Test1 Review

Class: Math 1650.500 (Pre-Calc)
Test 1 Review
Multiple Choice
Identify the choice that best completes the statement or answers the question.
____
1. Solve the inequality. Express the solution using interval notation.
1
4
x + 1 <  4x
9
9
a.
b.
c.
d.
e.
____
1
x( , )
7
x  (  ,  7)
1
x  (  ,  )
5
x  (  ,  5)
1
x( , )
5
2. Solve the inequality. Express the solution using interval notation.
 1  17  3x  29
a.
b.
c.
d.
e.
[ -4, 6 ]
[ -6, 4 ]
[ -4, 6 )
[ -6, 4 )
( -4, 6 )
1
Name: ________________________
____
ID: A
3. Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set.
x2 + x > 6
____
a.
ÊÁ  ,  2 ˆ˜  ÊÁ 3,  ˆ˜ ;
Ë
¯ Ë
¯
b.
ÊÁ  ,  3 ˆ˜  ÊÁ 1,  ˆ˜ ;
Ë
¯ Ë
¯
c.
ÊÁ  ,  5 ˆ˜  ÊÁ 2,  ˆ˜ ;
Ë
¯ Ë
¯
d.
ÊÁ  ,  3 ˆ˜  ÊÁ 2,  ˆ˜ ;
Ë
¯ Ë
¯
e.
ÊÁ  ,  2 ˆ˜  ÊÁ 2,  ˆ˜ ;
Ë
¯ Ë
¯
4. Solve the inequality for x, assuming that m, q, and c are positive constants.
m( qx  c )  qc
a.
x
b.
x
c.
x
d.
x
e.
x
q( m + c )
mc
c( q  m)
mq
c( m + q )
mq
m( m  q )
cq
m( c + q )
cq
2
Name: ________________________
____
5. Determine the correct equation for the line with an x-intercept of –8 and a y-intercept of 16.
a.
b.
c.
d.
e.
____
b.
c.
d.
e.
y = 5x  2
1
y= x2
5
1
y= x+2
5
1
y= x5
5
y = 5x + 2
7. Write the equation for the line passing through the point (7, 5) which is perpendicular to the line
y = –15.
a.
b.
c.
d.
e.
____
y = 2x  16
y = 2x + 16
1
y = x + 16
2
1
y =  x  16
2
y =  2x + 16
6. Determine the correct equation for the line passing through the point (30, –8) and parallel to the line
x + 5y = 20.
a.
____
ID: A
x=6
x=7
y=8
y=9
y = 7
8. Determine the correct equation for the line passing through the point (3, 3) which is parallel to the line
passing through both of the points (5, 4) and (–7, 112).
a.
b.
c.
d.
e.
y =  9x  30
1
y = 9x +
30
y =  9x + 30
1
y =  9x 
30
1
y =  9x +
30
3
Name: ________________________
____
9. Find the slope and the y-intercept of the line
11
,y  intercept = 22
12
a.
m=
b.
m = 1 ,y  intercept = 0
c.
5m =
ID: A
1
1
x
y + 2 = 0 and draw its graph.
11
12
11
,y  intercept = 22
12
d.
m=
e.
m = 1,y  intercept = 11
11
,y  intercept = 24
12
4
Name: ________________________
ID: A
____ 10. Express the following rule in function notation:
"square, add 5, then take the square root"
x +
5) 2
a.
f (x) = (
b.
f (x) = ( x + 5) 2
c.
f (x) =
(x + 4) 2
d.
f (x) =
x +5
e.
f (x) =
x2 + 5
____ 11. Evaluate the function f (x) 
a.
b.
c.
d.
e.
19  x
at f (3).
7x
f (3) = 1.5
f (3) = 1.2
f (3) = 1.6
f (3) = 1.3
f (3) = 1.4
____ 12. Evaluate the following piecewise defined function at f (1), f (5) and f (4).
ÔÏÔ
Ô 2
f (x) = ÔÌÔ x
ÔÔ
ÔÓ 3x
a.
b.
c.
d.
e.
+
2x
if x  4
if x > 4
f (1) = 3, f (5) = 15, f (4) = 29
f (1) = 3, f (5) = 15, f (4) = 24
f (1) = 3, f (5) = 19, f (4) = 24
f (1) = 3, f (5) = 15, f (4) = 22
f (1) = 3, f (5) = 19, f (4) = 29
5
Name: ________________________
ID: A
____ 13. For the function f (x) = 3x 2 + 3, find
f (a + h)  f (a)
, h  0.
h
a.
b.
c.
d.
e.
f (a + h)  f (a)
h
f (a + h)  f (a)
h
f (a + h)  f (a)
h
f (a + h)  f (a)
h
f (a + h)  f (a)
h
= 3h + 6a
= 3h + 3a
= 9h + 6a
= 6h + 3a
= 3h + 12a
____ 14. Find the domain of the following function:
f (x) = 9 x  4
a.
b.
c.
d.
e.
(  , )
[4, )
[0, )
(0, )
(  , 4]
____ 15. Find the domain of the following function:
f (x) =
a.
b.
c.
d.
e.
x
x  11x + 10
2
[0, 1)  (1, 10)  (10, )
[1, 10]
(  , 1)  (1, 10)  (10, )
(1, 10)
(  , )
6
Name: ________________________
ID: A
____ 16. Select the correct graph and domain of the function.
f (x) =
4x + 1
a.
d.
1
Domain: [ ,)
4
b.
1
Domain: [ ,)
4
e.
Domain: [0,)
Domain: [0,)
c.
1
Domain: [ ,6)
4
7
Name: ________________________
ID: A
____ 17. Sketch the graph of the piecewise defined function.
ÏÔ
Ô 0 if x  2
f(x)  ÔÌÔ
ÔÔÓ 1 if x  2
a.
d.
b.
e.
c.
8
Name: ________________________
ID: A
____ 18. Sketch the graph of the piecewise defined function.
ÏÔ
ÔÔ 2 if x  2
ÔÔ
f(x)  ÌÔ x if  2  x  2
ÔÔ
ÔÔ 2 if x  2
Ó
a.
d.
b.
e.
c.
9
Name: ________________________
ID: A
____ 19. Determine whether the equation defines y as a function of x.
x 2  3y  3
a. no
b. yes
____ 20. Determine the interval on which the function in the graph below is decreasing.
a.
b.
c.
d.
e.
[4, –1]
[–2, 7]
[–3, 6]
[–7, –3]
[6, 10]
10
Name: ________________________
ID: A
____ 21. Determine the interval on which the function in the graph below is decreasing.
a.
b.
c.
d.
e.
[–2, 10]
[4, 2]
[–3, 9]
[9, 13]
[–7, –3]
____ 22. The graph of the function y = –x 2 + 8x is:
Find its maximum or minimum value.
a. min = 16
b. max = 24
c. min = –32
d. min = –16
e. max = 16
11
Name: ________________________
ID: A
____ 23. The graph of a function is given below. What is the average rate of change of the function between the
indicated values of the variable?
a.
b.
c.
d.
e.
1
6
1
6
1

6
____ 24. What is the average rate of change of the function f (x) = 9x  8 between x = 2 and x = 3?
a.
b.
c.
d.
e.
9
12
6
10
8
____ 25. What is the average rate of change of the function f (t) = t 2  7t between t   5 and t   4?
a.
b.
c.
d.
e.
–16
–10
–14
–13
–8
12
Name: ________________________
ID: A
____ 26. Determine the average rate of change for the function f (x) =
a.
b.
c.
d.
e.
1
3
1
27
1

9
1

27
1

3
____ 27. What is the average rate of change of the function f (x) =
a.
b.
c.
d.
e.
1
between x  1 and x  3.
x
x between x  9 and x  16?
1
49
1

7
1
7
1
49
7

____ 28. The table below shows the number of CD players sold in a small electronics store in the years 1989-1999:
Year
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
CD players sold
540
700
730
655
690
565
615
540
620
650
640
What was the average rate of change of sales between 1989 and 1999?
a.
b.
c.
d.
e.
640 CD players/year
64 CD players/year
100 CD players/year
10 CD players/year
25 CD players/year
13
Name: ________________________
ID: A
____ 29. The table below shows the number of CD players sold in a small electronics store in the years 1989-1999.
Year
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
CD players sold
525
525
540
650
650
650
725
725
790
795
595
Between which two successive years did CD player sales increase most quickly?
a.
b.
c.
d.
e.
1991, 1992
1995, 1996
1989, 1990
1997, 1998
none of these
____ 30. A 100-m race ends in a three-way tie for first place. The graph shows distance as a function of time for each
of the three winners. Find the average speed for each winner.
a.
b.
c.
d.
e.
A: 10 m/sec, B: 10 m/sec, C: 10 m/sec
A: 5 m/sec, B: 5 m/sec, C: 10 m/sec
A: 10 m/sec, B: 5 m/sec, C: 10 m/sec
A: 5 m/sec, B: 5 m/sec, C: 5 m/sec
A: 10 m/sec, B: 5 m/sec, C: 5 m/sec
14
Name: ________________________
ID: A
____ 31. Suppose the graph of f is given. Describe how the graph of the function can be obtained from the graph of f.
y  4f (x  5)  3
a. Shift the graph of y  f(x) to the left 5 units, stretch vertically by a factor of 4, and then
shift upward 3 units.
b. Shift the graph of y  f(x) to the right 4 units, stretch vertically by a factor of 5, and then
shift downward 3 units.
c. Shift the graph of y  f(x) to the right 5 units, stretch vertically by a factor of 4, and then
shift downward 3 units.
d. Shift the graph of y  f(x) to the left 5 units, stretch vertically by a factor of 4, and then
shift downward 3 units.
e. Shift the graph of y  f(x) to the left 4 units, stretch vertically by a factor of 5, and then
shift downward 3 units.
____ 32. Explain how the graphs of g and h are obtained from the graph of f.
f(x) = x 2 , g(x) = (x + 4) 2 , h(x) = x 2 + 4
a.
b.
c.
d.
e.
The graph of g is obtained from the graph of f by moving up 4 units, and the graph of h is
obtained from the graph of f by shifting left 4 units.
The graph of g is obtained from the graph of f by shifting left 5 units, and the graph of h
is obtained from the graph of f by moving up 5 units.
The graph of g is obtained from the graph of f by shifting left 2 units, and the graph of h
is obtained from the graph of f by moving up 2 units.
The graph of g is obtained from the graph of f shifting right 4 units, and the graph of h is
obtained from the graph of f moving up 4 units.
The graph of g is obtained from the graph of f by shifting left 4 units, and the graph of h
is obtained from the graph of f by moving up 4 units.
15
Name: ________________________
ID: A
____ 33. Explain how the graph of g is obtained from the graph of f.
f(x) 
a.
x , g(x) 
1
2
x5
The graph of g(x) 
1
2
x  5 is obtained by shifting the graph of f(x) 
units, and then shrinking the graph vertically by a factor of
b.
The graph of g(x) 
1
2
1
.
2
x  5 is obtained by shifting the graph of f(x) 
5 units, and then shrinking the graph vertically by a factor of
c.
The graph of g(x) 
x upward 5
x to the left
1
.
2
1
2
x  5 is obtained by shifting the graph of f(x) 
x to the right
1
2
x  5 is obtained by shifting the graph of f(x) 
x to the right
5 units.
d.
The graph of g(x) 
5 units, and then shrinking the graph vertically by a factor of
e.
The graph of g(x) 
1
2
x  5 is obtained by shifting the graph of f(x) 
5 units.
____ 34. Find the domain of g û f, if f (x) = x 2 and g(x) =
a.
(  ,
3] [
b.
c.
d.
e.
f.
(  , 3) ( 3 ,)
(  , 3)  (3,)
x3
x 3
(  , 3]  [3,)
3 ,)
____ 35. For f (x) = x 5 + 5, g (x) = x  8, and h (x) =
x.
Find f û g û h.
a.
(f û g û h)(x) = ( x  8) 5 + 5
b.
(f û g û h)(x) = ( x  3) 5
c.
(f û g û h)(x) = x 5 + x  3 +
d.
(f û g û h)(x) = (x + 5) (x  8)
e.
(f û g û h)(x) =
5
1
.
2
x
x
x5  3
16
x3.
x downward
Name: ________________________
ID: A
____ 36. Express the function in the form f û g .
x3
x3  2
x
f(x) 
, g(x)  x 3
x2
x
f(x)  x 3 , g(x) 
x2
x
f(x)  x 3 , g(x) 
x2
G(x) 
a.
b.
c.
d.
f(x)  x 3  2, g(x) 
e.
f(x) 
x
x2
x
, g(x)  x 3
x2
____ 37. Express the function in the form f û g .
H(x) 
4
x
a.
f(x) 
x  4 , g(x) 
b.
f(x) 
x , g(x) 
c.
f(x) 
4  x , g(x)  x 2
d.
f(x) 
4  x , g(x) 
e.
f(x) 
x , g(x) 
x
4x
x
4x
17
Name: ________________________
ID: A
____ 38. An airplane is flying at a speed of 250 mph at an altitude of 4 miles. The plane passes directly above a radar
station at time t = 0.
Find the distance s between the plane and the radar station after 4 minutes.
a.
b.
c.
d.
e.
17.6 miles
17.1 miles
16.6 miles
18.1 miles
19.0 miles
____ 39. Find the inverse function of f (x) = 10x + 20.
a.
f
b.
f
c.
f
d.
f
e.
f
1
1
1
1
1
(x) =
(x) =
(x) =
(x) =
(x) =
20  x
10
1
10x+20
10
x  20
10  x
20
x  20
10
18
Name: ________________________
____ 40. Find the inverse function of f (x) =
a.
f
b.
f
c.
f
d.
f
e.
f
ID: A
1
.
x+2
1
+2
x
1
(x) = x + 2
1
1
(x) =  2
x
1
(x) = x  2
1
1
(x) =
x2
1
(x) =
____ 41. Find the inverse function of f (x) = 2 +
a.
b.
f
f
c.
f
d.
f
e.
f
1
(x) =
3
x.
1
2+
3
x
1
(x) = x  2
1
(x) = (2  x) 3
1
(x) = (x  2) 3
1
(x) = (x + 2) 3
3
3
19
Name: ________________________
ID: A
____ 42. A function f is given.
f(x) 
x5
Sketch the graph of f. Use the graph of f to sketch the graph of f 1 . Find f 1 .
d.
a.
f 1 (x) 
f 1  x 2  5
x5
b.
e.
f 1 
f 1 (x)   x  5
x4
c.
f 1 (x)  x 2  5
20
Name: ________________________
ID: A
____ 43. The given function f (x) = (x + 4) 2 is not one-to-one. Find a restricted domain for which the function is
one-to-one. Also find the inverse of the function with the restricted domain.
a.
b.
c.
d.
e.
x   4; f
1
x   4; f
1
x   4; f
1
x   7; f
1
x   7; f
1
(x) =
(x) = 
x +4
x +4
(x) =
x 4
(x) =
x +4
(x) =
x 4
____ 44. Find the vertex of the given parabola.
y =  x 2  2x + 10
a.
b.
c.
d.
e.
(1,  9)
(2, 10)
(1, 7)
(1, 10)
(1, 11)
____ 45. Find the vertex of the given parabola.
y = 6x 2 + 12x  11
a.
b.
c.
d.
e.
(1, 11)
(1,  17)
(1,  17)
(12, 11)
(6, 25)
21
Name: ________________________
ID: A
____ 46. Express the quadratic function in standard form and find its maximum or minimum value.
f (x) = x 2 + 6x  7
a.
f (x) = ( x + 3 ) 2  6; Maximum f (  3) = 6
b.
f (x) = ( x + 6 ) 2  17; Minimum f (  6) =  17
c.
f (x) = ( x + 3 ) 2  7; Maximum f (3) =  7
d.
f (x) = ( x + 4 ) 2  16; Minimum f (4) = 16
e.
f (x) = ( x + 3 ) 2  16; Minimum f (  3) =  16
____ 47. Find the minimum or maximum value of the function.
f (x) = x 2 + x + 9
a.
b.
c.
d.
e.
f (  9) = 
35
4
1
35
f( ) =
2
2
35
1
f( ) =
2
2
35
1
f( ) =
4
2
1
31
f( ) =
2
4
____ 48. Find the maximum or minimum value of the function.
f(x) = 9  8x  8x 2
a.
b.
c.
d.
e.
2
f(x) = ( x + 2 ) + 11; Maximum f(2)  11
2
ÁÊ
ÁÊ 1 ˆ˜
1 ˜ˆ
f(x)  ÁÁÁÁ x  ˜˜˜˜  13; Maximum f ÁÁÁÁ  ˜˜˜˜  13
2¯
Ë
Ë 2¯
ÁÊ
f(x)   8 ÁÁÁÁ x 
Ë
ÊÁ
f(x) =  8 ÁÁÁÁ x +
Ë
2
1 ˜ˆ˜˜
 11; Maximum
2 ˜˜¯
1 ˜ˆ˜˜
2 ˜˜¯
2
ÁÊ 1 ˆ˜
f ÁÁÁÁ  ˜˜˜˜  11
Ë 2¯
ÁÊ 1 ˆ˜
+ 11; Minimum f ÁÁÁÁ  ˜˜˜˜ = 11
Ë 2¯
2
ÁÊ
1 ˜ˆ
f(x)  ÁÁÁÁ x  ˜˜˜˜  9; Minimum
2¯
Ë
ÁÊ 1 ˆ˜
f ÁÁÁÁ  ˜˜˜˜  9
Ë 2¯
22
Name: ________________________
ID: A
____ 49. If a ball is thrown directly upward with a velocity of 80 ft/s, its height (in feet) after t seconds is given by y =
80t  16t 2 .
What is the maximum height attained by the ball?
a.
b.
c.
d.
e.
25 feet
176 feet
50 feet
100 feet
80 feet
____ 50. A manufacturer finds that the revenue generated by selling x units of a certain commodity is given by the
function
R (x) = 384x  0.8x 2
where the revenue R (x) is measured in dollars. What is the maximum revenue, and how many units should be
manufactured to obtain this maximum?
a.
b.
c.
d.
e.
$46,090, 230 units
$46,080, 240 units
$46,070, 250 units
$46,080, 245 units
$0, 480 units
____ 51. Determine the end behavior of the graph of the function.
y = 8x 3 – 7x 2 + 3x + 7
a. y   as x   , and y   as x  
b. y   as x  , and y   as x  
c. y   as x  , and y   as x  
d. y   as x  , and y   as x  
e. y   as x  , and y   as x  
____ 52. How many local maxima and minima does the polynomial have?
y = 9x 2 + 7x + 6
a.
b.
c.
d.
e.
1 maximum and 1 minimum
1 maximum and 2 minima
0 maxima and 1 minimum
1 maximum and 0 minima
2 maxima and 1 minimum
23
Name: ________________________
ID: A
____ 53. How many local maxima and minima does the polynomial have?
y = 0.2x 5 + 2x 4  22.33x 3  12.5x 2 + 1,050x + 14
a.
b.
c.
d.
e.
2 maxima and 2 minima
1 maxima 5 minima
2 maxima 1 minima
0 maxima and 1 minima
1 maxima and 0 minima
____ 54. The point P is on the unit circle. The x-coordinate of P is
a.
b.
c.
d.
ÊÁ
ˆ˜
ÁÁ 1
˜
ÁÁ , 48 ˜˜˜
ÁÁ 7
7 ˜˜˜
Á
Ë
¯
ÁÊÁ 1 6 ˜ˆ˜
ÁÁ , ˜˜
Á7 7˜
Ë
¯
ÊÁ
ˆ˜
ÁÁ 1
˜
ÁÁ  , 48 ˜˜˜
ÁÁ 7
7 ˜˜˜
Á
Ë
¯
ÊÁ
ˆ˜
48 ˜˜˜
ÁÁÁ 1
ÁÁ ,
˜
ÁÁ 7
7 ˜˜˜
Ë
¯
1
and P is in quadrant I. Find the point P(x, y).
7
2
____ 55. The point P is on the unit circle. The x-coordinate of P is  and P is in quadrant II. Find the point P (x, y).
7
ˆ
ÁÊÁ 2
˜
45 ˜˜˜
Á
˜
a. ÁÁÁ  ,
ÁÁ 7
7 ˜˜˜
Ë
¯
ÊÁ
ˆ
ÁÁ 2
45 ˜˜˜˜
Á
˜
b. ÁÁ  ,
ÁÁ 7
7 ˜˜˜
Ë
¯
ÊÁ 2 5 ˆ˜
c. ÁÁÁÁ  , ˜˜˜˜
Ë 7 7¯
ˆ
ÊÁ
ÁÁ 2
45 ˜˜˜˜
Á
˜
d. ÁÁ ,
ÁÁ 7
7 ˜˜˜
¯
Ë
____ 56. Find the terminal point P (x, y) on the unit circle determined by t 
hundredth.
a. (0.93, 0.73)
b. (0.81, –0.59)
c. (–0.81, –0.59)
d. (0.81, 0.59)
24

5
. Round the values to the nearest
Name: ________________________
____ 57. Find the reference number for t 
a.
b.
c.
d.

ID: A
5
.
4
5
5
4



4
4
2
. Round the coordinates of the
3
terminal point to the nearest hundredth, and express the reference number in terms of 
____ 58. Find the terminal point P (x, y) and the reference number determined by t 

a.
terminal point is (–0.50, 0.87), reference number is
b.
terminal point is (–0.50, –0.87), reference number is
c.
terminal point is (0.50, –0.87), reference number is
d.
terminal point is (0.50, 0.87), reference number is
____ 59. Find the exact value of the trigonometric functions sin
a.
b.
c.
3


3
3
2
3
13
11
 and sin  .
2
2
13
11
  1, sin   0
2
2
13
11
sin   1, sin   1
2
2
13
11
sin   0, sin   1
2
2
sin
9
9
____ 60. Find the exact values of the trigonometric functions sin  and cos  .
4
4
a.
3
3
9
9
sin  
, cos   
2
2
4
4
b.
3
9
1
9
sin   , cos   
2
4
2
4
c.
2
2
9
9
sin  
, cos   
2
2
4
4
25
Name: ________________________
ID: A
7
1
____ 61. Find the exact values of the trigonometric functions sin  and sin  .
6
6
7
1
a. sin   0.5, sin   0.5
6
6
7
1
b. sin   0.5, sin   0.5
6
6
7
1
c. sin   0.5, sin   0.5
6
6
____ 62. Find the exact value of the trigonometric function cos
a.
b.
c.
15
.
2
15
  1
2
15
cos   0
2
15
cos   1
2
cos
ÊÁ
ˆ
ÁÁ 3
7 ˜˜˜˜
Á
˜ . Find sin t, cos t, and tan t.
____ 63. The terminal point determined by t is ÁÁ ,
ÁÁ 4 4 ˜˜˜
Ë
¯
7
3
7
a. sin t  , cost  , tan t 
4
4
3
b.
sint 
3
7
7
, cost  , tant 
4
3
4
c.
sint 
7
7
3
, cost  , tant 
4
3
4
____ 64. Find the values of the trigonometric functions of t if sint 
a.
sint 
5
5
2 5
2
, cost   , tan t  
, cot t  
3
2
5
3
b.
sin t 
5
2 5
2
5
, cost  , tan t  , cot t 
3
5
3
2
c.
sint 
5
5
2 5
5
, cost  , tan t 
, cot t 
3
2
5
3
5
and the terminal point of t is in quadrant II.
3
____ 65. Determine whether the function |5x| cos 2x is even, odd, or neither.
a. neither
b. odd
c. even
26
Test 1 Review
Answer Section
MULTIPLE CHOICE
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
C
A
D
C
B
B
B
C
A
E
C
B
A
A
A
A
E
E
B
C
C
E
A
A
A
E
C
D
A
D
D
E
D
A
A
E
D
B
E
C
1
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
ANS:
D
C
C
E
B
E
D
C
D
B
B
D
A
A
A
D
D
A
B
C
C
B
C
A
C
2