Wright State University CORE Scholar Physics Faculty Publications 10-1-2001 Hot Carbon Densities in the Exosphere of Mars Andrew F. Nagy Michael W. Liemohn Jane L. Fox Wright State University - Main Campus, [email protected] Jhoon Kim Follow this and additional works at: http://corescholar.libraries.wright.edu/physics Part of the Physics Commons Repository Citation Nagy, A. F., Liemohn, M. W., Fox, J. L., & Kim, J. (2001). Hot Carbon Densities in the Exosphere of Mars. Journal of Geophysical Research-Space Physics, 106 (A10), 21565-21568. http://corescholar.libraries.wright.edu/physics/18 This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Physics JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. A10, PAGES 21565-21568, OCTOBER 2001 Hot carbon densitiesin the exosphere of Mars Andrew F. Nagy and Michael W. Liemohn Departmentof Atmospheric,Oceanicand SpaceScience,Universityof Michigan,Ann Arbor, Michigan,USA J.L. Fox Departmentof Physics,Wright StateUniversity,Dayton, Ohio, USA Jhoon Kim Korea AerospaceResearchInstitute•Taejon,Republicof Korea Abstract. Theoreticalresultsof hot carbondensitiesin the exosphereof Mars arepresented.The calculationis a two-stepprocess:First a two-streamtransportcodeis usedto solvefor the distributionfunctionat the exobase,andthentheseresultsareusedin a Liouville equationsolution abovethe exobase.It is foundthat photodissociation of carbonmonoxideis the largestsourceof hotcarbon atomsin theupperatmosphere of Mars,largerthandissociative recombination of CO+ andmuchlargerthanthe creationof hot carbonthroughcollisionswith hot oxygenatoms.It is also foundthatthe high solaractivitydensitiesare aboutan orderof magnitudelargerthanthosefor the low solar activity case. 1. Introduction The changesin the carbondioxidecontentof the atmospheres of Mars and Venus over time are determinedeither by the atmospheric escapeof carbon via CO2, CO, or C or by the surface processesassociatedwith carbon-bearing materialsin the regolith and carbonatedeposits(and the polar cap at Mars). The escape energies of •2C at VenusandMarsare •6.38 and 1.48 eV, respectively.The presenceof a hot carbon exosphereat Venus has been established[Paxton, 1983] by the UV spectrometer, carried aboard the Pioneer Venus orbiter [e.g., Stewart, 1980], butit hasbeenshown thatthe•2Cescape fluxesat Venusare negligiblysmall.However,becauseof the lower escapeenergyat Mars, an examination of this issue is in order. The observed emissionsat 165.1 nm have been identifiedas coming from hot carbonatoms,andan exobasemixing ratio of C/O was estimatedto be on the order of 1% at Venus. There tion processwere calculatedby assumingthatthe productswere in their groundstateandby usingthe photodissociation crosssections presentedby Fox and Black [1989]. The solar flux values used were the 79050 and the SC21REFW Hinteregger et al. [1981] EUV fluxes,for high andlow solaractivity,respectively,combined with the X-ray valuesgiven by Ayres[1997]. The thermospheric modelsusedwere similarto thoseusedpreviously[e.g.,Fox, 1997; Kim et al., 1998]. The high solar activity model is basedon the Mars ThermosphericGeneral CirculationModel (MTGCM) of Bougheret al. [1990], and the specificvaluesusedwere for near the equatorat 1600 LT. The low solaractivity,neutralatmosphere is that from the Viking neutral mass spectrometerresults,which correspond to a solarzenithangleof 44ø [NierandMcElroy,1977; Fox and Dalgarno, 1979]. The dissociative recombination of CO+, is no observational CO+ q-e -• C(3p)q-O(3p)q-2.90eV, (2a) CO+ + e • C(1D)q-O(3p)q-1.64eV, (2b) CO+ + e --•C(3p)q-O(1D)-Jr0.94eV, (2c) oxygen atoms with cold, thermal carbon. In this brief note we presentthe resultsof our calculationof hot carbon densitiesat CO+ + e -• C(1S)q-O(3p)q-0.22eV, (2d) Mars, due to all three of these sourcemechanisms. CO+ + e --•C(1D)q-O(1D)--0.33 eV, (2e) informationregardinghot carbon densitiesat Mars available at this time. There are three potentiallyimportantsourcesof hot carbon at Venus and Mars: They are the photodissociationof CO, the dissociative recombination of CO+, and the collisionsof hot 2. Calculated Densitiesand Escape Fluxes The photodissociation of CO, COq-hv(•1116•,)• Cq-O, (1) resultsin an excesskinetic energy,the amountof which depends on the electronic excitation state of the products,as indicated above. In a recentpaper,Fox and Hac [1999] have carried out detailed Monte Carlo calculations of the altitude-dependent velocity distributionsof the C atomsresultingfrom reaction(2), for both high and low solarcycle conditions.In thesecalculations they usedthe latestavailablerate coefficientsandbranchingratios [Rosenet al., 1998]. The total dissociativerate coefficientusedwas resultsin excesskinetic energybecomingavailableto the atomic products,the amountof which dependson the wavelengthof the 2.76 x 10-7 (300/Te) ø'55. At 0-eVrelative energy thebranching dissociatingphoton and the electronicstate of the dissociation ratiosgivenby Rosenet al. [1998] are 0.761, 0.145, 0.094, and 0.0 products.The hot C productionratescausedby thisphotodissocia- for channels(2a)-(2e), respectively.At 0.4 eV the endothermic channel (2e) is now energeticallypossible, and the measured branchingratiosare 0.53, 0.34, 0.08, 0.0, and 0.05, respectively.In Copyright2001 by the AmericanGeophysicalUnion. the calculationsbelow, a linear interpolation between these branching ratio values was used, which depended on the Papernumber2001JA000007. 0148-0227/01/2001JA000007 $09.00 temperaturescorrespondingto a given altitude. Fox and Hac 21565 21566 NAGY ET AL.: BRIEF [1999] assumedthat the rotational and vibrationaltemperatures were the sameas the adoptedion temperatures. They did take into account the decrease in the cross section for REPORT 240 dissociative recombinationdue to the relativevelocity of the ionsand electrons (a) Flux 220 Upward [Rosen etal.,1998]. Theassumed ionospheric densities forthelow and high solaractivity conditionsare presentedby Fox and Hac DownwardFlux [1999],andtheelectron andiontemperatures canbefoundin the • 200 Escoping Upword Flux work of Kim et al. [1998]. E Collisionsbetweenenergeticoxygen atomsand cold, thermal •- carbonatomscanresultin hotcarbonproduction: Ohotq- Ccold• / (3) We usedthe hot oxygendistributionfunctionscalculatedfor Mars [Kim et al., 1998] to obtainthe productionrate of hot carbondueto thisprocess. Weadopted a cross-section valueof 1.2x 10-Is cm2, / 160 140 , ,., v",•l et al. , 105 [1997]. model to calculate the hot C fluxes as a function blaximum Solar Minimum .... 240 (b) Upward Flux 220 Downward 200 Flux Escaping Upword Flux 180 iI 160 •' :' 140 /,-' ...... i 105 .......... 106 107 NumberFlux(cm-2s-•) i , , , 108 Figure 2. Hot carbonnumberflux versusaltitudefor (a) high solar activity conditionsand (b) low solar activity conditions. Upward and downward flux values are integrated over all energies,while the escapingupward flux values are integrated above 1.48 eV. Having calculatedthe distributionfunctionsat the exobase,we usedLiouville's theorem[cf. Schunkand Nagy, 2000] to calculate the hot carbondensitiesin the exosphereof Mars, aswe havedone for hot hydrogenand oxygencasesbefore [e.g., Cravenset al., 1980b; Nagy and Cravens, 1988]. The resulting hot carbon densitiesare shownin Figure 3. The densityvaluesdecreasefrom 2 3 100.00 Solar ,,i 108 of altitude.This two-streammodel [cf. Schunkand Nagy, 2000] has been used widely and successfullyto calculateelectron,ion, and neutral particle fluxes [e.g., Cravens et al., 1980a; Nagy and Cravens, 1988; Kim et al., 1998]. Specifically,it has been used to calculatehot oxygen densitiesat both Venus and Mars; the calculateddensitiesat Venusagreedwell with the observedvalues, and the Mars results[Nagy and Cravens,1988; Kim et al., 1998] are in reasonablygood agreementwith the valuescalculatedby Lainmet and Bauer [1991] andHodges [2000], who useda Monte Carlo method.(There is a factor of •13 differencein the escape fluxes given in Table 1 of Kim et al. [1998] and Hodges [2000], which is due to an errorin compilingthat table;the densitiesand the distribution function presentedby Kim et al. [1998] are correct.)Using thesecalculations,we obtainedthe hot C fluxes at the exobase.The classicaldefinitionof the exobase,namely,the locationwherethe meanfree pathequalsthe scaleheight,placesit at •195 and 215 km for low and high solar cycle conditions, respectively.The exact choice of the exobasealtitude does not impactour calculateddensitiesto any significantdegree,aslongas that choice is "reasonable" (see Figure 5 and two paragraphs below).The calculatedenergydistributionfunctionsat thenominal exobases, for the two solarcycleconditions,are shownin Figure 1. The upward,downward,and escapehemisphericfluxesareplotted in Figures2a and 2b, for the high and low solar activity cycle conditions,respectively. ...... - , ', ',"i, 106 107 NumberFlux(cm-2s-•) We combinedthesethreehot C productionratesas a functionof altitude and energy.We then used theseproductionrates in our two-stream , // N 180 Chatq- Ocold- a reasonable choice based on the calculations of Kharchenko iI ii •4.7 x 103 and3.6 x 10 cm- neartheexobase forthehigh 10.00 and low solaractivityconditions,respectively,andremaina minor constituent throughoutthe exosphere,comparedto hydrogenand oxygen. o 1 2 Energy(eV) 3 4 We found that photodissociation is the most importantsource mechanism,followed by dissociativerecombination,while the hot oxygenimpactsourceappearsto be negligiblysmall at Mars. To demonstratethis conclusionwe plotted in Figures4a and 4b, for the high solar activity conditions,the exosphericdensitiesand hemisphericescapefluxes,respectively,due to the threepossible sourcesseparately. In Figure5 we plottedthe calculatedhigh solar activity densities,as a function of altitude, for four different assumedexobasealtitudes,in order to demonstratethat the choice of the exobasealtitudehasonly a smallinfluenceon our calculated hot carbon densities. Figure 1. Hot carbondifferentialnumberdensityversusenergy We also calculatedthe hemispheric escape fluxes and found 5 2 1 for thehigh andlow solaractivitycases.Spectraarefor the 192-km themtobe7.7 x 106and5.3 x 10 cm- s- forhighandlow altitudebin, and eachenergy"box" has a width of 0.02 eV. solar cycle conditions,respectively.Note that the escapeflux NAGY X•X 5000 ET AL.: BRIEF ß - -Solar Maximum . ............ REPORT 21567 5000 Minimum 4000 4000 .. • ..,,.x,• ....... 248km _ •'3000 - '..• \\ ß •'3000 N 2000 2000 lOOO lOOO ........ • ........ 10 i ....... ;'";", ..... 1 O0 , ....... 1000 .... I 10000 10 Density(era-3) ........ I ........ 1 O0 I ' ,• -, ,''-', ,, 1000 10000 Density(cm-3) Figure 3. Hot carbondensitiesin the exosphereof Mars versus Figure 5. Hot carbondensitiesin the exosphereof Mars for the altitude for the high and low solar activity cases.The exobase high solar activity case using various altitudesfor the exobase altitude was chosen to be 192 km for these calculations. height. valuesare obtaineddirectly from the two-streamcalculationsand thus do not dependon the choice of the exobaselocation. This calculatedescapeflux can be comparedto the sputteringrate of between 1-5 x l0s cm-2 s-1 [Luhmann et al., 1992;Jakosky et al., 1994; Kass, 1999]. There are indirectindicationsof "heavy" ionescape (O+, O2+, CO2+, CO+, andC+) fromtheionosphere of from the Phobosspacecraft[Lundinet al., CO2,CO,andC byO+ ions,whichisestimated tofallsomewhereMars by measurements ) '5 5000 ....... • 4000 ".,. -_- -Collisions WifhHof0 •'3000 N 2000 lOOO .... I ........ I 10 , , '•' 1 O0 ..... I ....... 1000 10000 Densify(cm-s) 1990; Veriginet al., 1991] and by model calculations[Fox, 1997; Liu et al., 1999, 2001]. Thesedirection escapefluxesmay carry more carbon than the escapedue to hot carbon, but both the measurements and three-dimensional modelscan only provide an estimate of thetotalionescape flux(3-14 x 1025 s-1). The various possibleescapemechanismsmust have certainly changedover the historyof the planet.It has been suggestedthat the escapedue to sputteringwas more than 3 ordersof magnitude largerthanthe presentrate 3.5 Gyr beforethe present[Luhmannet al., 1992; Kass and Yung, 1995, 1996], but of course large uncertaintiesare associatedwith these estimates.The currently calculatedescapefluxeswould alsohavebeengreaterin an earlier epochwhen the solarfluxeswere higher.The ion escapemechanism must also have been significantlydifferent,becauseof the presenceof an intrinsicmagneticfield. This all meansthat while these calculatedescapefluxes are of intellectualinterest, it is difficult to estimate their significancein terms of the overall evolution of the atmosphereof Mars, especiallysince some of the atmospheric carbonmay be tied up in carbon-beating materials in the regolithand carbonatedeposits. Our calculations 24O 220 200 180 (b) ,,,,' // •)'• o•-•'d Js soc iafio n / and assumed mean iono- / Dissoclohve /iII :, ingfromthedayside oftheplanet is•6.3 x 1024and4.3 x 1023 atoms s-1 forthehighandlowsolaractivity cases, respectively. ß'•........ ;.. Recombination •/ / •3(•lffsTo-ns Wifh/• •" are one-dimensional spheric conditions.If one assumesthat this result is a good representation of daytimefluxes and that the nighttimeescapeis negligiblysmall,thenthe estimateof thetotalescaperateoriginat- Acknowledgments. JanetG. LuhmannthanksR. RichardHodgesand anotherrefereefor their assistance in evaluatingthis paper. / / References 160 Ayres,T., Evolutionof the solarionizingflux, J. Geophys.Res., 102, 1641, 1997. 140 10'3 104 105 106 EscapingNumberFlux(cm-2s -•) 107 Bougher,S. W., R. G. Roble, E. C. Ridley, and R. E. Dickinson,The Mars thermosphere, 2, Generalcirculationwith coupleddynamicsand composition,J. Geophys.Res., 95, 14,811, 1990. Cravens,T. E., T. I. Gombosi,J. Kozyra,A. F. Nagy, L. H. Brace,andW. C. Knudsen,Model calculationsof the daysideionosphereof Venus:Ener- getics, J. Geophys. Res.,85, 7778,1980a. Figure 4. Altitude dependenceof hot carbon (a) exospheric Cravens,T. E., T. I. Gombosi,and A. F. Nagy, Hot hydrogenin the exodensity and (b) escapingupward number flux, calculatedby sphereof Venus,Nature, 283, 178, 1980b. assumingdifferentsourceterms.Thesevaluesare for the high solar Fox, J. L., Upper limits to the outflow of ions at Mars: Implicationsfor atmospheric evolution,Geophys.Res.Lett., 24, 2901, 1997. activity case. 21568 NAGY ET AL.: BRIEF Fox, J. L., andJ. H. Black, Photodissociation of CO in the thermosphere of Venus,Geophys.Res. Lett., 16, 291, 1989. Fox, J. L., andA. Datgamo,Ionization,luminosityandheatingof the upper atmosphereof Mars, J. Geophys.Res., 84, 7315, 1979. REPORT of sputtering of theMartianatmosphere by O+ pickupions,Geophys. Res. Lett., 19, 2151, 1992. Lundin, R., et at., ASPERA/Phobosmeasurementsof the ion outflow from the Martian ionosphere,Geophys.Res.Lett., 17, 873, 1990. Fox,J.L., andA. Hac,Velocitydistributions of C atomsin CO+ dissocia- Nagy, A. F., andT. E. Cravens,Hot oxygenatomsin the upperatmospheres of Venusand Mars, Geophys.Res.Lett., 15, 433, 1988. tive recombination:Implicationsfor photochemicalescapeof C from Mars, J. Geophys.Res., 104, 24,729, 1999. Nier, A. O., andM. B. McElroy,Structureof the neutralupperatmosphere Hinteregger,H. E., K. Fukui, and B. R. Gilson, Observational,reference of Mars:Resultsfromtheneutralmassspectrometer on Viking 1 and2, J. and model data on solar EUV, from measurements on AE-E, Geophys. Geophys.Res., 82, 4341, 1977. Res. Lett., 8, 1147, 1981. Paxton,L. J., Atomic carbonin the Venusthermosphere: Observations and theory,Ph.D. thesis,Univ. of Colo., Boulder, 1983. Hodges,R. R., Distributionsof hot oxygenfor Venusand Mars, J. GeoRosen, S., et al., Absolute crosssectionsand final state distributionsfor phys. Res., 105, 6971, 2000. Jakosky,B. M., R. O. Pepin, R. E. Johnson,and J. L. Fox, Mars atmodissociative recombination andexcitation of CO+ (v = 0) usingan ion storagering, Phys.Rev.A, 57, 4462, 1998. sphericlossand isotopicfractionationby solar-wind-induced sputtering Schunk,R. W., and A. F. Nagy, Ionospheres,CambridgeUniv. Press,New andphotochemical escape,Icarus, 111,271, 1994. York, 2000. Kass,D. M., Changein the Martianatmosphere, Ph.D. thesis,Calif. Inst.of Technot., Pasadena,1999. Stewart,A. I. F., Design and operationof the PioneerVenusorbiterultraKass,D. M., and Y. L. Yung, Loss of atmospherefrom Mars due to solar violet spectrometer, IEEE Trans.Geosci.RemoteSens.,GEl8, 65, 1980. wind sputtering,Science,268, 697, 1995. Verigin,M. I., et at., Ionsof planetaryoriginin the Martianmagneto sphere Kass,D. M., andY. L. Yung,Response: The lossof atmosphere fromMars, (Phobos2/TAUSexperiment),Planet.SpaceSci., 39, 131, 1991. Science, 274, 1932, 1996. Kharchenko,V., J. Tharamet,and A. Dalgamo, Kineticsof thermatization of fastnitrogenatomsbeyondthe hard sphereapproximation, J. Atmos. Sol. Terr.Phys., 59, 107, 1997. Kim, J., A. F. Nagy, J. L. Fox, and T. E. Cravens,Solarcyclevariabilityof hot oxygenatomsat Mars, J. Geophys.Res., 103, 29,339, 1998. Lammer,H., and S. J. Bauer,Nonthermalatmosphericescapefrom Mars and Titan, J. Geophys.Res., 96, 1819, 1991. Liu, Y., et at., 3D multi-fluid MHD studiesof the solar wind interaction with Mars, Geophys.Res. Lett., 26, 2689, 1999. Liu, Y., et at., The solar wind interactionwith Mars: Results of threedimensionalthree-speciesMHD studies,Adv. Space Res., in press, 2001. Luhmann,J. G., R. E. Johnson,and M. H. G. Zhang,Evolutionaryimpact J. L. Fox, Departmentof Physics,Wright StateUniversity,Dayton,OH 45435, USA. J. Kim, Korea AerospaceResearchInstitute,52 Eoun-dong,P.O.B. 113 YusongPostOffice, Yusong-gu,Taejon305-600, Republicof Korea. M. Liemohnand A. F. Nagy, Departmentof Atmospheric,Oceanicand SpaceScience,Universityof Michigan,Ann Arbor,MI 48109-2143,USA. (anagy•umich.edu) (ReceivedJanuary10, 2001; revisedApril 1,2001; acceptedApril 1, 2001.)
© Copyright 2025 Paperzz