HOMEWORK #15 – SOLUTIONS Page 305 48) 49) cos x ⎞ ⎛ 1 ⎛ 1 − cos x ⎞ H lim ( csc x − cot x ) = lim ⎜ − = lim ⎟ ⎜ ⎟= x→0 x→0 ⎝ sin x sin x ⎠ x→0 ⎝ sin x ⎠ sin x lim =0 x→0 cos x lim x→∞ ( ⎛ 2 x2 + x + x ⎞ x + x − x = lim ⎜ x + x − x ⋅ ⎟= 2 x→∞ x + x + x⎠ ⎝ ) 2 ⎛ x2 + x − x ⎞ x lim ⎜ = lim = lim ⎟⎠ x→∞ 2 2 x→∞ ⎝ x +x+x x + x + x x→∞ 1 1 = 2 1 1+ +1 x 54) lim+ ( tan 2x ) ⇒ y = ( tan 2x ) ⇒ ln y = x ln tan 2x = x x x→0 ln tan 2x 1 x 1 ⋅ sec 2 2x ⋅ 2 ln tan 2x lim+ ln y = lim+ = lim+ tan 2x = 1 −1 2 x→0 x→0 x→0 x x −2x 2 cos 2x 2x −x lim+ = lim ⋅ lim = 1⋅ 0 = 0 ⇒ 2 x→0 sin 2x cos 2x x→0 + sin 2x x→0 + cos 2x H lim+ ( tan 2x ) = e0 = 1 x x→0 56) a⎞ ⎛ lim ⎜ 1 + ⎟ x→∞ ⎝ x⎠ 62) bx a⎞ ⎛ ⇒ y = ⎜1 + ⎟ ⎝ x⎠ a⎞ ⎛ b ln ⎜ 1 + ⎟ ⎝ x⎠ lim ln y = lim x→∞ x→∞ 1 x bx ⎛ ⎞ ⎜ 1 ⎟ ⎛ −a ⎞ b⎜ a ⎟ ⎜⎝ x 2 ⎟⎠ 1 + ⎜⎝ ⎟⎠ H x = lim = x→∞ −1 2 x ab a⎞ ⎛ lim = ab ⇒ lim ⎜ 1 + ⎟ x→∞ x→∞ ⎝ a x⎠ 1+ x lim ( 2 − x ) ⎛ πx⎞ tan ⎜ ⎟ ⎝ 2 ⎠ x→1 a⎞ ⎛ ⇒ ln y = bx ln ⎜ 1 + ⎟ ⎝ x⎠ bx ⇒ y = (2 − x) = eab ⎛ πx⎞ tan ⎜ ⎟ ⎝ 2 ⎠ ⇒ ⎛ πx⎞ ln y = tan ⎜ ⎟ ln ( 2 − x ) ⇒ ⎝ 2 ⎠ ln ( 2 − x ) H ⎛ πx⎞ lim ln y = lim tan ⎜ ⎟ ln ( 2 − x ) = lim = x→1 x→1 x→1 ⎝ 2 ⎠ ⎛ πx⎞ cot ⎜ ⎟ ⎝ 2 ⎠ ⎛ πx⎞ 1 sin 2 ⎜ ⎟ ⋅ ( −1) ⎝ 2 ⎠ 2 1 2 2 lim 2 − x = lim = ⋅ = ⇒ x→1 π x→1 2 − x π 1 π 2 ⎛ πx⎞ π − csc ⎜ ⎟ ⋅ ⎝ 2 ⎠ 2 lim ( 2 − x ) x→1 64) ⎛ πx⎞ tan ⎜ ⎟ ⎝ 2 ⎠ =e 2 π ⎛ 2x − 3 ⎞ lim ⎜ ⎟ x→∞ ⎝ 2x + 5 ⎠ 2 x+1 ⎛ 2x − 3 ⎞ ⇒y=⎜ ⎝ 2x + 5 ⎟⎠ 2 x+1 ⎛ 2x − 3 ⎞ ⇒ ln y = ( 2x + 1) ln ⎜ = ⎝ 2x + 5 ⎟⎠ ( 2x + 1) ⎡⎣ ln ( 2x − 3) − ln ( 2x + 5 )⎤⎦ ⇒ ln ( 2x − 3) − ln ( 2x + 5 ) H lim ln y = lim x→∞ 1 x→∞ ( 2x + 1) = 1 1 2 ⋅2 − ⋅2 −8 ( 2x + 1) 2x − 3 2x + 5 lim = lim = x→∞ x→∞ ( 2x − 3) ( 2x + 5 ) −2 ( 2x + 1)2 2 1⎞ ⎛ −8 ⎜ 2 + ⎟ ⎝ −8 ⋅ 2 2 x⎠ lim = = −8 ⇒ x→∞ ⎛ 3⎞ ⎛ 5⎞ 2⋅2 ⎜⎝ 2 − ⎟⎠ ⎜⎝ 2 + ⎟⎠ x x ⎛ 2x − 3 ⎞ lim ⎜ ⎟ x→∞ ⎝ 2x + 5 ⎠ 2 x+1 = e−8 80) ⎛ sin 2x + ax 3 + bx ⎞ H b⎞ ⎛ sin 2x lim ⎜ 3 + a + 2 ⎟ = lim ⎜ ⎟⎠ = x→0 ⎝ x x ⎠ x→0 ⎝ x3 2 cos 2x + 3ax 2 + b lim ⇒ 2 + 0 + b = 0 ⇒ b = −2 x→0 3x 2 2 cos 2x + 3ax 2 − 2 H −4 sin 2x + 6ax H −8 cos 2x + 6a lim = lim = lim ⇒ x→0 x→0 x→0 3x 2 6x 6 4 −8 + 6a = 0 ⇒ a = 3 Page 314 38) sin x ⇒D= 2 + cos x x − intercepts: sin x = 0 ⇒ x = nπ y= f ( x ) = − f ( x ) ⇒ symmetric about the origin No asymptotes. 2 cos x + 1 1 f '( x) = = > 0 ⇒ cos x > − ⇒ 2 ( 2 + cos x )2 ⎛ 2π ⎞ ⎛ 4π ⎞ f is increasing ⎜ 0, ⎟ , ⎜ , 2π ⎟ ⎝ 3⎠ ⎝ 3 ⎠ ⎛ 2π 4π ⎞ f is decreasing ⎜ , ⎝ 3 3 ⎟⎠ ⎛ 2π 3 ⎞ local max ⎜ , ⎟ ⎝ 3 3 ⎠ ⎛ 4π 3⎞ local min ⎜ ,− 3 ⎟⎠ ⎝ 3 CU : (π , 2π ) CD : ( 0, π ) POI : ( 0, 0 ) , (π , 0 ) , ( 2π , 0 ) Page 320 2) f ( x ) = x 6 − 15x 5 + 75x 4 − 125x 3 − x D= x − intercepts: x = 0, x ≈ 5.33 local min: ( 2.50, −246.6 ) , ( 5.05, −5.03) ( 4.95, −4.965 ) CU : ( −∞, 0 ) , (1.38, 3.62 ) , ( 5, ∞ ) CD : ( 0,1.38 ) , ( 3.62, 5 ) POI : ( 0, 0 ) , ( 5, −5 ) , (1.38, −126.38 ) , ( 3.62, −128.62 ) local max:
© Copyright 2026 Paperzz