers. 1. 4. 1 3 27 2. 10. _________________________ 1 2 64 1 4 16 + 1 3 27 5. 1 5 1 + 1 2 49 16. 1 3 +8 3 16 4 5 16 11. y5 12. x 4 y 12 _________________________ 1 ( x 2 )4 1 ( x 3 y )3 x6 ________________________ 17. x2y 2 3 32 5 3 1212 ________________________ 15. ________________________ − 1 6 64 ________________________ _________________________ 14. 1 2 100 ________________________ 9. _________________________ 5 6. 3 8. 25 2 ________________________ 1 3 0 ________________________ _________________________ ________________________ 13. 3. ________________________ ________________________ 7. 1 2 121 3 a 6 b3 ________________________ 18. _________________________ 1 4 (x )8 3 x3 ________________________ 1 19. Given a cube with volume V, you can use the formula P = 4V 3 to find the perimeter of one of the cube’s square faces. Find the perimeter of a face of a cube that has volume 125 m3. _________________________________________________________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 7-36 Holt McDougal Algebra 1 9. 9 4 10. 5 5 125 ; ; 3 3 27 Problem Solving 1. 0.056 acres z7 ; 7; 1; 3; 35; 5; 15 11. xy 3 12. c ; 1; 2; 3; 4; 8; 12 a 2 b3 13. y5 x5 14. 15 2. 6y 2 meters 3. 5.34 102 km/h 4. Laos: $1817; Norway: $39,869 9m 8 49 5. C 6. F 7. C 8. H Reading Strategies 2 15. b 32a10 16. 9n m2 17. 27 x 6 8 18. 16s12 r4 1. subtract 8 2. 5 4 3. Positive Power of a Quotient 4. 144 5. 16 625 6. 64 81 7. g3 f 4 h5 8. t 18 s6 9. 32 c d5 24 • 3 22 = 6. 2 2 3•5 2 •3 •5 10. 8 27 11. 2 • 53 53 7. 5 2 = 4 2 2 •3 2 •3 12. g 14 25f 6 Challenge 1. 23 31 2. 22 33 3. 22 1131 4. 23 32 52 3 2 • 32 5. 3 = 2 2 •3 2 8. 3 22 • 3 3 • 5 = 3 2 2 2•5 2 •3 •5 10 x4 y4 LESSON 7–5 Practice A 9. If a prime number base b appear in the numerator (or denominator), it cannot occur in the denominator (or numerator) as well because then the rational number is not fully simplified. bn a bn ma ex: m = c b c 10. Every rational number can be written as a quotient whose numerator is 1 or the product of prime numbers raised to positive integer exponents and whose denominator can be written as 1 or the product of prime numbers raised to positive integer exponents, and there are no prime bases common to the numerator and the denominator. 1. B 2. D 3. C 4. A 5. 7 6. 3 7. 1 8. 12 9. 8 10. 9 11. 1 12. 32 13. x 8 15. m4n 14. x3y4 16. x2 17. 14 cm Practice B 1. 3 2. 11 3. 0 4. 11 5. 4 6. 8 Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A6 Holt McDougal Algebra 1 7. 8 Challenge 8. 125 9. 8 10. 8 11. 1 12. 1331 13. y 14. x2y6 15. a2b 16. x5 17. x2y4 18. x 19. 20 m Practice C 1. 9 2. 6 3. 10 4. 15 5. 8 6. 3 7. −3 8. 1024 9. 27 10. 9 11. 16 12. 1728 13. x2 14. x8y 15. y3z4 16. ab5 17. x 18. y 2 19. 54 cm Problem Solving Review for Mastery 1. 6 s 1. 8 2. 10 3. 512 in 3. 1 4. 4 5. D 5. 2 6. 7 7. A 7. 6 8. 14 9. 3 10. 1 11. 7 12. 5 13. 8 14. 8 15. 4 16. 1 17. 81 18. 1000 19. 4 20. 243 21. 8 22. 32 23. 343 24. 256 2. 51.3 mi/h 3 4. 4 cm 6. G Reading Strategies 1. 3rd or cube 2. 5th 3. 5th; 4th 4. 2 5. 9 6. 2 7. 20 8. 4 9. 27 10. 8 11. 1024 12. 64 LESSON 7–6 Practice A 1. 2; 1 2. 3; 2 3. 5; 4 4. trinomial 5. monomial 6. binomial Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A7 Holt McDougal Algebra 1
© Copyright 2026 Paperzz