C H A P T E R 5 Polynomials and Factoring Section 5.1 Integer Exponents and Scientific Notation . . . . . . . . . 172 Section 5.2 Adding and Subtracting Polynomials Section 5.3 Multiplying Polynomials . . . . . . . . . . . . . . . . . . 181 Section 5.4 Factoring by Grouping and Special Forms . . . . . . . . . 185 Section 5.5 Factoring Trinomials . . . . . . . . . . . . . . . . . . . . 189 Section 5.6 Solving Polynomial Equations by Factoring . . . . . . . . 192 Review Exercises . . . . . . . . . . . 176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 C H A P T E R 5 Polynomials and Factoring Section 5.1 Integer Exponents and Scientific Notation Solutions to Even-Numbered Exercises 2. (a) 52 y 4 y 2 25 y 4 y 2 25y 42 25y 6 (b) 5y2 4. (a) 5z32 52z32 25z 3 2 25z 6 y 4 25y 2 y 4 25 y 2 y 4 25y 24 25y 6 6. (a) 6xy7x 6 x x y 7 6x11y 7 6x 2 y 7 (b) x 5y32y3 2 x 5 (b) 5z4 54z 4 625z 4 8. (a) 3y32y2 33y32y2 y 33 2x 5y 6 27 2 y 3 y2 54y 32 54y 5 3 (b) 3y 2y 2 3 2 y 3 y 2 6y 32 6y 5 10. (a) m 3n2mn3 m3n2mn3 m 31 n23 12. (a) 28x2y3 28 2xy2 2 m 4n5 (b) m3n22 mn3 m32 n22 mn3 m 6n 41mn3 28 2 x2 x y3 y2 x 21 y 32 14xy m 6mn 4n3 (b) m 61n 43 24xy2 24 8y 8 m 7n7 24 8 x y2 y x y 21 3xy 14. (a) 2a3y (b) 18. (a) 5 25a5 32a5 5 5 3 y 243y5 2a3y 23 ay 3x22x2 2 2 2 2 2x6x 2 16. (a) 4a2 9y2 3x24x2 12x2 12x 12x 2 4 2 (b) 2 (b) 4xy3 43x3y3 64x3y3 8x2y 8xy2 8xy2 8xy2 x 4y 4 x2y2 xy4 14x 4y 4 3xy2 3x2y2 3x 2y2 3 3x22x4 3x216x 4 2x 6x 4x 6x 2 2 2 48x 24x 3 x22 2x 32 x4 22 x32 4x 6 172 6 2 2 Section 5.1 20. (a) x 3n y 2n1 x 3nny2n1 n3 x2n y2n1n3 x2ny n4 x n y n3 Integer Exponents and Scientific Notation (b) 173 x 4n6y n10 x 4n6 2n5y n10 n2 x 2n5y n2 x 4n62n5y n10n2 x 2n1y12 22. 24 30. 1 1 24 16 24. 202 1 202 1 400 1 62 36 62 36. 42 43 42(3) 41 1 4 42. 53 543 53(4)3 3 26. 250 1 32. 45 38. 1 1 1 51 2(1) 3 52 5 5 125 54 3 28. 125 64 44. 412 42 16 2 1 82 64 82 1 34. 85 58 40. 105 105(6) 101 10 106 46. 4 32 4 513 4 53 125 48. 12 32 1 1233 3222 3 4 6 6 61 1 50. 32 430 1 52. x2 2 1 32 1 9 36 1 35 9 9 9 x5 x2(5) x7 1 1 x7 1 61 6 54. t 1 t 6 t 1(6) 56. 3y3 3 y3 58. 5u2 1 5u2 1 25u 2 t 7 1 7 t 62. 6u2 15u1 3 23 5u1(2) 64. 5u4 5u40 5u0 60. 2 5u 68. 5s5t 56s2t 4 30s 5 2t 5 4 30s3t 1 30s3 t 4 4y y1 66. 4a23 43a 6 5u4 2 1 5u a6 a6 3 4 64 1 1 5u4 625u 4 70. 4y3z3 1 1 4y3z3 64y9z 3 64 25 y9 64z 3 174 72. Chapter 5 4z 2 3 78. Polynomials and Factoring 42 z2 z2 42 z2 16 74. ab ba ba ba 3 3 3 3 3 3 b33 a33 b6 a6 x12y 8 24 x12y8 16 1 1 u1 v1 u v 90. 1 u v1 1 1 u v 1 1 u v 1 1 u v 5 x 1z33 2y2 x5 y 1z 0 2y2 5yx 1 2y2 5y 4 x2 80. ab2a2b21 a2b2a2b2 xy 5125xy 2 31y31 1 53 2 4 1 32 2 1 4 82. x53x0y 47y0 x53y 41 3x5y 4 a2(2)b2(2) 24x12 y8 2 3 3 1 76. a4b4 84. 2x3y222 2x3y24 2y1z3 2z3 3 4yz 4yyz3 86. 1 a 4b4 5x2y51 51x2y5 2x5y 4 2x5y 4 88. x2x 2 y 2 x22 x2y 2 x2(5)y 54 52 x0 y2 x2 x 3y 10 1 y2 x2 92. 98,100,000 9.81 107 94. 956,300,000 9.563 108 uv uv vu vu 96. 0.00625 6.25 103 98. 0.0007384 7.384 104 102. 0.0000001 1.0 107 104. 0.00003937 3.937 105 106. 5.05 1012 5,050,000,000,000 108. 8.6 109 0.0000000086 110. 3.5 108 350,000,000 112. 9.0 109 0.000000009 114. 9.0 104 0.0009 100. 139,500,000 1.395 108 116. 6.5 1062 104 6.52 1064 13.0 1010 1.3 1011 Section 5.1 118. 4 1063 43 106 3 120. 64 1018 Integer Exponents and Scientific Notation 2.5 103 0.5 1032 5 102 0.5 105 6.4 10 19 5.0 106 122. 62,000,0000.0002 6.2 1072 104 124. 72,000,000,000 7.2 1010 0.00012 1.2 104 12.4 107(4) 12.4 6.0 1010(4) 103 6.0 1014 1.24 104 126. 3,450,000,0000.000125 3.45 1091.25 104 52,000,0000.000003 5.2 1073 106 128. 14.5924 1010 3.82 1052 4 3 8.5 10 5.2 10 44.2 101 3.45 1.25 10 9(4) 5.2 3 107(6) 0.3301447964 109 3.301447964 108 105 4.3125 15.6 101 3.30 108 0.276 1051 0.276 10 4 2.76 103 130. 8.67 10 47 8.677 1028 132. 3682423.07 1028 6,200,0000.0053 6.2 106 5.0 1033 0.000355 3.5 1045 3.68 1034 6.2 106 5.03 109 3.55 1020 6.2125 103 3.55 1020 6.2125 103(20) 3.55 6.2(125 1017 3.55 775 1017 525.21875 1.48 1017 134. 8.483 10 22 84,830,000,000,000,000,000,000 136. 959.46 1015 899 1015 8.99 1017 meters 138. 752001.1 105 16,500 105 0.165 foot 140. 58 million 58,000,000 6 billion 6,000,000,000 5.8 10 7 6 10 9 0.966 102 9.66 103 tons 1 19 3 pounds 175 176 Chapter 5 142. 2x4 Polynomials and Factoring 1 1 Both the 2 and x are raised to the 4 power. 24 x 4 16x 4 2x4 2 x4 Only the x is raised to the 4 power. 144. 32.5 105 is not in scientific notation because 32.5 is not in the interval 1, 10. Section 5.2 Adding and Subtracting Polynomials 4. Standard form: x 50 2. Standard form: t 5 14t 4 20t 4 Degree: 5 Degree: 1 Leading coefficient: 1 Leading coefficient: 1 8. Standard form: 4t 5 t 2 6t 3 6. Standard form: y 2 4y 12 Degree: 2 Degree: 5 Leading coefficient: 1 Leading coefficient: 4 12. Standard form: 12 at 2 48 10. Standard form: 28 Degree: 0 Degree: 2 Leading coefficient: 28 Leading coefficient: 12 a 14. 6y 3 y3 is a trinomial 18. 25 2u2 is a binomial 16. t 3 is a monomial 20. A trinomial of degree 4 and leading coefficient of 2 is any trinomial beginning 2x 4 and containing two other terms of degree less than 4 such as 2x 4 3x 2. 22. A monomial of degree 0 is any constant such as 16 or 8 or 4. 24. x3 4x13 is not a polynomial because the second term is not of the form ax k (k must be a nonnegative integer). 26. 28. 6 2x 4x 6 2x 4x 2x 6 30. 3x 1 6x 1 3x 6x 11 9x 2 is not a polynomial because the expression is not x4 of the form ax k. 32. 3x3 2x 8 3x 5 3x3 2x 3x 8 5 3x3 x 3 34. z3 6z 2 (3z2 6z z3 3z2 6z 6z 2 z3 3z2 2 36. y5 4y 3y y5 y5 5 y5 y5 y5 4y 3y 5 y5 y 5 38. 3a2 5a 7 a2 5a 2a2 8 3a2 a2 2a2 5a 5a 7 8 4a2 15 Section 5.2 Adding and Subtracting Polynomials 1 1 3 1 1 3 40. 2 4 y 2 y 4 3 y 4 2 y 2 3 y 4 3 y 4 4 y 2 2 y 2 2 3 33 y 4 13 y 4 14 y 2 64 y 2 1 43 y 4 74 y 2 1 42. 0.13x4 2.25x 1.63 5.3x4 1.76x2 1.29x 0.13x4 5.3x4 1.76x2 2.25x 1.29x 1.63 5.43x4 1.76x2 0.96x 1.63 44. 3x4 2x2 9 5x4 x2 x3 3x2 2x4 x2 9 50. 48. 16t2 48t 64 46. 4x3 8x2 5x 3 32t 16 7 16t2 16t 80 5x3 5x2 5x 4 1.7y3 6.2y2 52. 5y4 2 3y4 2 5y4 2 3y4 2 5.9 3.5y3 6.7y2 2.2y 5y4 3y4 2 2 1.8y3 0.5y2 2.2y 5.9 2y4 4 54. 5q2 3q 5 4q2 3q 10 5q2 3q 5 4q2 3q 10 5q2 4q2 3q 3q 5 10 q2 15 56. 10s2 5 2s2 6s 10s2 5 2s2 6s 10s2 2s2 6s 5 12s 2 6s 5 58. 12 32 x 21 x x 2 3 1 2 1 1 3x2 x 12 x x2 x3 3x2 x 6 3 2 6 12 23 x 16 x 12 x 12 46 x 16 x 12 x 2 2 3x2 x3 6 x2 x3 2 3 5 12 x x2 x3 6 2 1 5 12 x x2 x3 2 2 5 1 x 3 x 2 x 12 2 2 60. u3 9.75u2 0.12u 3 0.7u3 6.9u2 4.83 u3 9.75u2 0.12u 3 0.7u3 6.9u2 4.83 u3 0.7u3 9.75u2 6.9u2 0.12u 3 4.83 0.3u3 2.85u2 0.12u 1.83 177 178 Chapter 5 Polynomials and Factoring 62. y2 3y4 y4 y2 8y y2 3y4 y 4 y2 8y y2 y2 3y4 y4 8y 2y4 2y2 8y 3t 4 5t 2 ⇒ 3t 4 5t 2 64. 4x2 5x 6 ⇒ 66. t 4 2t 2 14 ⇒ t 4 2t 2 14 4x2 5x 6 2x2 4x 5 ⇒ 2x2 4x 5 4t 4 7t 2 14 2x 2 9x 11 68. 13x3 9x2 4x 5 5x3 7x 3 70. 2x2 1 x2 2x 1 2x2 1 x2 2x 1 2x2 x2 2x 11 13x3 9x2 4x 5 ⇒ 13x3 9x2 4x 5 5x3 7x 3 ⇒ 5x3 x2 2x 7x 3 8x3 9x2 3x 8 72. 15 2y y2 3y2 6y 1 4y2 8y 16 y2 3y2 4y2 2y 6y 8y 15 1 16 0 74. p3 4 p2 4 3p 9 p3 4) p2 3p 4 9 p3 4) p2 3p 5 p3 4) p2 3p 5 p3 p2 3p 4 5 p3 p2 3p 9 76. 5x4 3x2 9 2x4 x3 7x2 x2 6 5x4 3x2 9 2x4 x3 7x2 x2 6 5x4 2x4 x3 3x2 7x2 x2 9 6 3x4 x3 5x2 15 78. x3 2x2 x 52x3 x2 4x x3 2x2 x 10x3 5x2 20x x3 10x3 2x2 5x2 x 20x 9x3 7x2 19x 80. 10v 2 8v 1 3v 9 10v 20 8v 8 3v 27 10v 8v 3v 20 8 27 5v 1 82. 97x2 3x 3 415x 2 3x2 7x 63x2 27x 27 60x 8 3x2 7x 63x2 3x2 27x 60x 7x 27 8 60x2 80x 19 84. 3x2 23x 9 x2 3x2 23x 9 x2 3x2 6x 18 2x2 3x2 2x2 6x 18 5x2 6x 18 Section 5.2 Adding and Subtracting Polynomials 86. 6x 2r 5x r 4 2x 2r 2x r 3 6x 2r 2x 2r 5x r 2x r 4 3 8x 2r 3x r 7 88. x 2m 6x m 4 2x 2m 4x m 3 x 2m 6x m 4 2x 2m 4x m 3 x 2m 2x 2m 6x m 4x m 4 3 x 2m 2x m 7 90. 4x 3n 5x 2n x n x 2n 9x n 14 4x 3n 5x 2n x n x 2n 9x n 14 4x 3n 5x 2n x 2n x n 9x n 14 y2 X,T, 3 1 2 1 2 X,T, 3 2 X,T, > Y X,T, 3 X,T, x2 ENTER X,T, 3 > 92. y1 > 4x 3n 4x 2n 8x n 14 X,T, 5 x2 X,T, 1 GRAPH y1 and y2 represent equivalent expressions since the graphs of y1 and y2 are identical. −6 6 −3 94. hx f x gx 4x3 3x2 7 9 x x2 5x3 4x3 3x2 7 9 x x2 5x3 4x3 5x3 3x2 x2 x 7 9 9x3 2x2 x 2 96. Polynomial ht 16t 2 256 Value Substitute Simplify at 0 1602 256 256 feet bt 1 161 256 240 feet ct 16 256 156 feet 1642 256 0 feet 5 2 dt 4 2 5 2 2 At time t 0, the object is dropped from a height of 256 feet and continues to fall, reaching the ground at time t 4. 98. Polynomial ht 16t 2 96t Value Substitute at 0 1602 960 0 feet bt 2 162 962 128 feet ct 3 163 963 144 feet dt 6 1662 966 0 feet 2 2 Simplify At t 0, the object is projected upward from a height of 0 feet (on the ground), reaches a maximum height, and returns downward. At time t 6, the object is again on the ground. 179 180 Chapter 5 Polynomials and Factoring 102. The free-falling object was thrown upward. 100. The free-falling object was thrown upward. ht 160 500 h0 1602 320 300 h0 0 0 h0 0 0 300 h0 0 feet h0 300 feet 2 104. ht 16t2 200 h1 1612 200 16 200 184 feet h2 1622 200 164 200 64 200 136 feet h3 1632 200 169 200 144 200 56 feet Profit 106. Verbal Model: Revenue Cost PRC Equation: P 17x 12x 8000 P 5x 8000 P 510,000 8000 P $42,000 108. Perimeter 4x 2 2x 10 2x 5 x 3 2x 4x 15x 10 110. Area of Region 5 x 5 x 5 3x or 5 x x 3x 5x 5x 15x or 55x 25x or 25x 112. Area 4x 75 2x4 20x 35 8x 12x 35 114. (a) Verbal Model: Equation: Per capita consumption of milk and coffee Per capita consumption of milk Per capita consumption of coffee y 0.33t 25.9 0.043t 2 0.33t 18.5 y 0.043t 2 0.33t 0.33t 25.9 18.5 y 0.043t 2 44.4 (b) Keystrokes: Y 0.043 X,T, x2 44.4 GRAPH 50 6 10 45 Consumption was increasing over the interval 6 ≤ t ≤ 10. Section 5.3 Multiplying Polynomials 181 116. Addition (or subtraction) separates terms. Multiplication separates factors. 118. Yes, two third-degree polynomials can be added to produce a second-degree polynomial. For example, x 3 2x 2 4 x 3 x 2 3x x 2 3x 4 120. To subtract one polynomial from another, add the opposite. You can do this by changing the sign of each of the terms of the polynomial that is being subtracted and the adding the resulting like terms. Section 5.3 Multiplying Polynomials 2. 6n3n2 6 3n n2 18n12 18n3 6. 3y3y2 7y 3 3y3y2 3y7y 3y3 4. 5z2z 7 5z2z 5z7 10z2 35z 8. 3a28 2a a2 3a28 3a22a 3a2a2 9y3 21y2 9y 10. y47y3 4y2 y 4 7y7 4y6 y5 4y4 3a 4 6a 3 24a2 12. 4t3tt2 1 12t2t2 1 12t2t2 12t21 12t4 12t2 14. ab32a 9a2b 3b ab32a ab39a2b ab33b 16. x 5x 3 x2 3x 5x 15 x2 8x 15 2a2b3 9a3b4 3ab4 18. x 7x 1 x2 x 7x 7 x2 6x 7 20. x 6x 6 x2 6x 6x 36 x2 36 22. 3x 1x 4 3x2 12x x 4 3x2 11x 4 24. 4x 73x 7 12x2 28x 21x 49 12x2 49x 49 26. 6x2 29 2x 54x2 12x3 18 4x 12x3 54x2 4x 18 3 3 28. 5t 4 2t 16 10t2 80t 2t 12 30. 2x y3x 2y 6x2 4xy 3xy 2y2 3 10t2 160 2 t 2 t 12 163 10t2 2 t 12 32. s 3ts t s 3ts t s2 st 3ts 3t2 s2 st 3ts 3t2 2st 6t2 34. z 2z2 4z 4 z 2z2 z 24z z 24 z3 2z2 4z2 8z 4z 8 z3 2z2 4z 8 6x2 7xy 2y2 182 Chapter 5 Polynomials and Factoring 36. 2t 3t2 5t 1 2t 3t2 2t 35t 2t 31 2t3 3t2 10t2 15t 2t 3 2t3 7t2 13t 3 38. 2x2 5x 13x 4 3x 42x2 3x 45x 3x 41 6x3 8x2 15x2 20x 3x 4 6x3 23x2 23x 4 40. x2 4x2 2x 4 x2 4x2 x2 42x x2 44 x2 x2 4x2 x22x 8x 4x2 16 x4 4x2 2x3 8x 4x2 16 x4 2x3 8x 16 42. 2x2 32x2 2x 3 2x2 32x2 2x2 32x 2x2 33 4x4 6x2 4x3 6x 6x2 9 4x4 4x3 6x 9 44. y2 3y 52y2 3y 1 y22y2 3y 1 3y2y2 3y 1 52y2 3y 1 2y4 3y3 y2 6y3 9y2 3y 10y2 15y 5 2y4 3y3 18y 5 46. 50. 4x4 6x2 2x2 4 12x 18x2 6 12x4 18x2 8x 8x6 9 3 27 48. z2 z 1 z2 2z2 2z 2 z3 z2 z z3 z2 z 2 52. y2 2y2 y2 3 3y 9y2 4 2y 6y3 10y2 2y4 3y3 27 2s2 5s 6 3s 4 8s2 20s 24 6s3 15s2 18s 6s3 23s2 38s 24 3y 5 3y 1 3y 5 15y 18y 5 54. x 5x 5 x2 52 x2 25 56. x 1x 1 x2 12 x2 1 58. 4 3z4 3z 42 3z2 16 9z2 60. 8 3x8 3x 82 3x2 64 9x2 62. 5u 12v5u 12v 5u2 12v2 64. 8x 5y8x 5y 8x2 5y2 25u2 144v2 66. 23x 723x 7 23x2 72 49 x 2 49 64x2 25y2 68. 4a 0.1b4a 0.1b 4a2 0.1b2 16a2 0.01b 2 Section 5.3 Multiplying Polynomials 183 70. x 22 x2 2x2 22 x2 4x 4 72. u 72 u2 2u7 72 u2 14u 49 74. 3x 82 3x2 23x8 82 9x2 48x 64 76. 5 3z2 52 253z 3z2 25 30z 9z2 78. 3m 4n2 3m2 23m4n 4n2 80. x 4 y2 x 42 2x 4(y y2 x2 2x4 42 2xy 8y y2 9m 2 24mn 16 n 2 x2 8x 16 2xy 8y y2 or x 2 2xy y 2 8x 8y 16 82. z y 1z y 1 z2 y 12 84. y 23 y 2 y 2 y 2 z2 y2 2 y1 12 y2 4y 4 y 2 z2 y2 2y 1 y2 y 2 4y y 2 4 y 2 z2 y2 2y 1 y3 2y2 4y2 8y 4y 8 y3 6y2 12y 8 86. u v3 u vu vu v 88. 5x r 4x r2 3x r 5x r 4x r2 5x r 3x r u2 2uv v2u v 20x rr2 15x rr u2u v 2uvu v v2u v 20x 2r2 15x2r u3 u2v 2u2v 2uv2 uv2 v3 u3 3u2v 3uv2 v3 90. x3m x2mx2m 2x 4m x3mx2m 2x 4m x2m x2m 2x 4m x3m2m 2x3m4m x2m2m 2x2m4m x 5m 2x7m x 4m 2x 6m 2x7m 2x 6m x 5m x 4m 92. y mnmn y mnmn mn n2 ym 2 2 ym 2 2mnn2 94. Keystrokes: y1 Y y2 X,T, 6 X,T, x2 3 ENTER x2 6 X,T, 9 GRAPH −4 y1 y2 because x 32 (x2 2x3 32 x2 6x 9 8 −2 96. Keystrokes: y1 Y y2 X,T, 6 X,T, x2 y1 y2 because x 1 2 1 1 4 2 X,T, 1 2 ENTER GRAPH x (x 1 2 2 12 x2 14 2 −6 6 −2 184 Chapter 5 Polynomials and Factoring 98. (a) f y 2 2 y 22 5 y 2 4 2 y2 4y 4 5y 10 4 2y2 8y 8 5y 10 4 2y2 3y 2 (b) f 1 h f 1 21 h2 51 h 4 212 51 4 21 2h h2 5 5h 4 2 5 4 2 4h 2h2 5 5h 4 1 2h2 h 100. (a) Verbal Model: Volume Length Width Height Function: Vn 2n 2 2n 2 2n 4n2 42n 8n3 8n (b) 2n 2 6, n 4, V(4) 843 84 864 32 512 32 480 cubic inches (c) Verbal Model: Area Length Width Function: An 2n 2 2n 2 4n2 4 Area 2n 2 22n 2 2 (d) 2n 42n 4n2 8n An 4 2n 4 2 2n 4 2 2n 8 22n 8 2 2n 102n 6 4n2 12n 20n 60 4n2 32n 60 Area of Area of Area of Inside 102. Verbal Model: Shaded Outside Region Rectangle Rectangle Alwlw Equation: A 3x x x 32 A 3x2 2x 6 104. Verbal Model: Equation: Area of Area of Area of shaded region triangle rectangle A x 5x 2x 12xx 5 x 53x) 12xx 5 3x2 15x 12x2 52x 5 25 2x2 2 x 1 106. A 2b h 1 2 (3xx 5 32xx 5 32x2 15 2x Section 5.4 108. Verbal Model: Revenue Number of units sold Price per unit Factoring by Grouping and Special Forms 110. Interest 10001 0.0952 10001.0952 Rxp Equation: 185 10001.199025 x 20 0.015x 1199.025 20x 0.015x 2 $1199.03 R 0.015x 2 20x R 0.015502 2050 $962.50 112. Area l w 114. (a) x y2 x yx y x ax a x2 xy yx y2 x2 2ax a2 x2 2xy y2 Area x x a x a x a a (b) x y2 x yx y x2 ax ax a2 x2 xy xy y2 x2 2ax a2 x2 2xy y2 Formula x ax a x2 2ax a2 (c) x yx y x2 xy xy y2 x2 y2 Square of a binomial 116. Example: x 2x 3 xx 3 2x 3 x2 3x 2x 6 118. The degree of the product of two polynomials of degrees m and n is m n. x2 x 6 Section 5.4 2. 36 22 Factoring by Grouping and Special Forms 32 150 2 3 6. 45y 1 32 4. 27x4 33x4 18x3 2 32x3 52 100 22 52 150y3 2 3 GCF 9x3 GCF 3 5y 5 2 y3 5 y 15y GCF 2 10. 663 y 2 3 8. 16x2y 24x2y 22 37x 36x2y2 22 32 x2 y2 84xy2 y2 11 3 y 11 3 y2 443 y 22 GCF 2 11 3 y 223 y 2 GCF 22 x y 4xy 12. 7y 7 7 y 1 14. 9x 30 33x 10 16. 54x2 36 183x2 2 18. y2 5y y y 5 20. 3x2 6x 3x x 2 22. 16 3y3 is prime. No common factor other than 1. 24. 9 27y 15y2 33 9y 5y2 26. 4uv 6u2v2 2uv2 3uv 28. 4x2 2xy 3y2 Prime No common factor other than 1. 186 Chapter 5 Polynomials and Factoring 30. 17x5y3 xy2 34y2 y217x5y x 34 32. 4 x3 4 x3 x3 4 34. 15 5x 53 x 5x 3 36. 12x 6x2 18 6 2x x2 3 6 x 2 2x 3 38. 2t3 4t2 7 12t3 4t2 7 40. 3z 38 1824z 3 2t3 4t2 7 42. 13x 56 162x 5 44. 7ts 9 6s 9 s 97t 6 46. 64t 3 5t4t 3 4t 36 5t 48. 45y 12 3y25y 12 5y 124 3y2 50. 2y2 y2 63 7 y2 63 y2 632y2 7 52. 3x 72x 1 x 62x 1 2x 13x 7 x 6 2x 14x 1 54. x2 9x x 9 x2 9x x 9 56. y2 3y 4y 12 y2 3y 4y 12 xx 9 x 9 y y 3 4 y 3 x 9x 1 y 3 y 4 58. t3 11t2 t 11 t3 11t2 t 11 60. 3s3 6s2 5s 10 3s3 6s2 5s 10 t2t 11 t 11 3s2s 2 5s 2 t 11t2 1 s 23s2 5 62. 4u4 6u 2u3 3 4u4 6u 2u3 3 2u2u3 3 12u3 3 2u3 32u 1 64. 10u4 8u2v3 12v4 15u2v 10u4 8u2v3 12v4 15u2v 2u25u2 4v3 3v4v3 5u2 5u2 4v32u2 3v 66. y2 144 y2 122 y 12 y 12 68. 16 b2 42 b2 4 b4 b 70. 9z2 36 3z2 62 3z 63z 6 3z 23z 2 9z 2z 2 72. 49 64x2 72 8x2 7 8x7 8x 74. 9u2 v2 3u2 v2 3u v3u v 76. 100a2 49b2 10a2 7b2 10a 7b10a 7b Section 5.4 Factoring by Grouping and Special Forms 187 1 36 1 6 80. 4x2 49y2 2x 7y 9 78. v2 25 v2 35 2 2 2x 7y2x 7y v 5 v 5 3 2 1 3 6 1 6 84. 36 y 62 62 y 62 82. x 32 4 x 32 22 x 3 2x 3 2 6 y 66 y 6 x 5x 1 6 y 66 y 6 y 12 y y12 y 86. 3y 12 x 62 3y 1 x 63y 1 x 6 3y 1 x 63y 1 x 6 3y x 73y x 5 or x 3y 7x 3y 5 88. t 3 1 t 3 13 90. z3 125 z3 53 t 1t 2 t 1 92. 27s3 64 3s3 43 3s 49s2 12s 16 96. m3 8n3 m3 2n3 z 5z2 5z 25 94. 64v3 125 4v3 53 4v 516v2 20v 25 98. u3 125v3 u3 5v3 m 2nm2 2mn 4n2 100. 8y2 18 24y2 9 u 5vu2 5uv 25v2 102. a3 16a aa2 16 22y2 32 aa2 42 22y 32y 3 aa 4a 4 104. u4 16 u22 42 106. 6x5 30x3 6x3x2 5 u2 4u2 4 u2 22u2 4 u 2u 2u2 4 108. 2u6 54v6 2u6 27v6 110. 81 16y4n 92 4y2n2 2u23 3v23 9 4y2n9 4y2n 2u2 3v2u4 3u2v2 9v4 32 2yn29 4y2n 3 2yn3 2yn9 4y2n 112. 3x n1 6x n 15x n2 3x n x 2 5x 2 3x n 5x 2 x 2 114. x 2rs 5x r3s 10x 2r2s x rsx r 5x 2s 10x rs x rs10x rs 5x 2s x r 188 Chapter 5 Polynomials and Factoring 116. Keystrokes: 4 Y y2 X,T, x2 2 X,T, > X,T, y1 3 X,T, 2 x2 ENTER −6 GRAPH 6 y1 y2 −4 118. Keystrokes: y1 y2 X,T, Y 4 X,T, X,T, 1 1 X,T, 4 X,T, 4 1 ENTER −8 10 GRAPH y1 y2 −8 120. 6x3 8x2 9x 12 6x3 8x2 9x 12 or 6x3 8x2 9x 12 6x3 9x 8x2 12 2x23x 4 33x 4 3x2x2 3 42x2 3 3x 42x2 3 2x2 33x 4 124. kQx kx2 kxQ x 122. R 1000x 0.4x2 126. A 32w w2 x1000 0.4x w32 w rr 2h wl R xp p 1000 0.4x 130. (a) Solid 128. S r2 2rh Thus, l 32 w Length Width Height Volume Entire cube a a a a3 Solid I a a ab a2a b Solid II a ab b aba b Solid III ab b b b2a b Solid IV b b b b3 (b) Solid I Solid II Solid III a2a b aba b b2a b a ba2 ab b2 (c) If the smaller cube is removed from the larger, the remaining solid has a volume of a3 b3 and is composed of the three rectangular boxes labeled solid I, solid II, and solid III. From part (b) we have a3 b3 a ba2 ab b2. 132. Check a result after factoring by multiplying the factors to see if the product is the original polynomial. 134. Factor used as a noun expresses any one of the expressions that when multiplied together yields the product. Factor used as a verb is the process of finding the expressions that, when multiplied together, yield the given product. 136. An example of a polynomial that is prime with respect to the integers is x2 1. Section 5.5 Section 5.5 Factoring Trinomials Factoring Trinomials 2. z2 6z 9 z2 23z 32 4. y2 14y 49 y2 27y 72 z 3z 3 y 72 z 32 8. 4x2 4x 1 2x2 22x1 12 6. 4z2 28z 49 2z2 22z7 72 2x 12 2z 72z 7 2z 72 10. x2 14xy 49y2 x2 2x7y 7y2 12. 4y2 20yz 25z2 2y2 22y5z 5z2 x 7y2 2y 5z2 14. 4x2 32x 64 4x2 8x 16 16. 3u3 48u2 192u 3uu2 16u 64 4x2 2x4 42 3uu2 2u8 82 4x 42 3uu 82 18. 18y3 12y2 2y 2y9y2 6y 1 2y3y2 23y1 12 2y3y 12 1 8 16 1 1 4 4 1 4 20. 9x2 15x 25 3x 23x5 5 3x 5 2 2 2 or 25 2 144 225 x 120 225 x 225 1 225 25x2 120x 144 1 1 225 5x2 25x12 122 225 5x 122 9 22. x2 bx 16 x2 bx 34 24. 16x2 bxy 25y2 2 b 32 (a) x2 32 b 40 (a) x 169 x2 234 x 34 16x2 40xy 25y2 4x2 24x5y 5y2 2 4x 5y2 x2 32x 169 or or b 32 (b) b 40 (b) 9 x2 32x 16 x2 2 34 x 34 2 16x2 40xy 25y2 4x2 24x5y 5y2 4x 5y2 3 9 x2 2x 16 26. x2 12x c 28. z2 20z c c 36 x2 c 100 12x 36 (x)2 26x 6 x 62 2 z2 20z 100 (z)2 210z 102 z 102 189 190 Chapter 5 Polynomials and Factoring 30. a2 2a 8 a 4a 2 32. y2 6y 8 y 4 y 2 34. x2 7x 12 x 4x 3 36. z2 2z 24 z 4z 6 38. x2 7x 10 x 5x 2 40. x2 10x 24 x 6x 4 42. m2 3m 10 m 5m 2 44. x2 4x 12 x 6x 2 46. y2 35y 300 y 15 y 20 48. u2 5uv 6v2 u 3vu 2v 50. a2 21ab 110b2 a 10ba 11b 52. b 15 54. b 6 b 6 58. c 8 x2 6x 7 x 7x 1 x2 6x 7 x 7x 1 x2 9x 8 x 8x 1 x2 15x 14 x 14x 1 b 15 x2 15x 14 x 14x 1 x9 x2 9x 14 x 7x 2 x 9 x2 9x 14 x 7x 2 56. b 17 x2 17x 38 x 19x 2 b 17 x2 17x 38 x 19x 2 b 37 x2 37x 38 x 38x 1 b 37 x2 37x 38 x 38x 1 60. There are many possibilities such as: c 14 x2 9x 14 x 7x 2 c 11 x2 12x 11 x 11x 1 c 10 x2 9x 10 x 10x 1 c 20 x2 12x 20 x 2x 10 c 36 x2 9x 36 x 12x 3 c 27 x2 12x 27 x 9x 3 There are more possibilities. 62. 5x2 19x 12 x 35x 4 Also note that if c is a negative number, there are many possibilities for c such as the following: c 13 x2 12x 13 x 13x 1 c 28 x2 12x 28 x 14x 2 c 45 x2 12x 45 x 15x 3 64. 5c2 11c 12 c 35c 4 66. 3y2 y 30 y 33y 10 68. 3x2 16x 12 3x 2x 6 70. 6x2 x 15 3x 52x 3 72. 3y2 10y 8 3y 4 y 2 74. 15x2 4x 3 5x 33x 1 76. 3z2 z 4 3z 4z 1 78. 10x2 24x 18 25x2 12x 9 80. 20x2 x 12 5x 44x 3 25x 3x 3 82. 6x2 5x 6 is Prime 84. 2 5x 12x2 2 3x1 4x 86. 12x2 32x 12 43x2 8x 3 88. 12x2 42x3 54x4 6x22 7x 9x2 43x 1x 3 6x22 9x1 x Section 5.5 Factoring Trinomials 90. 6u2 5uv 4v2 3u 4v2u v 92. 10x2 9xy 9y2 5x 3y2x 3y 94. 2x2 9x 9 2x2 6x 3x 9 96. 6x2 x 15 6x2 10x 9x 15 2xx 3 3x 3 2x3x 5 33x 5 x 32x 3 3x 52x 3 98. 12x2 28x 15 12x2 18x 10x 15 100. 20y2 45 54y2 9 6x2x 3 52x 3 52y2 32 6x 52x 3 52y 32y 3 102. 16z3 56z2 49z z16z2 56z 49 104. 3t3 24 3t3 8 z4z2 24z(7) 72 3t3 23 z4z 72 3t 2t2 2t 4 106. 8m3n 20m2n2 48mn3 4mn2m2 5mn 12n2 108. x3 7x2 4x 28 x3 7x2 4x 28 4mn2m 3nm 4n x2x 7 4x 7 x 7x2 4 x 7x 2x 2 110. x 7y2 4a2 x 7y 2ax 7y 2a 112. a2 2ab b2 16 a2 2ab b2 16 x 7y 2ax 7y 2a a b2 42 a b 4a b 4 116. y 2n y n 2 y n 2 y n 1 114. x4 16y4 x22 4y22 x2 4y2x2 4y2 x 2yx 2yx2 4y2 118. x 2n 4x n 12 x n 6x n 2 120. 3x 2n 16x n 12 3x n 2x n 6 122. Keystrokes: y1 y2 Y 6 4 X,T, 2 X,T, x2 1 4 X,T, x2 1 ENTER GRAPH −4 y1 y2 8 −2 124. Keystrokes: y1 y2 Y 3 X,T, 3 X,T, 4 x2 4 8 X,T, X,T, 16 ENTER 4 −18 24 GRAPH y1 y2 −24 191 192 Chapter 5 Polynomials and Factoring 126. a2 2a 1 a 12 matches graph (a). Area of Shaded Region 130. Verbal Model: Area 12 Equation: 128. ab a b 1 a 1b 1 matches graph (d). 132. (a) 8n3 12n2 2n 3 8n3 12n2 2n 3 Area of Area of Larger Smaller Triangle Triangle 4n22n 3 12n 3 4n2 12n 3 54x 3x 3 12 5 4 58x 32 58 2n 12n 12n 3 16 (b) If n 15, 58x2 6x 9 16 2n 1 215 1 29 58x2 6x 7 2n 1 215 1 31 58x 7x 1 2n 3 215 3 33 134. An example of a prime trinomial is x2 x 1. 136. 3x 6 3x 2 and 3x 9 3x 3 so 3x 63x 9 3x 2 3x 3 9x 2x 3 not 3x 2x 3 138. 2x 4x 1 is not in completely factored form because 2x 4 has the common factor 2, 2x 4 2x 2 Section 5.6 Solving Polynomial Equations by Factoring 2. zz 6 0 z0 4. s 16s 15 0 z60 s 16 0 z 6 s 15 0 s 16 t30 s 15 t80 t3 t 8 10. 15xx 23x 4 0 8. 5x 3x 8 0 5x 3 0 x80 5x 3 x8 x 6. 17t 3t 8 0 1 5x 0 x20 x0 x2 3x 4 0 3x 4 3 5 x 43 12. y 392y 7 y 12 0 y 39 0 2y 7 0 y 39 2y 7 y 16. 4x2 6x 0 14. 3x2 9x 0 y 12 0 3xx 3 0 y 12 2x 0 2x 3 0 x0 2x 3 x 3 2 x30 x 3 8x 2 5x 18. 2x2x 3 0 x0 27 3x 2 7x 20. 8x 2 5x 0 3x 2 7x 0 x 8x 5 0 x 3x 7 0 x0 x0 8x 5 0 3x 7 0 8x 5 3x 7 x 58 x 73 Section 5.6 22. x2 121 0 Solving Polynomial Equations by Factoring 24. 25z2 100 0 26. x2 x 12 0 x 11x 11 0 25z2 4 0 x 4x 3 0 x 11 0 25z 2z 2 0 x40 x 11 0 x 11 x 11 z20 z20 z2 28. 20 9x x2 0 x30 x4 x 3 z 2 32. 11 32y 3y2 0 30. 14x2 9x 1 5 x4 x 0 14x2 9x 1 0 11 y1 3y 0 5x0 4x0 7x 12x 1 0 11 y 0 5x 4x 7x 1 0 x 2x 1 0 1 7 2x 15 x 2 34. x y 11 1 36. x 2 15 2x x 5x 3 0 x 5x 3 0 x50 x30 x 5 x 3 38. a2 4a 10 6 3y 1 y 3 x 2 2x 15 0 x5 1 3y 0 21 x 2 2x 15 0 x50 193 40. x2 12x 21 15 x30 x3 42. 16t2 48t 40 4 a2 4a 4 0 x2 12x 36 0 16t2 48t 36 0 a 2a 2 0 x 6x 6 0 44t2 12t 9 0 a20 x60 42t 32t 3 0 a 2 2t 3 0 x6 2t 3 3 t 2 44. x x 15 3x 15 0 46. x x 10 2x 10 0 x 15x 3 0 x 10x 2 0 x 15 0 x 15 x 10 x 3 48. ss 4 96 s2 x 10 0 x30 50. xx 4 12 4s 96 x2 x20 x2 52. 3u3u 1 20 4x 12 9u2 3u 20 s2 4s 96 0 x2 4x 12 0 9u2 3u 20 0 s 12s 8 0 x 6x 2 0 3u 43u 5 0 s 12 0 s80 x60 3u 4 0 s8 x6 s 12 x20 x 2 3u 5 0 3u 4 3u 5 4 3 u 35 u 194 Chapter 5 Polynomials and Factoring 54. x 8x 7 20 56. u 6u 4 21 58. s 42 49 0 x2 7x 8x 56 20 u2 2u 24 21 s 4 7s 4 7 0 x2 15x 36 0 u2 2u 3 0 s 3s 11 0 x 12x 3 0 u 3u 1 0 s30 x 12 0 x30 u30 x3 u3 x 12 60. 1 y 32 u10 s 11 0 s3 s 11 u 1 62. 1 x 1 2 0 64. s 52 49 0 1 y 32 0 1 x 11 x 1 0 s 5 7s 5 7 0 1 y 31 y 3 0 xx 2 0 s 2s 12 0 y 2 y 4 0 x 0 s20 y 2 0 y40 y 2 x0 x20 x 2 s 12 0 s2 s 12 y 4 y 2 68. 3u 3 5u 2 2u 66. x3 18x2 45x 0 xx2 18x 45 0 3u3 5u2 2u 0 xx 15x 3 0 u3u2 5u 2 0 x0 x 15 0 x30 x 15 x 3 u3u 1u 2 0 u0 3u 1 0 u20 3u 1 u 70. 163 u u23 u 0 72. x3 2x2 4x 8 0 3 u16 u2 0 x2x 2 4x 2 0 3 u4 u4 u 0 x 2x2 4 0 3u0 4u0 3u 4u 4u0 u 4 74. v3 4v2 4v 16 0 x 2x 2x 2 0 x20 x20 x2 x2 x3x 2 9xx 2 0 v 4v2 4 0 x 2x3 9x 0 v 4v 2v 2 0 x 2xx2 9 0 v 4 v20 v2 x20 x 2 76. x4 2x3 9x2 18x 0 v2v 4 4v 4 0 v40 u2 1 3 v20 v 2 x 2xx 3x 3 0 x20 x 2 x0 x30 x3 x30 x 3 Section 5.6 78. 9x4 15x3 9x2 15x 0 Solving Polynomial Equations by Factoring 80. From the graph, the x-intercept is 2, 0. The solution of the equation 0 x2 4x 4 is 2. 3x 5 3x3x 5 0 3x3 0 x2 4x 4 3x 53x3 3x 0 0 x 2x 2 3x 53xx2 1 0 3x 53xx 1x 1 0 3x 5 0 3x 0 x10 x 53 x0 x1 x20 x20 x2 x2 x10 x 1 82. From the graph, the x-intercepts are 1, 0, 1, 0, and 3, 0. The solutions to the equation are 1, 1, and 3. 84. Keystrokes: Y 0 x3 3x2 x 3 X,T, x2 11 X,T, 28 GRAPH The x-intercepts are 4 and 7, so the solutions are 4 and 7. 0 x2x 31x 3 10 0 x 3x 1 2 0 x 3x 1x 1 x30 x10 x3 x1 x10 0 x 1 10 −4 86. Keystrokes: Y 4 X,T, 2 x2 9 GRAPH −2 6 The x-intercepts are 1 and 5, so the solutions are 1 and 5. −10 88. Keystrokes: X,T, 8 > Y 3 4 X,T, GRAPH −4 The x-intercepts are 2 , 0, and 2, so the solutions are 2, 0, and 2. 4 −8 90. Keystrokes: 2 8 X,T, 2 X,T, x2 X,T, > Y 3 GRAPH The x-intercepts are 2, 1, and 1, so the solutions are 2, 1, and 1. −4 4 −8 94. x 1 and x 6 92. ax2 ax 0 axx 1 0 x 1x 6 0 ax 0 x10 x2 7x 6 0 0 a x1 x0 x1 x 195 196 Chapter 5 96. Verbal Model: Polynomials and Factoring First Integer Second Integer 132 First integer x Labels: Second integer x 1 x x 1 132 Equation: x 2 x 132 0 x 12x 11 0 x 12 0 x 11 0 x 12 x 11 1st integer x 1 12 2nd integer reject 98. Verbal Model: Area of Length exposed picture Width 100. Verbal Model: Area 12 Labels: Length 28 2w Labels: Equation: 468 28 2w20 2w Base x 70 12xx 4 0 12x2 2x 70 0 92 96w 4w2 0 x2 4x 140 0 423 24w w2 0 x 14x 10 0 21 w23 w x 14 0 23 w 0 x 10 0 x 14 23 w 1w Height 70 12x2 2x 468 560 56w 40w 4w2 1w0 Height x 4 Width 20 2w Equation: Base x 10 reject reject The base of the triangle is 14 inches. The width of the frame is 1 cm. The height is 14 4 10 inches. 102. S x2 4xh 104. 880 x2 4x6 16t 2 576 0 16t 2 36 0 0 x2 24x 880 16t 6t 6 0 0 x 20x 44 t60 0 x 20 20 x 20" 20" 0 x 44 44 x reject t6 t60 t 6 Thus, the object reaches the ground after 6 seconds. Section 5.6 106. h 16t 2 16t 32 Solving Polynomial Equations by Factoring 108. 0 16t 2 16t 32 h 16t 2 80t 96 16t 2 80t 0 16t 2 t 2 0 16t 2 80t 96 0 16t 2t 1 0 16t 2 5t 6 t20 0 16t 2t 3 t10 t2 t 1 t20 t30 t 2 seconds reject The object reaches the ground after 2 seconds. t 3 seconds The object reaches your friend on the way up at 2 seconds and at 3 seconds on the way down. 110. Verbal Model: Revenue Cost 60x x2 75 40x Equation: 0 x2 20x 75 0 x 5x 15 x50 x 15 0 x 5 units x 15 units 112. (a) 3x 62 10x 6 8 0 let u x 6 3u2 (b) 8x 22 18x 2 9 0 let u x 2 10u 8 0 8u2 18u 9 0 3u 2u 4 0 4u 32u 3 0 3u 2 0 u40 4u 3 0 23 u4 3 4 u 32 x 6 23 x64 x 2 34 x 2 32 u x 20 3 x 2 u 2u 3 0 x 54 x 12 or or 3x2 12x 36 10x 60 8 0 8x2 4x 4 18x 36 9 0 3x2 36x 108 10x 68 0 8x2 32x 32 18x 36 9 0 3x2 26x 40 0 8x2 14x 5 0 3x 20x 2 0 4x 52x 1 0 3x 20 0 4x 5 0 3x 20 x 20 3 x20 x 2 2x 1 0 4x 5 2x 1 5 4 x 12 x 197 198 Chapter 5 Polynomials and Factoring 114. An example of how the Zero-Factor Property can be used to solve a quadratic equation: If xx 2 0, then x 0 or x 2 0. The solutions are x 0 and x 2. 116. Yes, it is possible for a quadratic equation to have only one solution. For example: x2 2x 1 0 x 12 0 x 1 118. (a) 4 −9 9 −8 From the graph, the solution is between x 1 and x 2. (b) x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 x3 x 3 3.0 2.769 2.472 2.103 1.656 1.125 0.504 0.213 1.032 1.959 3.0 From this table, the solution is between x 1.6 and x 1.7. x x x3 3 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 0.504 0.437 0.368 0.299 0.229 0.158 0.086 0.0125 0.062 0.137 0.213 An estimate of the solution from the table is x 1.67. Review Exercises for Chapter 5 2. 3y2 y4 3y24 3y6 4. v42 v4 2 v8 6. 3y22 32y22 9y22 18y2 8. 12x2y3x2y42 12x2y9x4y8 12 9x24y18 10. 15 31 3 2 15m3 m m 25m 25 5 12. 2x2y32 4x22y32 2 3xy 3xy2 108x y 6 9 14. 21y 21 y 2 3 3 1 y6 8 2 3 16. 22 5 22 22 5 2 1 254 2 254 2 16 625 2 18. 31 2 2 4x4y6 3xy2 4x41y62 3 4x3y4 3 32 2 3 4 81 Review Exercises for Chapter 5 20. 43x3 4 3x3 26. 22. 15t 5 5 t 53 24t 3 8 4 27x 3 24. 5x2y 42 5 t8 8 1u 0 1 v 2 3 u v 2u 0 v 2 10u 1 v3 5 5 3 1 2 28. 4x8x zz 4 4x8x zz 4 3 1 2 5x 1 y 199 2 2 4 1 5 2 x4 y 8 x4 25y 8 2x 4 3 z 1 1 2 2x7z 22 4x 14 z 4 30. a 4 2a1b 2ab0 2a 4 1b 2 1 2a 3b 2 32. 30,296,000,000 3.0296 1010 34. 2.74 104 0.000274 36. 3 1038 10 7 24 1037 24 10 4 2.4 10 5 38. 1 1 106 3 2 6 6 10 36 10 36 1,000,000 36 250,000 9 40. Standard form: 2x 6 x 5 5x 3 7 Leading coefficient: 2 Degree: 6 42. Standard form: 8x7 x5 2x3 9x 44. Binomial of degree 2 and leading coefficient 7: 7x2 6x Leading coefficient: 8 Degree: 7 46. 7x 3 x 2 18 x 2 7x 3 18 48. 7 12x 2 8x 3 x 4 6x 3 7x 2 5 x 4 8x 3 6x 3 12x 2 7x 2 7 5 x 2 7x 15 x 4 2x 3 5x 2 2 50. x 2 5 3 6x x 2 5 3 6x 52. 7z2 6z 35z2 2z 7z2 6z 15z2 6z x 2 6x 5 3 7z2 15z2 6z 6z x 2 6x 8 8z2 54. 16a3 5a 5a 2a3 1 16a3 5a 5a 10a3 5 16a3 10a3 5a 5a 5 6a3 5 56. 7x4 10x2 4x x3 3x 3x4 5x2 1 7x4 3x4 x3 10x2 5x2 4x 3x 1 4x4 x3 5x2 x 1 6x 1 58. x2 4x x2 2x 1 60. 10y2 10y 2 3 3 ⇒ 2 y 4y 9 y 2 4y 9 9y 2 4y 12 200 Chapter 5 Polynomials and Factoring 62. Perimeter 7 8x x 12 6x 2 x 2x 2x x 21x 17 64. Verbal Model: Equation: Profit Revenue Cost 66. 4y2 y 2 16y 2 y 2 16y 3 32y2 P x 1.1x 0.5x 1000 1.1x 0.5x 1000 0.6x 1000 P 5000 0.6 5000 1000 3000 1000 $2000 68. 2y5y2 y 4 10y3 2y2 8y 70. x 6x 9 x2 9x 6x 54 x2 3x 54 72. 4x 12x 5 8x2 20x 2x 5 74. 3y2 24y2 5 3y24y2 5 24y2 5 12y4 15y2 8y2 10 8x2 22x 5 12y4 7y2 10 76. 5s3 4s 34s 5 5s34s 5 4s4s 5 34s 5 20s4 25s3 16s2 20s 12s 15 20s4 25s3 16s2 32s 15 78. 3v 25v 5v3v 2 15v2 10v 15v2 10v 0 80. 2x 3y2 2x2 22x3y 3y2 82. 5x 2y5x 2y 5x2 2y2 25x2 4y2 4x 2 12xy 9y 2 84. m 5 n2 m 52 2m 5n n2 86. Verbal Model: Area of Shaded Region Equation: Area 12 m2 2m5 52 2nm 10n n2 m2 10m 25 2mn 10n n2 Area of Larger Triangle Area of Smaller Triangle 3x 103x 123x2x 32x3x 10 3xx 92x2 15x 3x2 92x2 62x2 15x 3 3 2 x2 15x or 2 xx 10 88. 750 1 r2 750 1 2r r 2 750 1500r 750r 2 or 750r 2 1500r 750 90. 14z3 21 7z3 3 92. a3 4a a a 2 4 Review Exercises for Chapter 5 94. 8y 12y2 24y3 4y 2 3y 6y2 96. u 9vu v vu 9v u 9vu v v uu 9v 98. y3 4y2 y 4 y3 4y2 y 4 100. x3 7x2 3x 21 x3 7x2 3x 21 y2 y 4 y 4 x2x 7 3x 7 y 4 y2 1 x 7x2 3 y 4 y 1 y 1 102. 16y2 49 4y2 72 104. y 32 16 y 32 42 4y 74y 7 y 3 4 y 3 4 y 7 y 1 108. 64y 3 8 4y3 23 106. t3 125 t3 53 t 5t2 5t 25 4y 216y 2 8y 4 112. 54 2x 3 227 x 3 110. y 4 4y 2 y 2 y 2 4 2x 3 27 y 2 y 2 y 2 2x 3 33 2x 3x 2 3x 9 114. y2 16y 64 y2 28y 82 y 82 116. u2 10uv 25v2 u2 2u5v 5v2 u 5v2 118. x2 12x 32 x 8x 4 120. 5x2 11x 12 5x 4x 3 122. 12x2 13x 14 4x 73x 2 124. 12x 2 7x 1 12x 2 4x 3x 1 4x 3x 1 13x 1 4x 13x 1 126. 3u2 7u 6 3u2 9u 2u 6 128. 3x 2 13x 10 3x 2 15x 2x 10 3u u 3 2u 3 3x x 5 2x 5 3u 2u 3 3x 2x 5 132. x3 3x2 4x 12 x2x 3 4x 3 130. 3b 27b3 3b1 9b2 x 3x2 4 x 3x 2x 2 2 1 1 1 134. x2 3x 9 x2 23 x 3 2 x 1 2 3 201 136. u6 8v6 u23 2v23 u2 2v2u4 2u2v2 4v4 202 Chapter 5 Polynomials and Factoring 138. 7x 2x 5 0 7x 0 140. x 73x 8 0 2x 5 0 x0 x 142. 3x x 82x 7 0 3x 0 3x 8 0 x7 x 83 144. x2 25x 150 x80 x0 x70 5 2 2x 7 0 x2 25x 150 0 7 x 8 x 15x 10 0 x2 x 15 0 x 15 146. 3x4x 7 0 3x 0 148. x 32 25 0 4x 7 0 x0 4x 7 7 x 4 x 10 0 x 10 x 3 5x 3 5 0 x 11x 11 0 x 2x 8 0 x 11 0 x20 x2 3x 2 3x 2 5x 2 0 x x 2 20x 36 0 3x 2 3x 1x 2 0 x x 18x 2 0 x20 x 13 x0 x0 x2 x 2 x 3 5x 3 0 x 2 5x 3 0 x 5 x 5 x 3 0 x 5 0 x 5 0 x30 x 5 x 5 x 3 158. 2x 4 6x 3 50x 2 150x 0 2x 3 x 3 50x x 3 0 2x 3 50xx 3 0 2x x 2 25x 3 0 2x x 5x 5x 3 0 2x 0 x50 x0 x5 x50 x 5 x 18 0 x 18 156. x 3 3x 2 5x 15 0 x30 x 3 x 11 x 8 154. x 3 20x 2 36x 0 3x 1 0 x 11 0 x 11 x80 152. 9x 4 15x 3 6x 2 0 3x2 0 x 2 121 0 150. x20 x 2 Review Exercises for Chapter 5 160. Verbal Model: Labels: First even integer Second even 224 integer First even integer 2n 162. Verbal Model: Area Labels: 2n 2n 2 224 1728 3x 2 4n 8n 7 0 576 x 2 n80 n70 24 x n 8 n7 18 34 x 2n 14 0 16t 2 45t 664 0 16t 83t 8 0 16t 83 t reject 8 seconds 432 x 34 x 4n 2 n 56 0 0 16t 2 45t 664 83 16 Equation: 432 34 x 2 2n 2 16 164. Length x 4n 2 4n 224 0 reject 0t8 8t 3 Width 4 x Second even integer 2n 2 Equation: Length 24 inches 18 inches Width 203
© Copyright 2026 Paperzz