Section 4.6: Inverse Trigonometric Functions y = arcsin x = sin−1 (x) y = arccos x = cos−1 (x) y = arctan x = tan−1 (x) Example. Find the exact value of the expression. √ ! 3 −1 = (A) sin 2 (B) sin −1 1 − 2 = M151 Notes (C) ©, R.G. Lynch, Texas A&M √ ! 2 = 2 cos−1 (D) cos−1 −1 2 = 5π (E) arcsin sin 4 5π (F) arccos cos 4 = 7π (G) arctan tan 4 (H) sin arcsin = √ 3 = = Section 4.6: Inverse Trigonometric Functions Page 2 of 5 M151 Notes ©, R.G. Lynch, Texas A&M Example. Find the exact value of the expression. −1 1 = (A) cos sin 2 2 −1 (B) sec tan = 3 (C) sin(tan−1 (x) = (D) cos sin−1 x = Section 4.6: Inverse Trigonometric Functions Page 3 of 5 M151 Notes ©, R.G. Lynch, Texas A&M Section 4.6: Inverse Trigonometric Functions Page 4 of 5 Derivatives of Inverse Trigonometric Functions 1 d sin−1 (x) = √ dx 1 − x2 d −1 csc−1 (x) = √ dx x x2 − 1 d −1 cos−1 (x) = √ dx 1 − x2 d 1 sec−1 (x) = √ dx x x2 − 1 d 1 tan−1 (x) = dx 1 + x2 d −1 cot−1 (x) = dx 1 + x2 Example. Find the derivative. 2 (A) y = sin−1 (2x) (B) y = cos−1 (4x2 ) M151 Notes ©, R.G. Lynch, Texas A&M (C) y = arctan(sin(4x)) −1 (x) (D) y = xsec Section 4.6: Inverse Trigonometric Functions Page 5 of 5
© Copyright 2026 Paperzz