Methods of Substitution and Bernoulli’s Equations - (2.5) 1. Bernoulli’s Equation: The differential equation: dy ! P!x" y " f!x" y n ! !"" dx where n is any real number, is called a Bernoulli’s equation. Note that a. when n " 0, the equation is a linear differential equation in y; dy ! P!x"y " f!x", dx b. when n " 1, the equation can be rewritten as dy dy ! P!x"y " f!x"y # ! !P!x" ! f!x""y " 0 dx dx a linear homogeneous differential equation and is separable. In both cases, we know how to solve the differential. Now let us consider the cases where n # 0, 1. Let u " y 1!n . Then by implicit differentiation, we have du " !1 ! n" y 1!n!1 dy " !1 ! n" y !n dy . dx dx dx !n Multiply !1 ! n" y to the equation !"" : dy ! !1 ! n" y !n P!x" y " !1 ! n" y !n f!x" y n !1 ! n"y !n dx dy ! !1 ! n"y !n!1 P!x" " !1 ! n"f!x" !1 ! n"y !n dx du ! !1 ! n"P!x" u " !1 ! n" f!x" dx It is a linear differential equation in u with P!x" " !1 ! n"P!x", and f !x" " !1 ! n"f!x". Solve for u first, and then let y " u 1/!1!n" dy Steps for solving a Bernoulli equation: ! P!x" y " f!x" y n dx a. Let u " y 1!n . Express the equation as a linear differential equation in u: du ! !1 ! n"P!x" u " !1 ! n" f!x" dx b. Solve u in terms of x : i. h!x" " $!1 ! n"P!x"dx, integrating factor: e h!x" ii. k!x" " $ e h!x" !1 ! n"f!x"dx iii. u!x" " e !h!x" #C ! k!x"$ c. The general solution y : y 1!n " e !h!x" #C ! k!x"$ or y " Example Solve the differential equation x e !h!x" #C ! k!x"$ 1/!1!n" dy ! y " x2y2. dx The equation is dy ! 1x y " xy 2 . n " 2. Let u " y 1!2 " y !1 . Solve du ! !!1" 1x u " !x. dx dx a. h!x" " $ ! 1x dx " ! ln|x|, integrating factor is e !ln|x| " 1x b. k!x" " $ e !ln|x| !!x"dx " $!!1"dx " !x c. The general solution for u : u " e ln|x| !C ! x" " x!C ! x" " Cx ! x 2 1 1 d. The general solution for y : y " 1u " Cx ! x 2 Example Solve the initial value problem: x 2 dy ! 2xy " 3y 4 , y!1" " dx 1 2 . The equation is dy ! 2x y " 32 y 4 , n " 4, 1 ! n " !3. Let u " y !3 . Solve du ! 6x u " ! 92 dx dx x x 6 6 ln|x| 6 a. h!x" " $ x dx " 6 ln|x|, the integrating factor is: e "x b. k!x" " $ x 6 ! x92 dx " !9 $ x 4 dx " ! 95 x 5 c. The general solution for u : u " e !6 ln|x| C ! 95 x 5 " 16 C ! 95 x 5 " C6 ! 9 5x x x C 9 !3 d. The general solution for y : y " 6 ! 5x x !3 C 9 1 1 e. When x " 1, y " 2 . 2 ! , C " 8 ! 9 " 49 " 5 5 5 1 The solution for the initial value problem: y !3 " 496 ! 9 5x 5x dy " 2ty!y 3 ! 1". dt dy ! P!t" y " f!t" y n Note that it is also separable. Rewrite it as the form: dt dy 3!1 ! t 2 " " 2ty!y 3 ! 1" " 2ty 4 ! 2ty, dt dy 2t 2t y" y4 ! 2 dt 3!1 ! t 2 " 3!1 ! t " Let u " y 1!4 " y !3 . Solve u from Example Solve the differential equation: 3!1 ! t 2 " u$ ! 3 2t 3!1 ! t 2 " u " !3 2t dt " ln!1 ! t 2 " 1 ! t2 2 b. k!t" " $ ! 2t 2 e ln 1!t dt " ! $ 2tdt " !t 2 !1 ! t " 2 c. The general solution for u : u " e !ln 1!t !C ! t 2 " 2t 3!1 ! t 2 " a. h!t" " $ d. The general solution for y : y !3 " e !ln 1!t 2 !C ! t 2 " " 1 !C ! t 2 " 1 ! t2 2. Reduction to Separable: For example, the differential equation of the form dy " f!Ax ! By ! C" dx is not separable in y and x. Let u " Ax ! By ! C. Then du " A ! B dy , dy " 1 du ! A B dx dx dx dx dy " f!Ax ! By ! C" # 1 du ! A " f!u" B dx dx du " Bf!u" ! A, 1 du " dx separable in u and x. dx Bf!u" ! A 2 Example Solve the initial value problem: dy " 2 ! y ! 2x ! 3 , y!0" " 1. dx Let u " y ! 2x ! 3. du " dy ! 2, dy " 2 ! y ! 2x ! 3 # du ! 2 " 2 ! u , du " dx dx dx dx dx u, 1 du " dx. u The last equation is separable in u and x. $ 1u du " 2 u ! C 1 , $ dx " x ! C 2 The general solution for u : u " 12 !x ! C", or u " 14 !x ! C" 2 The general solution for y : y ! 2x ! 3 " 14 !x ! C" 2 or y " 2x ! 3 ! 14 !x ! C" 2 Solve the initial value problem: 1 " !3 ! 14 C 2 , C 2 " 16, C " 4. The solution of the initial value problem: y " 2x ! 3 ! 14 !x ! 4" 2 Example Solve the differential equation: dy " sin!x ! y". dx Let u " x ! y. Then du " 1 ! dy , dy " sin!x ! y" # du ! 1 " sin!u" # du " sin!u" ! C, 1 du " dx dx dx dx dx dx sin!u" ! 1 The last equation is separable. $ sin u1 ! 1 du " tan u ! sec u ! C 1 , $ dx " x ! C 2 The general solution for u : tan u ! sec u " x ! C The general solution for y : tan!x ! y" ! sec!x ! y" " x ! C Example Solve the initial value problem: 3x ! 2y dy , " 3x ! 2y ! 2 dx y!!1" " !1 Let u " 3x ! 2y. Then du " 3 ! 2 dy , dy " 3x ! 2y # 1 du ! 3 " u , 3x ! 2y ! 2 2 dx u!2 dx dx dx du ! 3 " 2u , du " 2u ! 3 " 5u ! 6 , u ! 2 du " dx u!2 u!2 u!2 5u ! 6 dx dx The last equation is separable. $ 5uu !!26 du " $ 5 ! u !4 2 du " 5u ! 4 ln|u ! 2| ! C 1 , $ dx " x ! C 2 The general solution for u : 5u ! 4 ln|u ! 2| " x ! C The general solution for y : 5!3x ! 2y" ! 4 ln|3x ! 2y ! 2| " x ! C Solve the initial value problem: when x " !1, y " !1 : 5!3!!1" ! 2!!1"" ! 4 ln|3!!1" ! 2!!1" ! 2| " !1 ! C, C " !24 ! 4 ln 3 The solution of the initial value problem : 5!3x ! 2y" ! 4 ln|3x ! 2y ! 2| " x ! 24 ! 4 ln 3 3
© Copyright 2026 Paperzz