MATH 2433-006 Exam II ANSWERS INSTRUCTIONS Show your

MATH 2433-006
Exam II
ANSWERS
INSTRUCTIONS
Show your work on all problems.
1. Find a power series representation for the following function. [Use the geometric series.]
2
𝑓 (π‘₯) =
3βˆ’π‘₯
Answer: The geometric series is
∞
βˆ‘
1
=
π‘Ÿπ‘› for ∣ π‘Ÿ ∣< 1
1 βˆ’ π‘Ÿ 𝑛=0
So
∞
∞
2
2
1
2βˆ‘ π‘₯ 𝑛 βˆ‘ 2 𝑛
= (
)=
( ) =
π‘₯
3βˆ’π‘₯
3 1 βˆ’ (π‘₯/3)
3 𝑛=0 3
3𝑛+1
𝑛=0
2. Find the Taylor series for 𝑓 (π‘₯) centered at the given value of π‘Ž.
𝑓 (π‘₯) = 𝑒π‘₯ , π‘Ž = 3
Answer: The Taylor series is
∞
βˆ‘
𝑓 (𝑛) (π‘Ž)
(π‘₯ βˆ’ π‘Ž)𝑛
𝑛!
𝑛=0
Since for 𝑓 (π‘₯) = 𝑒π‘₯ , 𝑓 (𝑛) (π‘₯) = 𝑒π‘₯ for all 𝑛, the Taylor series is
∞
βˆ‘
𝑒3
(π‘₯ βˆ’ 3)𝑛
𝑛!
𝑛=0
3. Evaluate the following indefinite integral as an infinite series
∫
π‘₯ cos(π‘₯3 )𝑑π‘₯
using
cos π‘₯ =
∞
βˆ‘
(βˆ’1)𝑛
𝑛=0
1
π‘₯2𝑛
(2𝑛)!
Answer: From the given series for the cosine,
π‘₯ cos(π‘₯3 ) =
∞
βˆ‘
π‘₯(βˆ’1)𝑛
𝑛=0
∞
βˆ‘
(π‘₯3 )2𝑛
π‘₯6𝑛+1
=
(βˆ’1)𝑛
(2𝑛)!
(2𝑛)!
𝑛=0
Thus
∫
3
π‘₯ cos(π‘₯ )𝑑π‘₯ =
∞ ∫
βˆ‘
𝑛=0
𝑛π‘₯
(βˆ’1)
6𝑛+1
𝑑π‘₯ = 𝐢 +
(2𝑛)!
∞
βˆ‘
(βˆ’1)𝑛
𝑛=0
π‘₯6𝑛+2
(6𝑛 + 2)(2𝑛)!
4. Approximate 𝑓 by a Taylor polynomial with degree 𝑛 at the number π‘Ž:
𝑓 (π‘₯) = π‘₯2/3 , π‘Ž = 1, 𝑛 = 3
Answer: 𝑓 (π‘₯) and its first three derivatives are
𝑓 (0) (π‘₯) = π‘₯2/3
𝑓 (1) (π‘₯) = (2/3)π‘₯βˆ’1/3
𝑓 (2) (π‘₯) = (βˆ’1/3)(2/3)π‘₯βˆ’4/3
𝑓 (3) (π‘₯) = (βˆ’4/3)(βˆ’1/3)(2/3)π‘₯βˆ’7/3
(1)
so
𝑓 (0) (1) = 1
𝑓 (1) (1) = 2/3
𝑓 (2) (1) = βˆ’2/9
𝑓 (3) (1) = 8/27
thus
1
1
1
(π‘₯ βˆ’ 1) + (βˆ’2/9) (π‘₯ βˆ’ 1)2 + (8/27) (π‘₯ βˆ’ 1)3
1!
2!
3!
2
1
4
2
3
= 1 + (π‘₯ βˆ’ 1) βˆ’ (π‘₯ βˆ’ 1) + (π‘₯ βˆ’ 1)
3
9
81
𝑇3 (π‘₯) = 1 + (2/3)
5. Eliminate the parameter to find a Cartesian equation of the curve
π‘₯ = 𝑒2𝑑 , 𝑦 = 𝑑 + 1
Answer: Since 𝑒2𝑑 = π‘₯, 2𝑑 = ln π‘₯ so 𝑑 =
1
2
2
ln π‘₯ and so 𝑦 =
1
2
ln π‘₯ + 1
6. Find an equation of the tangent line to the curve at the point corresponding
to the given value of the parameter
π‘₯ = 𝑑4 + 1, 𝑦 = 𝑑3 + 𝑑, 𝑑 = βˆ’1
Answer: when 𝑑 = βˆ’1, π‘₯ = 2 and 𝑦 = βˆ’2. Also
𝑑π‘₯
= 4𝑑3
𝑑𝑑
𝑑𝑦
= 3𝑑2 + 1
𝑑𝑑
so for 𝑑 = βˆ’1
𝑑π‘₯
= βˆ’4
𝑑𝑑
𝑑𝑦
=4
𝑑𝑑
So the equation of the tangent line is 4(π‘₯ βˆ’ 2) βˆ’ (βˆ’4)(𝑦 βˆ’ βˆ’2) = 0, or 𝑦 = βˆ’π‘₯
7. Find the exact length of the curve
π‘₯ = 1 + 3𝑑2 , 𝑦 = 4 + 2𝑑3 , 0 ≀ 𝑑 ≀ 1
Answer: The length is given by the integral
∫
1
√
(
0
𝑑π‘₯ 2 𝑑𝑦 2
) +
) 𝑑𝑑
𝑑𝑑
𝑑𝑑
Since here
𝑑π‘₯
= 6𝑑
𝑑𝑑
𝑑𝑦
= 6𝑑2
𝑑𝑑
the integral is
1
∫
∫
√
2
4
36𝑑 + 36𝑑 𝑑𝑑 = 6
0
2
√
1 + 𝑑2 𝑑𝑑𝑑
0
1
2 𝑑𝑒
If 𝑒 = 1 + 𝑑 so 𝑑𝑑𝑑 =
∫ √
1
then
1+
𝑑2 𝑑𝑑𝑑
∫
=
1
1
𝑒1/2 𝑑𝑒 = 𝑒3/2 + 𝐢
2
3
3
so
∫
6
0
1
√
1
1 + 𝑑2 𝑑𝑑𝑑 = 6 (1 + 𝑑2 )3/2 ∣10 = 2(23/2 βˆ’ 1)
3
8. Set up an integral that represents the exact area of the surface obtained by
rotating the given curve about the π‘₯-axis
π‘₯ = 𝑑3 , 𝑦 = 𝑑2 , 0 ≀ 𝑑 ≀ 1
Answer: The area is given by the integral formula
√
𝑏
∫
2πœ‹π‘¦
(
π‘Ž
𝑑π‘₯ 2 𝑑𝑦 2
) +
) 𝑑𝑑
𝑑𝑑
𝑑𝑑
Here
𝑑π‘₯
= 3𝑑2
𝑑𝑑
𝑑𝑦
= 2𝑑
𝑑𝑑
so the formula becomes
∫
1
2πœ‹π‘‘2
√
9𝑑4 + 4𝑑2 𝑑𝑑
0
9. Find the slope of the tangent line to the given polar curve at the point
specified by the value of πœƒ
πœ‹
π‘Ÿ = 2 sin πœƒ, πœƒ =
6
Answer: π‘₯ = π‘Ÿ cos πœƒ = 2 sin πœƒ cos πœƒ and 𝑦 = π‘Ÿ sin πœƒ = 2 sin2 πœƒ. Then
𝑑π‘₯
= 2(βˆ’ sin πœƒ sin πœƒ + cos πœƒ cos πœƒ)
π‘‘πœƒ
and
𝑑𝑦
= 4 sin πœƒ cos πœƒ
π‘‘πœƒ
√
√
For πœƒ = (πœ‹/6), cos πœƒ = ( 3/2) and sin πœƒ = (1/2) so 𝑑π‘₯/π‘‘πœƒ = 1 and 𝑑𝑦/π‘‘πœƒ = 3
and the tangent slope is given by
√
𝑑𝑦
𝑑𝑦
3
π‘‘πœƒ
= 𝑑π‘₯ =
𝑑π‘₯
1
π‘‘πœƒ
10. Find the area of the region that is bounded by the given curve and lies in
the specified sector
π‘Ÿ = sin πœƒ, πœ‹/3 ≀ πœƒ ≀ 2πœ‹/3
4
Answer: The area is given by the integral formula
∫
𝛽
𝛼
which here is
2πœ‹
3
∫
πœ‹
3
1 2
π‘Ÿ π‘‘πœƒ
2
1
(sin πœƒ)2 π‘‘πœƒ
2
using
sin2 πœƒ =
1 βˆ’ cos(2πœƒ)
2
the integral becomes
2πœ‹
3
∫
πœ‹
3
2πœ‹
1
1
1
(1 βˆ’ cos(2πœƒ))π‘‘πœƒ = πœƒ βˆ’ sin(2πœƒ)∣ πœ‹3
3
4
4
8
which gives
1 2πœ‹ 1
4πœ‹
πœ‹ 1
2πœ‹
(
βˆ’ sin( ) βˆ’ + sin( ))
4 3
2
3
3
2
3
5