ε = 0.1 α = 1 β = 1 x(t) y(t) 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 t 5 6 7 8 ε = 0.1 exact approximate 2.5 2 1.5 1 0.5 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x ε = 0.05 exact approximate 2.5 2 1.5 1 0.5 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x ε = 0.01 exact approximate 2.5 2 1.5 1 0.5 0 −1 −0.8 −0.6 −0.4 −0.2 0 x 0.2 0.4 0.6 0.8 1 ε = 0.0001 exact approximate 2.5 2 1.5 1 0.5 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x Zoom in on the interior layer. ε = 0.0001 2 1.9 exact approximate 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 −0.03 −0.02 −0.01 0 x 0.01 0.02 0.03 Laplace Method Formulas Laplace’s method is used to approximate integrals of the form Z b I(x) = f (t) exφ(t) dt as x → ∞. a The asymptotic approximation is determined at the point(s) where φ attains its absolute maximum on [a, b]. Case: φ0 (t) 6= 0 in [a, b] In this case, φ has no local maximums in [a, b] so the absolute maximum must occur at an endpoint. max at t = a: xφ(a) I(x) ∼ − xfφ(a) 0 (a) e max at t = b: I(x) ∼ f (b) xφ(b) x φ0 (b) e provided f (a) 6= 0 provided f (b) 6= 0 Case: φ0 (t) = 0 at a unique interior point, say at t = c ∈ (a, b) In this case φ(c) is either a local maximum or a local minimum (or an inflection point). local min: If φ(c) is a local minimum (or an inflection point), then the absolute maximum of φ(t) occurs at an endpoint and the above formulas can be used. • There is one exception: If φ(t) has a local minimum at an interior point, then it may be that φ(a) = φ(b), in which case there is a significant contribution to the value of the integral at each endpoint. The contributions given by the above formulas must be added. local max: If φ00 (c) < 0, then φ(c) must be the absolute maximum of φ on [a, b]. In this case, the dominant contribution to the integral occurs at t = c. I(x) ∼ q 2π −x φ00 (c) f (c)exφ(c) provided f (c) 6= 0 Case: φ0 (d) = 0 where d is an endpoint and the absolute maximum of φ I(x) ∼ q π −2x φ00 (d) f (d)exφ(d) provided f (d) 6= 0 Case: Interior absolute max at t = c with φ0 (c)=φ00 (c)=· · · =φ(p−1) (c)=0 1/p I(x) ∼ 2 Γ( p1 )(p!) p[ 1/p ] −x φ(p) (c) f (c)exφ(c) provided f (c) 6= 0 Case: The absolute maximum occurs at multiple points: t = c1 , c2 , . . . , cn I(x) ∼ I1 (x) + I2 (x) + · · · + In (x), where Ik (x) denotes the contribution to the value of the integral at t = ck . Ik (x) can be determined from the above formulas. One example of this case is when φ is periodic. ε = 0.02 2.5 exact approximate 2 1.5 1 0.5 0 −0.5 −1 0 0.1 0.2 0.3 0.4 0.5 x 0.6 0.7 0.8 0.9 1 ε = 0.1 1.6 exact approximate 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 x 0.6 0.7 0.8 0.9 1 ε = 0.01 1.6 exact approximate 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.03 0.035 0.04 0.045 0.05 x Zoom in on the two-ply boundary layer. ε = 0.01 1 exact approximate 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.005 0.01 0.015 0.02 0.025 x Trigonometric Identities cos2A = 12 (1 + cos 2A) sin2A = 12 (1 − cos 2A) cosA cosB = 1 2 [cos(A + B) + cos(A − B)] sinA sinB = 12 [cos(A − B) − cos(A + B)] sinA cosB = 21 [sin(A + B) + sin(A − B)] cos3A = 14 [3 cos A + cos 3A] sin3A = 14 [3 sin A − sin 3A] cos2A cosB = 41 [cos(2A + B) + cos(2A − B) + 2 cos B] cos2A sinB = 14 [sin(2A + B) − sin(2A − B) + 2 sin B] sin2A cosB = − 14 [cos(2A + B) + cos(2A − B) − 2 cos B] sin2A sinB = − 14 [sin(2A + B) − sin(2A − B) − 2 sin B]
© Copyright 2026 Paperzz