Appendix A 3.2 Section • Determining the Formula of an Unknown Compound A-1 Common Mathematical Operations in Chemistry I n addition to basic arithmetic and algebra, four mathematical operations are used frequently in general chemistry: manipulating logarithms, using exponential notation, solving quadratic equations, and graphing data. Each is discussed briefly below. Manipulating Logarithms Meaning and Properties of Logarithms A logarithm is an exponent. Specifically, if xn A, we can say that the logarithm to the base x of the number A is n, and we can denote it as logx A 5 n Because logarithms are exponents, they have the following properties: logx 1 logx (A 3 B) A logx B logx Ay 50 5 logx A 1 logx B 5 logx A 2 logx B 5 y logx A Types of Logarithms Common and natural logarithms are used in chemistry and the other sciences. 1. For common logarithms, the base (x in the examples above) is 10, but they are written without specifying the base; that is, log10 A is written more simply as log A; thus, the notation log means base 10. The common logarithm of 1000 is 3; in other words, you must raise 10 to the 3rd power to obtain 1000: log 1000 5 3 or 103 5 1000 Similarly, we have log 10 log 1,000,000 log 0.001 log 853 5 5 5 5 1 6 23 2.931 or or or or 101 106 1023 102.931 5 5 5 5 10 1,000,000 0.001 853 The last example illustrates an important point about significant figures with all logarithms: the number of significant figures in the number equals the number of digits to the right of the decimal point in the logarithm. That is, the number 853 has three significant figures, and the logarithm 2.931 has three digits to the right of the decimal point. To find a common logarithm with an electronic calculator, enter the number and press the log button. 2. For natural logarithms, the base is the number e, which is 2.71828 . . . , and loge A is written ln A; thus, the notation ln means base e. The relationship between the common and natural logarithms is easily obtained: log 10 5 1 and ln 10 5 2.303 siL02656_apA-D_A-1_A-14.indd 1 A-1 12/9/10 8:28:14 AM A-2 Appendix A • Common Mathematical Operations in Chemistry Therefore, we have ln A 5 2.303 log A To find a natural logarithm with an electronic calculator, enter the number and press the ln button. If your calculator does not have an ln button, enter the number, press the log button, and multiply by 2.303. Antilogarithms The antilogarithm is the base raised to the logarithm: antilogarithm (antilog) of n is 10n Using two of the earlier examples, the antilog of 3 is 1000, and the antilog of 2.931 is 853. To obtain the antilog with a calculator, enter the number and press the 10x button. Similarly, to obtain the natural antilogarithm, enter the number and press the ex button. [On some calculators, enter the number and first press inv and then the log (or ln) button.] Using Exponential (Scientific) Notation Many quantities in chemistry are very large or very small. For example, in the conventional way of writing numbers, the number of gold atoms in 1 gram of gold is 59,060,000,000,000,000,000,000 atoms (to four significant figures) As another example, the mass in grams of one gold atom is 0.0000000000000000000003272 g (to four significant figures) Exponential (scientific) notation provides a much more practical way of writing such numbers. In exponential notation, we express numbers in the form A10n where A (the coefficient) is greater than or equal to 1 and less than 10 (that is, 1 A 10), and n (the exponent) is an integer. If the number we want to express in exponential notation is larger than 1, the exponent is positive (n 0); if the number is smaller than 1, the exponent is negative (n 0). The size of n tells the number of places the decimal point (in conventional notation) must be moved to obtain a coefficient A greater than or equal to 1 and less than 10 (in exponential notation). In exponential notation, 1 gram of gold contains 5.9061022 atoms, and each gold atom has a mass of 3.2721022 g. Changing Between Conventional and Exponential Notation In order to use exponential notation, you must be able to convert to it from conventional notation, and vice versa. 1. To change a number from conventional to exponential notation, move the decimal point to the left for numbers equal to or greater than 10 and to the right for numbers between 0 and 1: 75,000,000 changes to 7.53107 (decimal point 7 places to the left) 0.006042 changes to 6.04231023 (decimal point 3 places to the right) 2. To change a number from exponential to conventional notation, move the decimal point the number of places indicated by the exponent to the right for numbers with positive exponents and to the left for numbers with negative exponents: 1.383105 changes to 138,000 (decimal point 5 places to the right) 8.4131026 changes to 0.00000841 (decimal point 6 places to the left) siL02656_apA-D_A-1_A-14.indd 2 12/10/10 12:56:45 PM Appendix A • Common Mathematical Operations in Chemistry A-3 3. An exponential number with a coefficient greater than 10 or less than 1 can be changed to the standard exponential form by converting the coefficient to the standard form and adding the exponents: 582.3106 changes to 5.823 102 106 5.82310(26) 5.823108 0.0043104 changes to 4.3 103 104 4.310[(3)(4)] 4.3107 Using Exponential Notation in Calculations In calculations, you can treat the coefficient and exponents separately and apply the properties of exponents (see earlier section on logarithms). 1. To multiply exponential numbers, multiply the coefficients, add the exponents, and reconstruct the number in standard exponential notation: (5.5103)(3.1105) (5.5 3.1)10(35) 17108 1.7109 (9.71014)(4.31020) (9.7 4.3)10[14(20)] 42106 4.2105 2. To divide exponential numbers, divide the coefficients, subtract the exponents, and reconstruct the number in standard exponential notation: 2.63106 2.6 5 10(62) 0.45104 4.5103 2 5.8 5.8310 1.7 1.7310 25 10[(5)(8)] 0.21103 2.1102 5 28 8.2 8.2310 3. To add or subtract exponential numbers, change all numbers so that they have the same exponent, then add or subtract the coefficients: (1.45104) (3.2103) (1.45104) (0.32104) 1.77104 (3.22105) (9.02104) (3.22105) (0.902105) 2.32105 Solving Quadratic Equations A quadratic equation is one in which the highest power of x is 2. The general form of a quadratic equation is ax2 1 bx 1 c 5 0 where a, b, and c are numbers. For given values of a, b, and c, the values of x that satisfy the equation are called solutions of the equation. We calculate x with the quadratic formula: x5 2b 6 "b2 2 4ac 2a We commonly require the quadratic formula when solving for some concentration in an equilibrium problem. For example, we might have an expression that is rearranged into the quadratic equation 4.3x2 1 0.65x 2 8.7 5 0 a b c Applying the quadratic formula, with a 4.3, b 0.65, and c 8.7, gives x5 2 0.65 6 " 1 0.65 2 2 2 4 1 4.3 2 128.7 2 2 1 4.3 2 The “plus or minus” sign () indicates that there are always two possible values for x. In this case, they are x 1.3 and x 21.5 In any real physical system, however, only one of the values will have any meaning. For example, if x were [H3O], the negative value would give a negative concentration, which has no physical meaning. siL02656_apA-D_A-1_A-14.indd 3 12/10/10 12:56:46 PM A-4 Appendix A • Common Mathematical Operations in Chemistry Graphing Data in the Form of a Straight Line Visualizing changes in variables by means of a graph is used throughout science. In many cases, it is most useful if the data can be graphed in the form of a straight line. Any equation will appear as a straight line if it has, or can be rearranged to have, the following general form: y 5 mx 1 b where y is the dependent variable (typically plotted along the vertical axis), x is the independent variable (typically plotted along the horizontal axis), m is the slope of the line, and b is the intercept of the line on the y axis. The intercept is the value of y when x 0: y 5 m(0) 1 b 5 b The slope of the line is the change in y for a given change in x: Slope (m) 5 14 y 2x 1 1 12 10 8 Slope 8⁄4 2 y 6 2 2 0 The sign of the slope tells the direction of the line. If y increases as x increases, m is positive, and the line slopes upward with higher values of x; if y decreases as x increases, m is negative, and the line slopes downward with higher values of x. The magnitude of the slope indicates the steepness of the line. A line with m 3 is three times as steep (y changes three times as much for a given change in x) as a line with m 1. Consider the linear equation y 2x 1. A graph of this equation is shown in Figure A.1. In practice, you can find the slope by drawing a right triangle to the line, using the line as the hypotenuse. Then, one leg gives y, and the other gives x. In the figure, y 8 and x 4. At several places in the text, an equation is rearranged into the form of a straight line in order to determine information from the slope and/or the intercept. For example, in Chapter 16, we obtained the following expression: x 4 ln 4 2 Figure A.1 3 A 40 5 kt 3 A 4t Based on the properties of logarithms, we have Intercept 2 y2 2 y1 Dy 5 x 2 2 x1 Dx ln [A]0 ln [A]t 5 kt 6 Rearranging into the form of an equation for a straight line gives ln [A]t kt ln [A]0 y mx b Thus, a plot of ln [A]t vs. t is a straight line, from which you can see that the slope is k (the negative of the rate constant) and the intercept is ln [A]0 (the natural logarithm of the initial concentration of A). At many other places in the text, linear relationships occur that were not shown in graphical terms. For example, the conversion of temperature scales in Chapter 1 can also be expressed in the form of a straight line: °F 59 °C 32 y mx b siL02656_apA-D_A-1_A-14.indd 4 12/9/10 8:28:15 AM Appendix B 3.2 Section • Determining the Formula of an Unknown Compound 5 Standard Thermodynamic Values for Selected Substances* Substance or Ion e2(g) Aluminum Al(s) Al31(aq) AlCl3(s) Al2O3(s) Barium Ba(s) Ba(g) Ba21(g) Ba21(aq) BaCl2(s) BaCO3(s) BaO(s) BaSO4(s) Boron B(-rhombohedral) BF3(g) BCl3(g) B2H6(g) B2O3(s) H3BO3(s) Bromine Br2(l) Br2(g) Br(g) Br2(g) Br2(aq) HBr(g) Cadmium Cd(s) Cd(g) Cd21(aq) CdS(s) Calcium Ca(s) Ca(g) Ca21(g) Ca21(aq) CaF2(s) CaCl2(s) DH 8f (kJ/mol) 0 DG 8f (kJ/mol) 0 S 8 (J/molK) 20.87 0 2524.7 2704.2 21676 0 2481.2 2628.9 21582 28.3 2313 110.7 50.94 0 175.6 1649.9 2538.36 2806.06 21219 2548.1 21465 0 144.8 — 2560.7 2810.9 21139 2520.4 21353 62.5 170.28 — 13 126 112 72.07 132 0 0 5.87 21120.3 2388.7 86.6 21193 2969.01 254.0 290.0 232.0 53.8 88.83 0 30.91 111.9 2218.9 2120.9 236.3 0 3.13 82.40 — 2102.82 253.5 152.23 245.38 174.90 — 80.71 198.59 0 112.8 272.38 2144 0 78.20 277.74 2141 51.5 167.64 261.1 71 0 192.6 1934.1 2542.96 21215 2795.0 0 158.9 — 2553.04 21162 2750.2 41.6 154.78 — 255.2 68.87 114 21137.0 2403.8 35 21272 21094.3 Substance or Ion CaCO3(s) CaO(s) Ca(OH)2(s) Ca3(PO4)2(s) CaSO4(s) Carbon C(graphite) C(diamond) C(g) CO(g) CO2(g) CO2(aq) CO322(aq) HCO32(aq) H2CO3(aq) CH4(g) C2H2(g) C2H4(g) C2H6(g) C3H8(g) C4H10(g) C6H6(l) CH3OH(g) CH3OH(l) HCHO(g) HCOO2(aq) HCOOH(l) HCOOH(aq) C2H5OH(g) C2H5OH(l) CH3CHO(g) CH3COOH(l) C6H12O6(s) C12H22O11(s) CN2(aq) HCN(g) HCN(l) HCN(aq) CS2(g) CS2(l) CH3Cl(g) CH2Cl2(l) DH 8f (kJ/mol) 21206.9 2635.1 2986.09 24138 21432.7 21128.8 2603.5 2898.56 23899 21320.3 0 1.896 715.0 2110.5 2393.5 2412.9 2676.26 2691.11 2698.7 274.87 227 52.47 284.667 2105 2126 49.0 2201.2 2238.6 2116 2410 2409 2410 2235.1 2277.63 2166 2487.0 21273.3 22221.7 151 135 105 105 117 87.9 283.7 2117 0 2.866 669.6 2137.2 2394.4 2386.2 2528.10 587.06 2623.42 250.81 209 68.36 232.89 224.5 216.7 124.5 2161.9 2166.2 2110 2335 2346 2356 2168.6 2174.8 2133.7 2392 2910.56 21544.3 166 125 121 112 66.9 63.6 260.2 263.2 *All values at 298 K. siL02656_apA-D_A-1_A-14.indd 5 DG 8f (kJ/mol) S 8 (J/molK) 92.9 38.2 83.39 263 107 5.686 2.439 158.0 197.5 213.7 121 253.1 95.0 191 186.1 200.85 219.22 229.5 269.9 310 172.8 238 127 219 91.6 129.0 164 282.6 161 266 160 212.1 360.24 118 201.7 112.8 129 237.79 151.0 234 179 (continued) A-5 12/9/10 8:28:16 AM A-6 Appendix B • Standard Thermodynamic Values for Selected Substances Substance or Ion CHCl3(l) CCl4(g) CCl4(l) COCl2(g) Cesium Cs(s) Cs(g) Cs1(g) Cs1(aq) CsF(s) CsCl(s) CsBr(s) CsI(s) Chlorine Cl2(g) Cl(g) Cl2(g) Cl2(aq) HCl(g) HCl(aq) ClO2(g) Cl2O(g) Chromium Cr(s) Cr31(aq) CrO422(aq) Cr2O722(aq) Copper Cu(s) Cu(g) Cu1(aq) Cu21(aq) Cu2O(s) CuO(s) Cu2S(s) CuS(s) Fluorine F2(g) F(g) F2(g) F2(aq) HF(g) Hydrogen H2(g) H(g) H1(aq) H1(g) Iodine I2(s) I2(g) I(g) I2(g) I2(aq) HI(g) Iron Fe(s) Fe31(aq) DG 8f (kJ/mol) S 8 (J/molK) 2132 296.0 2139 2220 271.5 253.7 268.6 2206 203 309.7 214.4 283.74 0 76.7 458.5 2248 2554.7 2442.8 2395 2337 0 49.7 427.1 2282.0 2525.4 2414 2383 2333 85.15 175.5 169.72 133 88 101.18 121 130 0 121.0 2234 2167.46 292.31 2167.46 102 80.3 0 105.0 2240 2131.17 295.30 2131.17 120 97.9 223.0 165.1 153.25 55.10 186.79 55.06 256.7 266.1 DH 8f (kJ/mol) 0 21971 2863.2 21461 0 — 2706.3 21257 23.8 — 38 214 0 341.1 51.9 64.39 2168.6 2157.3 279.5 253.1 0 301.4 50.2 64.98 2146.0 2130 286.2 253.6 33.1 166.29 226 298.7 93.1 42.63 120.9 66.5 0 78.9 2255.6 2329.1 2273 0 61.8 2262.5 2276.5 2275 202.7 158.64 145.47 29.6 173.67 0 218.0 0 1536.3 0 203.30 0 1517.1 130.6 114.60 0 108.83 0 62.442 106.8 2194.7 255.94 25.9 0 19.38 70.21 — 251.67 1.3 116.14 260.58 180.67 — 109.4 206.33 0 247.7 0 210.5 27.3 2293 Substance or Ion Fe21(aq) FeCl2(s) FeCl3(s) FeO(s) Fe2O3(s) Fe3O4(s) Lead Pb(s) Pb21(aq) PbCl2(s) PbO(s) PbO2(s) PbS(s) PbSO4(s) Lithium Li(s) Li(g) Li1(g) Li1(aq) LiF(s) LiCl(s) LiBr(s) LiI(s) Magnesium Mg(s) Mg(g) Mg21(g) Mg21(aq) MgCl2(s) MgCO3(s) MgO(s) Mg3N2(s) Manganese Mn(s, ) Mn21(aq) MnO2(s) MnO42(aq) Mercury Hg(l) Hg(g) Hg21(aq) Hg221(aq) HgCl2(s) Hg2Cl2(s) HgO(s) Nitrogen N2(g) N(g) N2O(g) NO(g) NO2(g) N2O4(g) N2O5(g) N2O5(s) NH3(g) NH3(aq) N2H4(l) DH 8f (kJ/mol) DG 8f (kJ/mol) S 8 (J/molK) 284.94 2302.3 2334.1 2251.4 2743.6 21018 113 117.9 142 60.75 87.400 145.3 0 1.6 2359 2218 2276.6 298.3 2918.39 0 224.3 2314 2198 2219.0 296.7 2811.24 64.785 21 136 68.70 76.6 91.3 147 0 161 687.163 2278.46 2616.9 2408 2351 2270 0 128 649.989 2293.8 2588.7 2384 2342 2270 29.10 138.67 132.91 14 35.66 59.30 74.1 85.8 287.9 2341.8 2399.5 2272.0 2825.5 21121 0 150 2351 2461.96 2641.6 21112 2601.2 2461 0 115 — 2456.01 2592.1 21028 2569.0 2401 0 2219 2520.9 2518.4 0 2223 2466.1 2425.1 31.8 284 53.1 190 0 61.30 171 172 2230 2264.9 290.79 0 31.8 164.4 153.6 2184 2210.66 258.50 76.027 174.87 232 84.5 144 196 70.27 0 473 82.05 90.29 33.2 9.16 11 243.1 245.9 280.83 50.63 0 456 104.2 86.60 51 97.7 118 114 216 26.7 149.2 191.5 153.2 219.7 210.65 239.9 304.3 346 178 193 110 121.2 32.69 148.55 — 118 89.630 65.86 26.9 88 (continued ) siL02656_apA-D_A-1_A-14.indd 6 12/9/10 8:28:16 AM Appendix B • Standard Thermodynamic Values for Selected Substances A-7 Substance or Ion NO32(aq) HNO3(l) HNO3(aq) NF3(g) NOCl(g) NH4Cl(s) Oxygen O2(g) O(g) O3(g) OH2(aq) H2O(g) H2O(l) H2O2(l) H2O2(aq) Phosphorus P4(s, white) P(g) P(s, red) P2(g) P4(g) PCl3(g) PCl3(l) PCl5(g) PCl5(s) P4O10(s) PO432(aq) HPO422(aq) H2PO42(aq) H3PO4(aq) Potassium K(s) K(g) K1(g) K1(aq) KF(s) KCl(s) KBr(s) KI(s) KOH(s) KClO3(s) KClO4(s) Rubidium Rb(s) Rb(g) Rb1(g) Rb1(aq) RbF(s) RbCl(s) RbBr(s) RbI(s) Silicon Si(s) SiF4(g) SiO2(s) Silver Ag(s) Ag(g) Ag1(aq) siL02656_apA-D_A-1_A-14.indd 7 DH 8f (kJ/mol) DG 8f (kJ/mol) 2206.57 2173.23 2206.57 2125 51.71 2314.4 2110.5 279.914 2110.5 283.3 66.07 2203.0 0 249.2 143 2229.94 2241.826 2285.840 2187.8 2191.2 0 231.7 163 2157.30 2228.60 2237.192 2120.4 2134.1 0 314.6 217.6 144 58.9 2287 2320 2402 2443.5 22984 21266 21281 21285 21277 0 278.3 212.1 104 24.5 2268 2272 2323 — 22698 21013 21082 21135 21019 S 8 (J/molK) 146 155.6 146 260.6 261.6 94.6 205.0 160.95 238.82 210.54 188.72 69.940 110 144 41.1 163.1 22.8 218 280 312 217 353 — 229 2218 236 89.1 228 0 89.2 514.197 2251.2 2568.6 2436.7 2394 2328 2424.8 2397.7 2432.75 0 60.7 481.202 2282.28 2538.9 2409.2 2380 2323 2379.1 2296.3 2303.2 64.672 160.23 154.47 103 66.55 82.59 95.94 106.39 78.87 143.1 151.0 0 85.81 495.04 2246 2549.28 2435.35 2389.2 2328 0 55.86 — 2282.2 — 2407.8 2378.1 2326 69.5 169.99 — 124 — 95.90 108.3 118.0 0 21614.9 2910.9 0 289.2 105.9 0 21572.7 2856.5 0 250.4 77.111 18.0 282.4 41.5 42.702 172.892 73.93 Substance or Ion DH 8f (kJ/mol) AgF(s) 2203 AgCl(s) 2127.03 AgBr(s) 299.51 AgI(s) 262.38 AgNO3(s) 245.06 Ag2S(s) 231.8 Sodium Na(s) 0 Na(g) 107.76 Na1(g) 609.839 Na1(aq) 2239.66 NaF(s) 2575.4 NaCl(s) 2411.1 NaBr(s) 2361 NaOH(s) 2425.609 Na2CO3(s) 21130.8 NaHCO3(s) 2947.7 NaI(s) 2288 Strontium Sr(s) 0 Sr(g) 164 Sr21(g) 1784 Sr21(aq) 2545.51 SrCl2(s) 2828.4 SrCO3(s) 21218 SrO(s) 2592.0 SrSO4(s) 21445 Sulfur S(rhombic) 0 S(monoclinic) 0.3 S(g) 279 S2(g) 129 S8(g) 101 S22(aq) 41.8 HS2(aq) 217.7 H2S(g) 220.2 H2S(aq) 239 SO2(g) 2296.8 SO3(g) 2396 SO422(aq) 2907.51 HSO42(aq) 2885.75 H2SO4(l) 2813.989 H2SO4(aq) 2907.51 Tin Sn(white) 0 Sn(gray) 3 SnCl4(l) 2545.2 SnO2(s) 2580.7 Titanium Ti(s) 0 TiCl4(l) 2804.2 TiO2(s) 2944.0 Zinc Zn(s) 0 Zn(g) 130.5 Zn21(aq) 2152.4 ZnO(s) 2348.0 ZnS(s, zinc 2203 blende) DG 8f (kJ/mol) S 8 (J/molK) 2185 2109.72 295.939 266.32 19.1 240.3 84 96.11 107.1 114 128.2 146 0 77.299 574.877 2261.87 2545.1 2384.0 2349 2379.53 21048.1 2851.9 2285 51.446 153.61 147.85 60.2 51.21 72.12 86.82 64.454 139 102 98.5 0 110 — 2557.3 2781.2 21138 2562.4 21334 54.4 164.54 — 239 117 97.1 55.5 122 0 0.096 239 80.1 49.1 83.7 12.6 233 227.4 2300.2 2371 2741.99 2752.87 2690.059 2741.99 31.9 32.6 168 228.1 430.211 22 61.1 205.6 122 248.1 256.66 17 126.9 156.90 17 0 4.6 2474.0 2519.7 51.5 44.8 259 52.3 0 2737.2 2888.8 30.7 252.3 50.6 0 94.93 2147.21 2318.2 2198 41.6 160.9 2106.5 43.9 57.7 12/9/10 8:28:17 AM Appendix C 8 Chapter 1 • Keys to the Study of Chemistry Equilibrium Constants for Selected Substances* Dissociation (Ionization) Constants (Ka) of Selected Acids Name and Formula Acetic acid CH3COOH Lewis Structure† H H O C C Ka2 Ka3 1.831025 H O H H Acetylsalicylic acid CH3COOC6H4COOH Ka1 H H O C C C C C C O H C O O H C C 3.631024 H H H Adipic acid HOOC(CH2)4COOH H O O H H H H O C C C C C C H H H H O H 3.831025 3.831026 631023 1.131027 1.031025 5310212 O Arsenic acid H3AsO4 H O As O O H H H O C H H O H C C H H H Benzoic acid C6H5COOH 3310212 H C C O O H O C C H O C O Ascorbic acid H2C6H6O6 H C C C C O H 6.331025 C H H O Carbonic acid H2CO3 Chloroacetic acid ClCH2COOH Chlorous acid HClO2 H Cl O C O H O C C O Cl O H H 4.531027 4.7310211 1.431023 H H O 1.131022 *All values at 298 K, except for acetylsalicylic acid, which is at 37ºC (310 K) in 0.15 M NaCl. † Acidic (ionizable) proton(s) shown in red. Structures have lowest formal charges. Benzene rings show one resonance form. (continued) A-8 siL02656_apA-D_A-1_A-14.indd 8 12/9/10 8:28:17 AM Appendix C • Equilibrium Constants for Selected Substances A-9 Dissociation (Ionization) Constants (Ka) of Selected Acids Name and Formula Lewis Structure† Ka1 Ka2 7.431024 1.731025 Ka3 H Citric acid HOOCCH2C(OH)(COOH)CH2COOH H O O H O H O C C C C C C H O O H H O H 4.031027 O Formic acid HCOOH Glyceric acid HOCH2CH(OH)COOH Glycolic acid HOCH2COOH Glyoxylic acid HC(O)COOH Hydrocyanic acid HCN Hydrofluoric acid HF Hydrosulfuric acid H 2S Hypobromous acid HBrO Hypochlorous acid HClO Hypoiodous acid HIO H H H C O O 1.831024 O H H H O C C C H O H H O C C O O H O H H 2.931024 1.531024 H H O O C C H C N H F H S H 931028 H O Br 2.331029 H O Cl 2.931028 H O I 2.3310211 3.5 31024 6.2310210 6.831024 1310217 O Iodic acid HIO3 Lactic acid CH3CH(OH)COOH H H O I O H H O C C C H O H O H 1.431024 H H Maleic acid HOOCCH CHCOOH 1.631021 C C O C C O H O O H 1.231022 4.731027 (continued ) siL02656_apA-D_A-1_A-14.indd 9 12/9/10 8:28:18 AM A-10 Appendix C • Equilibrium Constants for Selected Substances Dissociation (Ionization) Constants (Ka) of Selected Acids (continued ) Name and Formula Malonic acid HOOCCH2COOH Nitrous acid HNO2 Oxalic acid HOOCCOOH Lewis Structure† H O O H O C C C H H O O N O O O C C 1.431023 2.031026 Ka3 H O H 5.631022 O H 1.0310210 H O C C 5.431025 H C C C C H H H C C H 7.131024 C C H Phenylacetic acid C6H5CH2COOH H Ka2 H H Phenol C6H5OH O Ka1 C C C C H O H 4.931025 H H O Phosphoric acid H3PO4 H P O O H P O H O H H H O C C C H H H O O C C O H 7.231023 6.331028 331022 1.731027 4.2310213 O Phosphorous acid HPO(OH)2 Propanoic acid CH3CH2COOH Pyruvic acid CH3C(O)COOH Succinic acid HOOCCH2CH2COOH H H H O H 1.331025 C O H 2.831023 O H H O C C C C H H O O H H O 6.231025 2.331026 H Very large 1.031022 H 1.431022 6.531028 O H O Sulfuric acid H2SO4 H O S O O Sulfurous acid H2SO3 H O S (continued) siL02656_apA-D_A-1_A-14.indd 10 12/9/10 8:28:18 AM Appendix C • Equilibrium Constants for Selected Substances A-11 Dissociation (Ionization) Constants (Kb) of Selected Amine Bases Lewis Structure† Name and Formula Ammonia NH3 N H H H C C H C C C C H Ethanolamine HOCH2CH2NH2 Ethylamine CH3CH2NH2 Ethylenediamine H2NCH2CH2NH2 H H H H 4.0310210 H H H H C C H H H Dimethylamine (CH3)2NH N H H Diethylamine (CH3CH2)2NH Kb2 1.7631025 H H Aniline C6H5NH2 Kb1 H H N C C H H H H 8.631024 H C N C H H H H H O C C N H H H H 5.931024 H H H C C N H H H H H N C C N H H H H C N H H H H 3.231025 4.331024 H 8.531025 7.131028 H Methylamine CH3NH2 tert-Butylamine (CH3)3CNH2 H H 4.431024 H H N H H C C C H H C H H H 4.831024 H H H H Piperidine C5H10NH C H N C H C H n-Propylamine CH3CH2CH2NH2 † H H C 1.331023 H C H H H H H H C C C N H H H H H Blue type indicates the basic nitrogen and its lone pair. siL02656_apA-D_A-1_A-14.indd 11 3.531024 (continued ) 12/9/10 8:28:19 AM A-12 Appendix C • Equilibrium Constants for Selected Substances Dissociation (Ionization) Constants (Kb) of Selected Amine Bases (continued ) Lewis Structure† Name and Formula Isopropylamine (CH3)2CHNH2 1,3-Propylenediamine H2NCH2CH2CH2NH2 H H H H N H H C C C H H H H H N C C C N H H H H H H C C C H 3.031026 1.731029 N C H Triethylamine (CH3CH2)3N 3.131024 H H C Pyridine C5H5N Kb2 4.731024 H H H Kb1 H H H H H C C N C C H H H C HH H H C H 5.231024 H H H Trimethylamine (CH3)3N H H C N C H H C HH 6.331025 H H Dissociation (Ionization) Constants (Ka) of Some Hydrated Metal Ions Formation Constants (Kf) of Some Complex Ions Free Ion Complex Ion Kf Ag(CN)2 Ag(NH3)21 Ag(S2O3)232 AlF632 Al(OH)42 Be(OH)422 CdI422 Co(OH)422 Cr(OH)42 Cu(NH3)421 Fe(CN)642 Fe(CN)632 Hg(CN)422 Ni(NH3)621 Pb(OH)32 Sn(OH)32 Zn(CN)422 Zn(NH3)421 Zn(OH)422 3.031020 1.73107 4.731013 4 31019 3 31033 4 31018 1 3106 5 3109 8.031029 5.631011 3 31035 4.031043 9.331038 2.03108 8 31013 3 31025 4.231019 7.83108 3 31015 31 Fe Sn21 Cr31 Al31 Cu21 Pb21 Zn21 Co21 Ni21 siL02656_apA-D_A-1_A-14.indd 12 Hydrated Ion Fe(H2O)631(aq) Sn(H2O)621(aq) Cr(H2O)631(aq) Al(H2O)631(aq) Cu(H2O)621(aq) Pb(H2O)621(aq) Zn(H2O)621(aq) Co(H2O)621(aq) Ni(H2O)621(aq) Ka 2 6310 431024 131024 131025 331028 331028 131029 2310210 1310210 23 12/9/10 8:28:20 AM Appendix C • Equilibrium Constants for Selected Substances A-13 Solubility-Product Constants (Ksp) of Slightly Soluble Ionic Compounds Name, Formula Carbonates Barium carbonate, BaCO3 Cadmium carbonate, CdCO3 Calcium carbonate, CaCO3 Cobalt(II) carbonate, CoCO3 Copper(II) carbonate, CuCO3 Lead(II) carbonate, PbCO3 Magnesium carbonate, MgCO3 Mercury(I) carbonate, Hg2CO3 Nickel(II) carbonate, NiCO3 Strontium carbonate, SrCO3 Zinc carbonate, ZnCO3 Chromates Barium chromate, BaCrO4 Calcium chromate, CaCrO4 Lead(II) chromate, PbCrO4 Silver chromate, Ag2CrO4 Cyanides Mercury(I) cyanide, Hg2(CN)2 Silver cyanide, AgCN Halides Fluorides Barium fluoride, BaF2 Calcium fluoride, CaF2 Lead(II) fluoride, PbF2 Magnesium fluoride, MgF2 Strontium fluoride, SrF2 Chlorides Copper(I) chloride, CuCl Lead(II) chloride, PbCl2 Silver chloride, AgCl Bromides Copper(I) bromide, CuBr Silver bromide, AgBr Iodides Copper(I) iodide, CuI Lead(II) iodide, PbI2 Mercury(I) iodide, Hg2I2 Silver iodide, AgI Hydroxides Aluminum hydroxide, Al(OH)3 Cadmium hydroxide, Cd(OH)2 Calcium hydroxide, Ca(OH)2 siL02656_apA-D_A-1_A-14.indd 13 Ksp Name, Formula 2.0310 1.8310214 3.331029 1.0310210 3.0310212 7.4310214 3.531028 8.9310217 1.331027 5.4310210 1.0310210 29 2.1310210 1.031028 2.3310213 2.6310212 5.0310240 2.2310216 1.5310 3.2310211 3.631028 7.431029 2.631029 26 1.931027 1.731025 1.8310210 5 31029 5.0310213 1 310212 7.931029 4.7310229 8.3310217 3 310234 7.2310215 6.531026 Cobalt(II) hydroxide, Co(OH)2 Copper(II) hydroxide, Cu(OH)2 Iron(II) hydroxide, Fe(OH)2 Iron(III) hydroxide, Fe(OH)3 Magnesium hydroxide, Mg(OH)2 Manganese(II) hydroxide, Mn(OH)2 Nickel(II) hydroxide, Ni(OH)2 Zinc hydroxide, Zn(OH)2 Iodates Barium iodate, Ba(IO3)2 Calcium iodate, Ca(IO3)2 Lead(II) iodate, Pb(IO3)2 Silver iodate, AgIO3 Strontium iodate, Sr(IO3)2 Zinc iodate, Zn(IO3)2 Oxalates Barium oxalate dihydrate, BaC2O42H2O Calcium oxalate monohydrate, CaC2O4H2O Strontium oxalate monohydrate, SrC2O4H2O Phosphates Calcium phosphate, Ca3(PO4)2 Magnesium phosphate, Mg3(PO4)2 Silver phosphate, Ag3PO4 Sulfates Barium sulfate, BaSO4 Calcium sulfate, CaSO4 Lead(II) sulfate, PbSO4 Radium sulfate, RaSO4 Silver sulfate, Ag2SO4 Strontium sulfate, SrSO4 Sulfides Cadmium sulfide, CdS Copper(II) sulfide, CuS Iron(II) sulfide, FeS Lead(II) sulfide, PbS Manganese(II) sulfide, MnS Mercury(II) sulfide, HgS Nickel(II) sulfide, NiS Silver sulfide, Ag2S Tin(II) sulfide, SnS Zinc sulfide, ZnS Ksp 1.3310215 2.2310220 4.1310215 1.6310239 6.3310210 1.6310213 6.0310216 3.0310216 1.531029 7.131027 2.5310213 3.131028 3.331027 3.931026 1.131027 2.331029 5.631028 1.2310229 5.2310224 2.6310218 1.1310210 2.431025 1.631028 2.0310211 1.531025 3.231027 1.0310224 8.0310234 8.0310216 3.0310225 3.0310211 2.0310250 3.0310216 8.0310248 1.3310223 2.0310222 12/9/10 8:28:20 AM Appendix D 14 Chapter 1 • Keys to the Study of Chemistry Standard Electrode (Half-Cell) Potentials* Half-Reaction E 8 (V) A 2F2(aq) F2(g) 1 2e2B A O2(g) 1 H2O(l) O3(g) 1 2H1(aq) 1 2e2 B A Co21(aq) Co31(aq) 1 e2 B A 2H2O(l) H2O2(aq) 1 2H1(aq) 1 2e2 B A PbSO4(s) 1 2H2O(l) PbO2(s) 1 3H1(aq) 1 HSO42(aq) 1 2e2B A Ce31(aq) Ce41(aq) 1 e2B A Mn21(aq) 1 4H2O(l) MnO42(aq) 1 8H1(aq) 1 5e2B A Au(s) Au31(aq) 1 3e2B A 2Cl2(aq) Cl2(g) 1 2e2B 22 A 2Cr31(aq) 1 7H2O(l) Cr2O7 (aq) 1 14H1(aq) 1 6e2B A Mn21(aq) 1 2H2O(l) MnO2(s) 1 4H1(aq) 1 2e2B A 2H2O(l) O2(g) 1 4H1(aq) 1 4e2B A 2Br2(aq) Br2(l) 1 2e2B A NO(g) 1 2H2O(l) NO32(aq) 1 4H1(aq) 1 3e2B A Hg221(aq) 2Hg21(aq) 1 2e2B A 2Hg(l) Hg221(aq) 1 2e2B A Ag(s) Ag1(aq) 1 e2B A Fe21(aq) Fe31(aq) 1 e2B A H2O2(aq) O2(g) 1 2H1(aq) 1 2e2B A MnO2(s) 1 4OH2(aq) MnO42(aq) 1 2H2O(l) 1 3e2B 2 2 B A 2I (aq) I2(s) 1 2e A 4OH2(aq) O2(g) 1 2H2O(l) 1 4e2B 21 2 Cu (aq) 1 2e B A Cu(s) AgCl(s) 1 e2 B A Ag(s) 1 Cl2(aq) SO422(aq) 1 4H1(aq) 1 2e2 B A SO2(g) 1 2H2O(l) Cu1(aq) Cu21(aq) 1 e2 B A Sn41(aq) 1 2e2 B A Sn21(aq) H2(g) 2H1(aq) 1 2e2 B A Pb(s) Pb21(aq) 1 2e2 B A Sn(s) Sn21(aq) 1 2e2 B A A N2H51(aq) N2(g) 1 5H1(aq) 1 4e2 B 21 2 A Ni(s) Ni (aq) 1 2e B A Co(s) Co21(aq) 1 2e2B A Pb(s) 1 HSO42(aq) PbSO4(s) 1 H1(aq) 1 2e2B 21 2 A Cd(s) Cd (aq) 1 2e B A Fe(s) Fe21(aq) 1 2e2B A Cr(s) Cr31(aq) 1 3e2B A Zn(s) Zn21(aq) 1 2e2 B 2H2O(l) 1 2e2B A H2(g) 1 2OH2(aq) 21 2 A Mn(s) Mn (aq) 1 2e B A Al(s) Al31(aq) 1 3e2B A Mg(s) Mg21(aq) 1 2e2B A Na(s) Na1(aq) 1 e2B A Ca(s) Ca21(aq) 1 2e2B A Sr(s) Sr21(aq) 1 2e2B A Ba(s) Ba21(aq) 1 2e2B K(s) K1(aq) 1 e2B A A Li(s) Li1(aq) 1 e2B 12.87 12.07 11.82 11.77 11.70 11.61 11.51 11.50 11.36 11.33 11.23 11.23 11.07 10.96 10.92 10.85 10.80 10.77 10.68 10.59 10.53 10.40 10.34 10.22 10.20 10.15 10.13 0.00 20.13 20.14 20.23 20.25 20.28 20.31 20.40 20.44 20.74 20.76 20.83 21.18 21.66 22.37 22.71 22.87 22.89 22.90 22.93 23.05 *All values at 298 K. Written as reductions; E value refers to all components in their standard states: 1 M for dissolved species; 1 atm pressure for the gas behaving ideally; the pure substance for solids and liquids. A-14 siL02656_apA-D_A-1_A-14.indd 14 12/9/10 8:28:21 AM
© Copyright 2026 Paperzz