Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 3 x2 b) g ( x) x 1 2 x2 1 x2 5x 6 d) j ( x) x2 x 6 x 3 a) f ( x) c) h( x) 2. Evaluate the following. 5 a) sin 6 e) sin 1 2 2 7 b) tan 6 f) e 4ln 3 3 d) cos 1 2 4 c) sec 3 g) ln 2e e ln e1 1 4 h) log8 3. Solve for x. a) ln 7 x 2 8 ln10 x b) e12 x 3 4. Sketch the graph of csc and cot on the interval , . Draw each graph on a separate set of axis. Clearly label the location of any vertical asymptotes. 5. Express the function f x 2 x 3 4 x 1 in piecewise form without the absolute values. 6. Define the Domain and Range of f 1 x given f x ln x 3 2 . 7. For the function f (x) graphed below, answer the following: 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 x 0 b) lim f ( x) c) lim f ( x) d) f (0) f) f (4) g) lim f ( x) h) a) lim f ( x) e) x 0 x x 4 For parts i) through m) answer True or False. i) f (x) is continuous from the right at x 6 . j) f (x) is not continuous at x 6 . k) f (x) is continuous from the left at 0. l) f (x) is not continuous from the right at x 2 . lim f ( x) x 2 lim f ( x) x 6 7 8. Sketch a possible graph for a function f (x) with the specified properties: lim f x and lim f x 0 ; f 1 f 3 1 ; x 3 x 3 lim f x and lim f x ; x 1 lim f x 2 and lim f x x x 1 x 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 9. Find a value for the constant k that will make the function continuous at x 2 for part a) and at x 3 for part b). a) 2x 3 f ( x) 2 kx 2 x 2 x 2 x2 4k b) g ( x) x 3 x 3 7 10. Find the following limits. Rationalize the denominator if necessary. 3x 4 x a) lim 2 x x 8 b) lim x 6 5 x3 x3 x2 c) lim 2 x x 4 2 d) lim x2 7 x x x x2 4 x 11. Find the following limits: x a) lim sin x 2 3x c) lim 0 tan 7 b) lim t 0 d) lim x 0 tan 3x sin 6 x t2 1 cos 2 t Math3A Practice Exam Fall 2015 1. Sketch the graph of the function and define the domain and range. a) f ( x ) = − 3x 4 6 ( x + 4 ) ( x − 5) 2 2 b) h ( x ) = 2 x5 ( x + 3) ( x − 6 ) 2 3 2. Express the function f ( x ) = −3 x + 2 + 2 x − 1 in piecewise form without the absolute values. 3. Evaluate the following. 5π a) sin − 6 3 b) cos −1 − 2 4. A robot moves in the positive direction along a straight line so after t minutes its distance is s ( t ) = 2t 2 feet from the origin. Find the average velocity of the robot over the time interval [ 2, 4] . Then find a formula for the instantaneous velocity at to using the definition s ( to + h ) − s ( to ) . h →0 h vinst = lim 5. For the function f (x) graphed below, answer the following: 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 -1 -2 -3 -4 x→ 0 b) lim− f ( x) = c) lim f ( x) = d) f (−4) = f) f (0) = g) lim f ( x) = h) a) lim f ( x) = e) x→ 0 x →+∞ x→ 2 For parts i) through l) answer True or False. i) f (x) is continuous from the left at x = −4 . j) f (x) has a removable discontinuity at x = −6 . k) f (x) is not continuous from the left at 0. l) f (x) is continuous from the right at x = 4 . lim f ( x) = x→ − 4 lim f ( x) = x→ − 6 6. Sketch a possible graph for a function f (x) with the specified properties: f= ( 2) 1 ; ( 4 ) f= lim f ( x ) = 0 and lim+ f ( x ) = − ∞ ; x →−3 − lim f ( x ) = − ∞ and lim+ f ( x ) = +∞ ; x → − 1− x→−1 x →−3 lim f ( x ) = + ∞ and lim f ( x ) = 2 x →+ ∞ x →−∞ 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 7. Find a value for the constant k that will make the functions continuous at x = 0 . a) sin 2 x x≠0 3x f ( x) = 2 0 3 x − 2k + 1 x = 1 − cos x x≠0 2 + 5x b) g ( x) = 0 − 3k + x x = 7 8. Find the equation of the tangent line on f ( x ) = 12 at xo = −2 . Use the definition x mtan = lim x → xo f ( x ) − f ( xo ) to find the slope of the tangent line. x − xo 9. The figures below show the position versus time curves of four different particles moving on a straight line. For each graph determine whether its instantaneous velocity is increasing or decreasing with time. s (t ) s (t ) t s (t ) s (t ) t t t 10. Find the following limits: a) lim x − 5 x →5 x − 5 1 − 1 b) lim x + h x h →0 h cot x − 1 c) lim π x→ sin x − cos x 4 ( x + h )2 − x 2 d) lim h →0 h 11. Use the following definition mtan = lim h →0 f ( x + h) − f ( x) h to find the slope of a tangent line on f ( x ) = sin x at an arbitrary x value. ( ) ( ) Hint: Remember that lim sin h = 1 and lim 1 − cos h = 0 . h →0 h →0 h h Math3A Practice Exam Fall 2015 Math3A Exam #01 Spring 2016 Solutions 1. Sketch the graph of the function and define the domain and range. Give the equations of any vertical or horizontal asymptotes if they exist. a) f x 6 x5 2 x 4 x 5 3 2 b) h x x 2 4 2. Express the function f x 2 x 4 3 x 2 in piecewise form without the absolute values. 3. Given f x ax 2 bx c answer the following questions. a) Given a 1, c 1, and 0 b 2 , define the domain and range of the function. b) Given a 1, c 1, and 0 b 2 , how many y-intercepts does the function have? c) Given a 1, c 1, and 0 b 2 , how many x-intercepts does the function have? 4. A robot moves in the positive direction along a straight line so after t minutes its distance is s t 3t 2 feet from the origin. Find the average velocity of the robot over the time interval 1,5 . Then find a formula for the instantaneous velocity at to using the definition vinst lim h 0 s to h s to . h 5. Circle the limits below that represent the slope of the tangent line on the function g x at x b. g a g b lim a b a b g a g b lim a b ba g a g b lim b a a b g b g x lim b x bx g x g b lim x b x b 6. For the function f (x) graphed below, answer the following: 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 -1 -2 -3 -4 x 0 b) lim f ( x) c) lim f ( x) d) f (3) f) f (0) g) lim f ( x) h) a) lim f ( x) e) x 0 x x 4 For parts i) through l) answer True or False. i) f (x) is continuous at x 1 . j) f (x) has a removable discontinuity at x 6 . k) f (x) is not continuous at 0. l) f (x) has a removable discontinuity at x 4 . lim f ( x) x 3 lim f ( x) x 6 7. Find a value for the constant k that will make the functions continuous at x 0 . a) sec x 2 f ( x) 2 kx 2 x 2 x 2 sin 2 x b) g ( x) 3x 4k 8. Answer True or False. a) If lim f x f 1 f 1 h f 1 3 then lim 3. h 0 x 1 h b) If lim f a f b a b 2 then lim 1 b a f a f b a b 2 x 1 b a x0 x0 9. Find the following limits: 3x 4 x a) lim 2 x x 8 x3 2 x 2 7 x 3 b) lim 9 2 x 3 3 x 3 x x2 c) lim 2 x x 4 2 d) lim x x 2 cx x 2 dx 10. Use the following definition mtan lim h 0 f x h f x h line on f x tan x at an arbitrary x value. Hint: Note that lim tan h 1 . h 0 h to find the slope of a tangent Math3A Solution Exam #01 Fall 2016 1. Sketch the graph of the function and define the domain and range. a) f ( x) x2 4 x2 x 2 b) h( x) x2 x 6 3 x 2. Given f x a) b) x 3 x 2 1 , answer the following: lim f ( x) x 1 lim f ( x) x c) What is the domain and range of f ( x) ? 3. Decide which of the polynomial functions in the list might have the given graph. More than one answer may be possible. 2 -4 5 6 -3 2 x5 4 x2 2 x 4 x 5 a) y b) y 2 x2 x 4 x 5 b) y 2x x 3 x 6 c) y 3x 4 6 x 4 x 5 c) y 2 x3 a) y 2x2 d) y 4 x 4 x 5 d) y x 3 x 6 2 x 3 x 6 2 2 2x x 3 x 6 2 2 4. Express the function f x x 3 4 x 2 in piecewise form without the absolute values. 5. Sketch a graph of the function. 1 x 2 , x 0 f x 2 x x6 , x 0 x 2 9 6. For the function f (x) graphed below, answer the following: 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 -1 -2 -3 -4 x 4 b) lim f ( x) f (6) f) a) lim f ( x) e) x 4 f (0) c) lim f ( x) d) g) lim f ( x) h) x x 3 For parts i) through m) answer True or False. f ( x) 0 . i) The lim x 0 j) f (x) has a removable discontinuity at x 2 . k) f (x) is not continuous at x 2 . f ( x) 1 . l) The xlim 2 lim f ( x) x 3 lim f ( x) x 6 7. Sketch a possible graph for a function f (x) with the specified properties with f (x) having a domain of all real numbers. lim f x and lim f x 0 ; f 4 f 2 1 ; x 3 x 3 lim f x and lim f x ; x 1 lim f x and lim f x 2 x x 1 x 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 -1 -2 -3 -4 8. Find a value for the constant k that will make the function continuous at x 2 for part a) and at x 0 for part b). a) sec x 2 f ( x) 2 kx 2 x 2 x 2 sin 3x b) g ( x) 4 x 5k x0 x0 9. Answer the following questions. a) Suppose the lim x 2 must the lim h 0 f ( x) f (2) 4 . If f x is an even function, then what x2 f (2 h) f (2) be equal to? h b) Suppose f x is an odd function. If the slope of the tangent line on f x at x a is 4, then what must the lim h 0 f ( a h) f ( a ) be equal to? h t 2 t 0 g t t 2 0t 2 10. Given , answer the following: 2t t 2 g (t ) a) lim t 0 g (t ) b) lim t 1 g (t ) c) lim t2 11. Find the following limits. Rationalize the denominator if necessary. x3 2x 2 7x 3 a) lim 9 2 x 3 6 x 3x b) lim sin 1 t 0 t2 2 2 cos 2 t c) lim x x 2 ax x 2 bx
© Copyright 2026 Paperzz