Supercritical Hydrothermal Synthesis of Lithium Iron Phosphate (LiFePO4) Nanoparticles Seung-Ah Hong, Jae Hoon Kim1*, Jae-Duck Kim1, Jeong Won Kang2 Energy & Environment Research Division, Korea Institute of Science and Technology (KIST)1 Dept. of Chemical & Biological Engineering, Korea University2 Introduction LiFePO4 Supercritical Hydrothermal Synthesis (SHS) z Expensive due to Co z Unstable at high temperature z z LiCoO2 LiFePO4 Advantages Supercritical Water Stable at high temperature Safe under abusive conditions z Good energy density z Low cost • • • • Low dielectric constant Clean solvent - High Li diffusivity; smaller particles - High conductivity; carbon or copper coating Requirement for Cathode Active Materials • High reaction rate • High quality, single crystals • No calcination required High Diffusivity z Requirements of LiFePO4 for high performance cathode active materials Important factors for Synthesizing Cathode Active Materials High nucleation rate Nanosize particles High production rate (< 1 min) Continuous process High capacity High charge/discharge capacity Higher stability Single crystal Single phase Small particle Simultaneous co-precipitation High nucleation rate Short residence time Rapid heating Low solubility of Intermediates • No chemical waste Supercritical Hydrothermal Synthesis High-quality, nanosize particles Environmental-friendly, green technology Fast and continuous process High diffusivity of Intermediates scH2O Hydrothermal Reaction Experimental Apparatus & Experimental Method Objectives of Research Small, nanosize particles (~ 50 nm) Single crystals, Single phase Voltage 3.4-3.5 V, capacity 170mAh/g Higher stability of electro-conductivity Higher charge/discharge performance Experimental Apparatus Experimental Method Purge precursor and distilled water by N2 Heat and pressurize until target condition Circulate precursor and distilled water into the reactor Experimental Result (Ⅰ) Collect the particle from filter Effect of Concentration Concentration [M] Flow rate [g/min] Name P [bar] T [℃] FeSO4 H3PO4 LiOH FeSO4/H3PO4 LiOH H2O Surface area [m2/g] Size [nm] 1 250 406 0.01 0.01 0.03 2.83 2.79 18.0 10.6 255 2 250 413 0.03 0.03 0.09 3.04 2.98 18.0 12.2 222 3 250 405 0.06 0.06 0.18 3.24 3.25 18.0 17.2 157 ¾ Exp. 1 ¾ Exp. 2 Analysis the particle by SEM, TEM, BET, XRD and electro- conductivity ¾ Properties of Water with temperature at 250bar ¾ Continuous process system Reactor Volume : 47 cm3 Temperature range : ~ 700℃ Pressure range : ~ 500 bar Product rate : 0.5 g/h ¾ Exp. 3 Supercritical Water ¾ Reactant; precursor LiOH·H2O : + 98 % Aldrich FeSO4·7H2O : + 99 % Aldrich H3PO4 : + 98 % Aldrich Acetone Hexane MeOH Effect of Temperature Concentration [M] Flow rate [g/min] Name P [bar] T [℃] FeSO4 H3PO4 LiOH FeSO4/H3PO4 LiOH H2O Surface area [m2/g] Size [nm] 4 250 300 0.01 0.01 0.03 1.57 1.56 25.0 11.8 230 5 250 415 0.01 0.01 0.03 1.51 1.53 25.0 17.5 155 ¾ Exp. 4 ¾ Exp. 5 Experimental Result (Ⅱ) Effect of Flow Rate Charge / Discharge Test Concentration [M] Flow rate [g/min] Name P [bar] T [℃] FeSO4 H3PO4 LiOH FeSO4/H3PO4 LiOH H2O 2 250 413 0.03 0.03 0.09 3.04 2.98 18.0 6 250 403 0.03 0.03 0.09 1.74 1.73 9.0 8 250 412 0.03 0.03 0.09 1.77 1.75 36.0 ¾ Exp. 2 charge / discharge [mAh/g] Surface area [m2/g] Size T [℃] Concentration [M] Flow rate [g/min] LiOH H2O Surface area [m2/g] Size [nm] 6 250 403 0.03 0.03 0.09 1.74 1.73 9.0 7.0 388 7 250 408 0.03 0.03 0.09 1.77 1.78 18.0 13.7 199 8 250 412 0.03 0.03 0.09 1.77 1.75 36.0 24.8 109 9 250 402 0.03 0.03 0.09 2.98 3.04 9.0 6.4 428 2 250 413 0.03 0.03 0.09 3.04 2.98 18.0 12.2 222 10 250 411 0.03 0.03 0.09 2.92 3.03 36.0 16.8 162 Name P [bar] FeSO4 H3PO4 LiOH FeSO4/H3PO4 ¾ Exp. 6 ¾ Exp. 7 ¾ Exp. 8 ¾ Exp. 9 ¾ Exp. 2 ¾ Exp. 10 [nm] Calcination 62-64 15.4 176 carbon coating 109-88 16.6 163 Calcination 86-73 carbon coating Calcination 48 25.4 107 carbon coating 32-38 32.7 83 ¾ Exp. 8 Conclusion Produce continuously ~ 400 nm LiFePO4 particles with small amount of impurities at 250 bar, 400 ℃, < 1 min Flow rate plays important role in particle morphology Need to calcination for crystallization
© Copyright 2026 Paperzz