Chapter 21 Exercise 21.1 Q. 1. ________ (i) x = √122 + 52 = 13 Q. 7. _________ (ii) x = √122 + 352 = 37 __________ (iii) x = √ 1012 (iv) x = √ 412 − 202 _________ − 402 _________ h = 99 27° =9 100 m (v) x = √612 − 112 = 60 h tan 27° = ____ 100 _________ (vi) x = √652 − 632 = 16 Q. 2. 100 tan 27° = h (i) x = 8 sin 31° = 4.1 5.5 (ii) x = _______ = 14.7 cos 68° 12 (iii) x = ______ = 15.9 sin 49° 4 (iv) x = _______ = 5.9 tan 34° So, use the tangent function as shown above to evaluate the height. Q. 8. 33 (v) x = 8.5 cos 18° = 8.1 39° (vi) x = 5 tan 53° = 6.6 Q. 3. x = 33 sin 39° () 5 (i) A = cos−1 __ = 56° 9 10 ___ (ii) A = sin−1 = 56° 12 4 (iii) A = sin−1 __ = 30° 8 15 (iv) A = tan−1 ___ = 56° 10 4 (v) A = tan−1 __ = 34° 6 2 (vi) A = cos−1 __ = 71° 6 ∴ h = 33 sin 39° + 1.5 ( ) () ( ) () () Q. 4. y= Q. 9. 32° y 14 (i) sin 32° = ___ x 14 x = ______ sin 32° 4 _______ x ≈ 26.42 metres y ≈ 22 metres 4 ___ Q. 10. 10 Q. 6. cos 30° = _____ |AC| 10 |AC| = _______ cos 30° |AE| = x 14 ( 12 ) = 18° tan−1 |AD| = 32° (ii) y = 26.42 cos 32° (i) y = 4 (ii) A = = 2,227 cm tan 27° y = 7.9 x = 4.0 Q. 5. = 22.27 metres 4 tan 27° = __ y x tan 53° = __ 3 x = 3 tan 53° x ( (i) No. For a given opposite length, doubling the adjacent length does not halve the angle. It halves the tangent of the angle. (ii) ) 10 ______ cos 30° _______ cos 30° (( )) 10 ______ cos 30° _______ cos 30° ________ cos 30° x __ = 80√3 _____ 9 30° 12 Active Maths 2 (Strands 1–5): Ch 21 Solutions 1 x tan 30° = ___ 12 x = 12 tan 30° Q. 13. (i) __ x = 4√ 3 __ ∴ height = 4√ 3 + 1.4 30 = 8.33 metres Q. 11. (i) 68° h x 27° tan 27° = 30 tan 68° = ___ x 81 30 x = _______ tan 68° h ___ 87 h = 81 tan 27° x = 12.12 h = 41 metres (ii) 30 33° y 30 tan 33° = ___ y 103 30 y = _______ tan 33° q y = 46.20 81 ∴ |BC| = 46.2 − 12.12 ( 81 ) 103 q = tan−1 ____ q = 52° Q. 12. 2 (i) sin 30° = __ x x= 2 ______ = 34.08 metres Q. 14. sin 30° x = 4 metres 34.08 (ii) ______ = 3.4 m/s 10 8 4 (i) tan A = __ = __ 6 3 Draw a right triangle with opposite length 4 units and adjacent length 3 units. (ii) y = 2(4 cos 30°) = 8 cos 30° = 6.93 metres 4 units A 3 units Use a ruler, set square and compass. (Diagram shown is not to scale.) 2 Active Maths 2 (Strands 1–5): Ch 21 Solutions (ii) By Pythagoras, hypotenuse length is 5 units. 4 ∴ sin A = __ 5 3 __ cos A = 5 Q. 15. (iv) h = h x tan 42° = (7 − x) tan 48° x tan 42° = 7 tan 48° − x tan 48° x tan 42° + x tan 48° = 7 tan 48° x (tan 42° + tan 48°) = 7 tan 48° (i) Similar method as to Q.14. 7 tan 48° x = _______________ tan 42° + tan 48° (v) x = 3.865…. ∴ h = (3.865….)x tan 42° 3 units h = 3.48 m h = 348 cm A Q. 17. 4 units (i) (ii) Hypotenuse length is 5 units 3 sin A = __ 5 4 cos A = __ 5 Q. 16. 10 h q (i) q = 90° − 42° = 48° h = 10 sin q (ii) 7 – x metres (ii) (iii) h 10 y q 10 h q h 10 10 42° M y x N h __ tan 42° = x h = x tan 42° y = 10 cos q ∴ l = 10 cos q + 10 + 10 cos q l = 10 + 20 cos q 1 (iii) Area = __(10 cos q)(10 sin q) 2 + 10(10 sin q) 1 + __(10 cos q)(10 sin q) 2 = 50 cos q sin q + 100 sin q h + 50 cos q sin q 48° 7–x h tan 48° = _____ 7− x h = (7 − x) tan 48° ∴ A = 100 sin q + 100 sin q cos q (iv) A = 100 sin 60° + 100 sin 60° cos 60° __ = 75√ 3 cm2 (v) A = 100 sin 45° + 100 sin 45° cos 45° __ = 50 + 50√ 2 cm2 Active Maths 2 (Strands 1–5): Ch 21 Solutions 3 Q. 18. (i) SU is a tangent to the circle and [OU] in the corresponding radius. Q. 3. A tangent and corresponding radius make a 90° angle with each other. (ii) 90° − q (iii) 180° in a triangle. So |∠OSU| Q. 4. (ii) 16°52ʹ (vii) 7.38ʹ (iii) 68°10ʹ (viii) 13°40ʹ (iv) 132°17ʹ (ix) 7.30ʹʹ (v) 36°15ʹ (x) 56.27ʹ (i) A = 90° – 44°44ʹ = 45°16ʹ = 59° 12ʹ =q (iii) C = 72°14ʹ + 92°51ʹ (iv) |UC| = sin q = 165° 5ʹ 1 (iv) D = __(180° − 30°40ʹ) 2 (v) |OC| = cos q (vi) Pythagoras: = 74°40ʹ sin2 q + cos2 q = 1 Q. 5. O q x ________ (i) |AC| = √ 92 + 122 = 15 km 15 (ii) tan 36.87° = _____ |DC| 15 |DC| = _________ tan 36.87° 1 U (vi) 6°38ʹ (ii) B = 180° − 50°48ʹ − 70° = 180° − 90° − (90° − q) (vii) (i) 6°45ʹ |DC| ≈ 20 km S _________ 1 tan q = __ x (iii) |AD| = √ 152 + 202 = 25 km 1 x = _____ tan q ∴ Length = 9 + 12 + 20 + 25 = 66 km 1 ∴ |SU| = _____ tan q Q. 6. (i) As |∠CBA| = 90° ⇒ a is acute (only 180° in a triangle) Exercise 21.2 Q. 1. Q. 2. (ii) If 45° < a < 90° (i) 2°30ʹ (vii) 24°45ʹ (ii) 2°15ʹ (viii) 36°15ʹ (iii) 2°45ʹ (ix) 55°08ʹ (iv) 25°24ʹ (x) 0°20ʹ (v) 4°12ʹ (xi) 0°45ʹ (vi) 15°30ʹ (xii) 0°24ʹ (i) 2.5° (vi) 33.55° (ii) 10.67° (vii) 42.17° (iii) 25.83° (viii) 58.75° (iv) 70.37° (ix) 56.5° (v) 11.6° (x) 82.2° For such values of a, the opposite length exceeds the adjacent length (i.e. |AB| > |BC|). (iii) sin a: opposite length is always less than hypotenuse length. cos a: adjacent length is always less than hypotenuse length. (iv) Choose say a = 30° sin 2a = sin 60° ≈ 0.866 2 sin a = 2 sin 30° = 1 0.866 ≠ 1 So statement (by this example) is false. 4 Active Maths 2 (Strands 1–5): Ch 21 Solutions (i) Sun r = sin 60°16ʹ 34ʹʹ Moon q + 960 sin 60°16ʹ 34ʹʹ = r 3.84 × 108 Q. 7. x r = (sin 60°16ʹ 34ʹʹ − 1) = −960 sin60°16ʹ 34ʹʹ 80° 50’ 58” Earth −960 sin 60° 16ʹ 34ʹʹ r = ___________________ sin 60° 16ʹ 34ʹʹ – 1 q = 90° − 89° 50ʹ 58ʹʹ r = 6,336.211… = 9ʹ 2ʹʹ r ≈ 6,336 km 3.84 × 108 (ii) sin 9ʹ2ʹʹ = __________ x (iv) 7,296 km 3.84 × 108 x = __________ sin 9ʹ 2ʺ (v) 2p(7,296) x = 2,445,718,857 ≈ 45,842 km 45,842 (vi) _______ = 1.697… hours 27,000 = 2.445718857 × 109 in metres Distance (iii) Time = ________ Speed 2.445718857 × 109 = __________________ 3.0 × 108 = 8.1523…. ≈ 1 hr 42 mins Exercise 21.3 ≈ 8.15 seconds Q. 1. (iv) r = 2.445718857 × 109 Circumference = 2pr (i) Construct equilateral triangle of side length 2 units. Divide in two from top vertex. ≈ 1.54 × 1010 metres (v) 365_14 days = 365.25 × 24 × 60 × 60 30° = 31,557,600 seconds 1010 1.54 × (vi) ___________ 31,557,600 2 x ≈ 488 m/s Q. 8. (i) 90° − 60°16ʹ 34ʹʹ = 29°43ʹ 26ʹʹ 60° (ii) r + 960 km (iii) 1 A 6’ 60° 1 34” B __ x = √3 __ r + 960 O r sin 60°16ʹ 34ʹʹ = _______ r + 960 √3 ___ 1 sin 30° = __ 2__ 3 √ ___ cos 30° = 2 __ 1__ tan 60° = √ 3 tan 30° = ___ √3 Construct a right-angled isosceles triangle with equal sides length one unit. So: sin 60° = r _______ By Pythagoras: x = √22 − 12 2 1 __ cos 60° = 2 Active Maths 2 (Strands 1–5): Ch 21 Solutions 5 z tan 60° = __ 9 9 tan 60° = z 45° __ 9√ 3 = z 1 x Q. 2. (i) 60°. ΔCAB in equilateral. (ii) RHS 45° __ (iii) √ 3 . By Pythagoras. 1 _______ By Pythagoras: x = √ 12 __ + x = √2 12 1__ So: sin 45° = cos 45° = ___ √2 tan 45° = 1 A sin A 30° 45° 60° 1 __ 1__ ___ √3 ___ 2 cos A 2 tan A 1__ ___ 1 √3 √3 2 __ (iii) 4 + h = √ 3 h __ 4 = h(√ 3 − 1) 2 _______ __ 4 __ √3 − 1 =h __ 4(√ 3 + 1) _________ 3−1 =h __ 2(√ 3 + 1) = h Q. 4. x tan 60° = __y 6 tan 60° = __ x y = 102 − 52 y2 = 75 y = √ 75 6 x = _______ tan 60° y = 5√ 3 ∴ x = 2√ 3 ___ __ __ __ 5 __ cos 30° = z __ √3 = __ 5 ___ z 2 10 __ z = ___ √3 __ 10√ 3 z = _____ 3 y __ (iii) sin 60° = ____ 6√3 __ y √3 = ____ ___ __ 2 6√3 ∴y=9 y= 2√3 _______ tan 60° ∴y=2 Q. 5. __ x = 6√ 3 cos 60° __ 6√ 3 x = ____ 2__ x = 3√ 3 6 (1)(√ 3 ) = (i) h = |DC| x (ii) sin 30° = ___ 10 1 ___ x __ = 2 10 ∴x=5 2 √3 ___ h (ii) tan 30° = ______ 4+h h 1__ ______ ___ = 4 + h 3 √ 2 1 __ __ Q. 3. __ √2 1__ ___ √2 √3 ___ (iv) __ __ 1 __ Active Maths 2 (Strands 1–5): Ch 21 Solutions (i) x 45° x 45° __ (ii) x, x and √ 2 x (iii) (x) By considering how the ratio adjacent: hypotenuse changes as a increases. 60° 8√6 – x Let a = ∠DAB, then ∠EAB, then ∠FAB etc…. 30° x __ The adjacent length |AB| remains the same, while the hypotenuse lengths |AD|, |AE|, |AF|, etc increase. Hence, cos a decreases as a increases. __ (iv) x, 8√ 6 − x, 16√6 − 2x (v) 1 − 3 = −2 __ 8√6 − x ________ (vi) tan 30° = x 8√6 − x 1__ ________ ___ = x √3 __ __ Q. 7. __ Q. 8. __ x (1+√3 ) = 24√2 __ 24√ 2__ x = _______ 1 + √3 x ≈ 12.4 Q. 9. (vii) 12.4 − 1.7 Q. 10. = 10.7 metres Q. 6. (ii) 1__ 2 __ 1 1 + ___ = + __ = 1 2 2 2 2 3 ___ 2 1__ ___ 3 __ 3 1 12 + __ + ( 3 )2 = __ + __ + 3 = 4 4 4 2 __ 2 2 2 3 1 1 1 3 + __ + ___ = __ + __ + __ 2 2 3 4 4 4 = __ 3 2 _ 1 1__ 2 ___ LHS = __ = ___ = RHS √3 ___ √3 2 (i) Diagram 2. She’s increasing the opposite length as the adjacent length remains constant. _______ 1__ 2 ___ __ x = 24√2 − √ 3 x __ (√ ) (√ ) (√ ) ( ) √ (√ ) ( ) (√ ) Q. 11. (i) O 4 __ √42 + 82 = 4√5 30° (iii) q = 90° − a and b = 90° − a M (iv) They both contain a 90° angle and q = b. |BC| 12 __ (v) _____ = ___ 1 √3 4 tan 30° = __ x 4 x = _______ tan 30° ∴ |BC| = 4√ 3 (ii) __ (vi) |AB| = √(4 √ 3 )2 + 122 = 8√ 3 1 (vii) Yes. In Δ ADE, sin a = __ 2 __ 3 __ 4√__ 1 = In ΔABC, sin a = ____ 2 8√ 3 (viii) |AB| = 8 units |BC| = 10 units _______ ___ (ix) |AD| = √ 82 + 22 = 2√17 _______ __ |AE| = √ 82 + 42 = 4√ 5 _______ |AF| = √ 82 + 62 = 10 _______ __ |AG| = √ 82 + 82 = 8√2 N __ |MN| = 4√ 3 __ ____________ __ x ___________ __ ___ √42 + (4√3 )2 = √64 = 8 (iii) 4 + 8 = 12 __ 1 __ (iv) __(8√3 ) (12) = 48√3 units2 2 Revision Exercises Q. 1. _______ (i) x = √ 62 − 42 = 4.5 _________ (ii) x = √ 42 − 2.62 = 3.0 4 (iii) tan 26.6° = __ x ⇒ 4 x = ________ = 8.0 tan 26.6° Active Maths 2 (Strands 1–5): Ch 21 Solutions 7 (iv) x = 4.3 sin 56.4° = 3.6 (ii) B 6.8 (v) cos 47.3° = ___ x 6.8 ________ 45° = 10.0 ⇒ x= ⇒ x = 3.6 tan 33.4° = 2.4 cos 47.3° x (vi) tan 33.4° = ___ 3.6 3 45° A (vii) x = 6 sin 45° = 4.2 3 _______ H |AB| = √ 32 + 32 = 4.24 m _______ (viii) x = √ 32 + 42 = 5 (iii) B () ( 43 ) = 41° ( 46 ) = 42° ( 35 ) = 59° ( 43 ) = 37° 2 (i) tan−1 __ = 27° 4 Q. 2. (ii) cos−1 __ (iii) sin−1 __ 3 (iv) tan−1 __ (v) tan−1 __ Q. 3. Q 40° _______ y 36° x (iv) 2(4.24) + 3 + 2(3) + 2(3.16) + 3.16 = 26.96 m R 4.1 tan 40° = ___ y 4.1 y = _______ tan 40° (v) 36 × 3.4 × 26.96 = €3,299.904 10 ___ y ≈ 4.886 9 4.886 tan 36° = ______ x x= H |BD| = √ 12 + 32 = 3.16 m 4.1 T P 1 D Q. 5. (3,299.904) = €3,666.56 (i) B = tan−1 (0.2908) 2B = 2 tan−1 (0.2908) 4.886 _______ tan 36° tan 2B = tan [2 tan−1 (0.2908)] x ≈ 6.725 = 0.635 1 ∴ Area = __(4.1 + 6.725)(4.886) 2 (ii) B ≈ 26.4 units2 h Q. 4. (i) |DH| = |HE| as Δ BDH ≡ ΔBHE (RHS) ⇒ |AH| = |HC| as |AD| = |EC| ⇒ ΔABH ≡ ΔCBH (SAS) 23°35’ A 97 h tan 23°35’ = ___ 97 h = 97 tan 23°35’ h ≈ 42.34 m ∴ |BT| = 42.34 m 8 Active Maths 2 (Strands 1–5): Ch 21 Solutions T (iii) |AC|2 = 142 + 202 B |AC|2 = 596 42.34 ____ |AC| = 2 √ 149 ____ y ∴ r = √ 149 cm Q. 10. 80° 30’ h (i) tan 51° = __ x x tan 51° = h T C h tan 30° = _________ 14.75 + x 42.34 sin 80° 30ʹ = ______ y 42.34 y = __________ sin 80° 30ʹ (14.75 + x) tan 30° = h (ii) h = h ∴ |BC| = 42.93 m Q. 6. Q. 7. __ ( x tan 51° = 14.75 tan 30° ) 10√ 3 tan−1 _____ = 60° 10 + x tan 30° x (tan 51° − tan 30°) = 14.75 tan 30° 14.75 tan 30° ∴ x = _______________ tan 51° − tan 30° 9 (iii) x = 12.95 m 30° x (iv) h = 12.95 tan 51° 9 tan 30° = __ x x= h = 15.99… 9 _______ h ≈ 16 m tan 30° __ x = 9√3 __ (v) 2pr = 25.13 __ r = 3.999… Perimeter = 6(9√ 3 ) = 54√ 3 cm r≈4m + 8 ___ √152 – 62 = 3√21 √152 – 62 = 3√21 Q. 8. 15 ___ 1 Area = 8(3√ 21 ) + __ (6) (3√21 ) 2___ ___ = 24√ 21 + 9√ 21 ___ = 33 √ 21 ≈ 151.22 cm2 Q. 9. 1 __ |AB||BC| = 140 2 |AB||BC| = 280 6 (vi) The distance x can now be calculated once the distance (x − 4) is measured directly. One angle of elevation measurement will then be sufficient to calculate the height, by use of the tangent function. (vii) (x − 4) in measured as 8.95. h tan 51° = __ x h ______ tan 51° = 12.95 h = 12.95 tan 51° ∴ h = 15.99 ≈ 16 m |AB| (14) = 280 |AB| = 20 cm Active Maths 2 (Strands 1–5): Ch 21 Solutions 9 Q. 11. ________ |AB| (i) tan 61.8° = _____ 30 30 tan 61.8° = |AB| |AB| = 55.94… |AB| ≈ 56 m (ii) sin |∠BDA| = = 36.886… 56 ____ ≈ 37 cm 120 (iv) |BD| = 37 − 3 = 34 cm |∠BDA| = 27.818… |∠BDA| ≈ 28° Q. 12. ___ (iii) |AC| = √ 102 − 32 = √91 cm |AB| ___ tan (58°3’ + 17°) = _____ 91 √ ___ |AB| = √ 91 tan (75° 30’) (i) |∠DAC| = 60° Q. 16. h (i) tan 51°36’ = ___ 15 (ii) |BD| = 2 m (iii) h = 15 tan 51°36ʹ C h = 18.925… h ≈ 18.93 m 18.93 (ii) tan 28°30ʹ = ______ 15 + x 18.93 15 + x = __________ tan 28° 30ʹ 4 x ≈ 19.86 m 60° Q. 13. B A h 4 sin 60° = _____ |BC| 4 |BC| = ______ sin 60° 4 A 1 |BC| ≈ 4.62 m _______ h = √42 + 12 (iv) ___ h = √17 1 ___ ∴ cos A = ____ √17 Q. 14. tan 30° 15’ = (i) Incorrect. tan 50° > 1 Q. 17. 20 _______ 20 + d 20 20 + d = __________ tan 30° 15ʹ (ii) Correct. sin 60° ≠ 2 sin 30° (iii) Incorrect. cos 21° < cos 20° (iv) Correct d = 14.29… d ≈ 14 m Q. 15. (i) |∠ACD| = 17° |AD| (ii) sin 17° = _____ 10 10 sin 17° = |AD| |AD| = 3 cm 10 Active Maths 2 (Strands 1–5): Ch 21 Solutions __________ √4.622 − 42 ≈ 2.31 m 60° 2 cm 2 cm ⇒ 60° 60° 2 cm ∴ sin 60° = __ √3 ___ 2 √3 30° 2 cm 60° 1 cm Q. 18. Leaning Tower of Pisa 2pr = 7.07 r ≈ 1.125 x tan 60° = _______ 71.125 71.125 tan 60° = x 55.863 x = 123.192… ∴ h = 123.192… + 1.72 θ ∴ h ≈ 125 m 3.9 ( 55.863 q = tan−1 _______ 3.9 ) Q. 20. (a) l 30 q ≈ 86.006° 105 __________ Suurhusen church tower l = √ 302 + 1052 l ≈ 109.2 cm h (b) (i) tan 60° = __ x 27.37 h = x tan 60° __ h = √3 x ∝ h (ii) tan 30° = ______ 24 − x 2.47 ( 27.37 a = tan−1 ______ 2.47 ) (24 − x) tan 30° = h 24 − ______ __ x √3 a ≈ 84.843° h=h As a < q __ 24 − x __ √3 x = ______ √3 ⇒ The Suurhusen church tower is more tilted. Q. 19. =h 3x = 24 − x (a) Ultan’s measurement will be used to calculate the radius of the Spire, which will allow for the height of the Spire to be calculated via use of the tangent function. 4x = 24 x=6 __ h = 6√ 3 metres Q. 21. (a) (b) x x h h 73 60° 1.72 .68 ° 1.62 56.38 71.125 Active Maths 2 (Strands 1–5): Ch 21 Solutions 11 x (b) tan 73.68° = ______ 56.38 x = 56.38 tan 73.68° h = 56.38 tan 73.68° + 1.62 h ≈ 194.1750 metres (c) Second: 194.0727 metres Third: 194.1149 metres 194.1750 + 194.0727 + 194.1149 (d) _______________________________ 3 = 194.1208… ≈ 19,412 cm 12 Active Maths 2 (Strands 1–5): Ch 21 Solutions
© Copyright 2026 Paperzz