1022微 微乙 01-05班 班期 中 考 解 答 和 評 分 標 準 1. (12%) 求過曲面 y − x = 4 arctan (xz) 上點 (1, 1, 0) 的切平面方程式。 Solution: 令 f (x, y, z) = y − x − 4 tan−1 (xz) ∇f (x, y, z) = (−1 − 4 z x , 1, − 4 ) 2 1 + (xz) 1 + (xz)2 ∇f (1, 1, 0) = (−1, 1, −4) (2%) ∇f (1, 1, 0) · (x − 1, y − 1, z − 0) = 0 2. (12%) 設在點 (x, y) 之溫度為 T (x, y) = 100e−x 2 −3y 2 (6%) (4%) , 此處 T 以攝氏 ◦ C 計,x, y 以 m(公尺) 計, (a) 在點 (1, −1) 處,往那個方向增加最快? (b) 此最快增加率(以 ◦ C/m 計)為何? ∂T (c) 求 方向導數 * (1, −1)* 3 4 . ∂u u=( 5 , 5 ) Solution: Since ∇T = T (−2x, −6y) (3pt) ⇒ ∇T (1, −1) = 200e−4 (−1, 3) (3pt) (a) in the direction: ∇T (1, −1) = 200e−4 (−1, 3) (2pt) √ (b) fastest increasing rate: | ∇T (1, −1) |= 200e−4 10 (2pt) 3 4 (c) directional derivative: ∇T (1, −1) · ( , ) = 360e−4 (2pt) 5 5 ˆ 3. (12%) 求 0 1 ˆ 1 1 x6 1 dy dx. 1 + y7 Solution: ˆ 0 1 ˆ 1 1 x6 ˆ 1 1 dy dx = 1 + y7 0 ˆ 1 = 0 ˆ 0 y6 ! 1 dx dy 1 + y7 y6 dy 1 + y7 ˆ 1 1 1 dy 7 7 0 1 + y7 1 = ln(1 + y 7 ) |10 7 1 = ln 2 7 (4 points) (2 points) = 4. (12%) Ω 由 2x + 3y = 0, 3x + y = 0 與 x − 2y = 1 所圍成的區域. 計算 ˆ ˆ I= (x − 2y)3/2 (3x + y)1/2 dA. Ω Page 1 of 4 (4 points) (2 points) Solution: Use changing variable, let ⇒ then Jacobian is u = v = x = y = x − 2y 3x + y (2%) −3u + v 7 u + 2v 7 3 − J = | 17 7 1 | = 7 1 7 2 7 (1%) (4%) ¨ Therefore I (x − 2y)3/2 (3x + y)1/2 dA (4%) = ˆ = = = = Ω 1ˆ u 1 u3/2 v 1/2 · dvdu 7 0 0 u ˆ 1 2 3 3 1 u 2 v 2 du 7 0 3 0 ˆ 1 2 u3 du 21 0 1 (1%) 42 By the way, you can also write ˆ 1 ˆ 1 u3/2 v 1/2 · I= 0 1 5. (15%) 決定 z = ye− 2 (x 2 +y 2 ) v 1 1 dudv = 7 42 的極值候選點,並決定其極值性質。 Solution: 1 Let f (x, y) = ye− 2 (x 2 +y 2 ) fx fy fxx fyy fxy = = = = = 1 2 2 −xye− 2 (x +y ) 2 2 1 (1 − y 2 )e− 2 (x +y ) 2 2 1 (x2 y − y)e− 2 (x +y ) 2 2 1 (y 3 − 3y)e− 2 (x +y ) 2 2 1 (xy 2 − x)e− 2 (x +y ) = fyx (1%) (1%) (1%) (1%) (1%) If we solve fx = fy = 0, which equal to solve: xy = 0 2 = 0 1−y and thus the critical points are (0, 1) and (0, −1). Now let f D(x, y) = xx fyx D(0, 1) = 1 2 > 0, fxx (0, 1) = −e 2 < 0 e D(0, −1) = 1 2 > 0, fxx (0, 1) = e 2 > 0 e (4%) fxy fyy ⇒ (0, 1) is a local maximum ⇒ (0, −1) is a local minimum 6. (10%) 設 f (x, y) = x3 y 5 − x2 y − y 3 , x = x(u, v), y = y(u, v). Page 2 of 4 (6%) 已知 x(1, 3) = 2, y(1, 3) = 1 1 ∂x 1 ∂x (1, 3) = , (1, 3) = ∂u 5 ∂v 2 ∂y 1 ∂y 1 (1, 3) = , (1, 3) = ∂u 11 ∂v 4 ∂f ∂f 求 及 在 (u, v) = (1, 3) 的值. ∂u ∂v 且 Solution: We know that ∂f ∂u ∂f ∂v ∂f ∂x ∂f ∂y + ∂x ∂u ∂y ∂u ∂f ∂x ∂f ∂y + ∂x ∂v ∂y ∂v = = (3pts), (3pts). Moreover, ∂f ∂x ∂f ∂y = 3x2 y 5 − 2xy = 5x3 y 4 − x2 − 3y 2 (1pt), (1pt). Thus, when (u, v) = (1, 3), ∂f |(u,v)=(1,3) ∂u ∂f |(u,v)=(1,3) ∂v 7. (12%) 求 ¨ p = = 1 + 33 × 5 1 8 × + 33 × 2 8× 1 23 = 11 5 1 49 = 4 4 (1pt), (1pt). x2 + y 2 dA, Ω 為心形線 r = 1 − cos θ 的內部。 Ω Solution: Use polar coordinate, let x = r cos θ, y = r sin θ, then we obtain ¨ p ˆ x2 + y 2 dA = Ω 2π 0 ˆ 1−cos θ r2 drθ (4pt) (1 − cos θ)3 dθ 3 (1pt) 0 2π = 0 ˆ ˆ 2π 1 cos3 θ − cos θ + cos2 θ − dθ 3 3 0 2π ˆ θ 2 + sin2 θ 1 2π = − sin θ − (1 − sin2 θ) d sin θ −3 3 4 0 0 2π 5π 1 sin3 θ = − sin θ − (1pt) 3 3 3 0 5π (1pt) = 3 = Page 3 of 4 (1pt,1pt,2pt,1pt) 轉完極坐標若錯誤(積分函數不是 r2 ) 得 0 分. 轉對而範圍寫錯得 2 分 8. (15%) 求 f (x, y) = x2 + xy + y 2 在橢圓上 x2 + 2xy + 2y 2 = 1 之極值。 Solution: Let f (x, y) = x2 + xy + y 2 and g(x, y) = x2 + 2xy + 2y 2 = 1 By Lagrange theorem,∇f (x, y) = λ∇g(x, y)[2pts] 1 = λ(2x + 2y) . . . (1) 2x + y λ= 2 x + 2y = λ(2x + 4y) . . . (2) [3pts] ⇒ 3 2 2 λ= x + 2xy + 2y − 1 = 0 . . . (3) 2 √ 1 3 The maximum of f (x, y) is f (∓ 2, ± √ ) = .[2pts] 2 2 1 1 The minimum of f (x, y) is f (0, ± √ ) = . [2pts] 2 2 Page 4 of 4 ,x = 0 √ ,x = ± 2 1 , y = ±√ 2 1 [6pts] , y = ∓√ 2
© Copyright 2026 Paperzz