QED calculation of the ground-state energy and the ionization potential of Be-like ions A. V. Malyshev, A. V. Volotka, D. A. Glazov, I. I. Tupitsyn, V. M. Shabaev, G. Plunien, and N. A. Zubova Department of Physics Saint-Petersburg State University August 25, 2015 Outline: Introduction and Motivation Theoretical Description and Numerical Procedure Field shift in Boron-like ions Summary and Outlook Motivation Experiments: H-like: T. Stöhlker et al., PRL, 2000; A. Gumberidze et al., PRL, 2005. He-like: A. Gumberidze et al., PRL, 2004. Li-like: J. Schweppe et al., PRL, 1991; C. Brandau et al., PRL, 2003; P. Beiersdorfer et al., PRL, 2005. Be-like: P. Beiersdorfer et al., PRA, 1998; I. Draganić et al., PRL, 2003; D. Bernhardt et al., JPB, 2015. B-like: I. Draganić et al., V. Mäckel et al., PRL, 2003; PRL, 2011. The ground-state energies of highly-charged ions are of the great importance for mass spectrometry J. Repp et al., Appl. Phys. B, 2012; K. Blaum et al., Phys. Scr., 2013; E. G. Myers, Int. J. Mass Spectrom., 2013. 2 QED in the Furry picture Highly-charged few-electron ions: Ne ≪ Z Ne is the number of electrons, Z is the nuclear charge number To zeroth-order approximation: [−iα · ∇ + βm + Vnuc (r)] ψn (r) = εn ψn (r) Interelectronic interaction and QED effects: Interelectronic interaction 1 ∼ Binding energy Z QED ∼ α(αZ)2 Binding energy In uranium: Z = 92, αZ ≈ 0.7 3 The extended Furry picture Vscr describes approximately the electron-electron interaction effects Vnuc (r) −→ Veff (r) = Vnuc (r) + Vscr (r) To zeroth-order approximation: [−iα · ∇ + βm + Veff (r)] ψn (r) = εn ψn (r) The extended Furry picture is used to accelerate the convergence of the perturbation series 4 Contributions The interelectronic interaction diagrams First- and second-order QED diagrams Third- and higher-order electron-correlation contributions within the Breit approx. (the large-scale configuration-interaction Dirac-Fock-Sturm method) One-electron two-loop diagrams 5 Contributions Beyond external field approximation: m Nuclear recoil finite nuclear mass, ∼ M Breit approx. (all orders in 1/Z) QED recoil effect in zeroth order Nuclear polarization (internal degrees of freedom) excited −→ nucl. state ←− bound electron ground state −→ 6 Uranium (Z = 92): individual contributions, in eV Contribution (0) EDirac (1) Eint (2) Eint,Breit (2) Eint,QED (>3) Eint,Breit LDF KS PZ −320572.56 −6637.37 −20.87 −320871.02 −6338.62 −20.45 −321276.02 −5933.84 −23.97 2.04 1.96 2.05 3.03 −327225.74 2.39 −327225.74 6.05 −327225.74 (1) 618.61 620.18 618.97 (2) 0.73 −0.86 0.36 −2.92 616.41 0.60 0.56 −0.45 −326608.62 −2.92 616.40 0.60 0.56 −0.45 −326608.63 −2.92 616.41 0.60 0.56 −0.45 −326608.63 Eint,total EQED EScrQED (2l) EQED EQED,total ERec,Breit ERec,QED ENucl.Pol. Etotal Individual contributions to the binding energy of Be-like U (in eV) 7 Binding energies of Be-like ions, in eV Nucl. 56 26 Fe This work −22102.960(45) Other theory −22103.37a −22103.299 NIST −22102.1(1.8) b −22102.98(8)c 132 54 Xe −100972.921(85) −100973.7a −100963(4) −100973.75b 184 74 W 238 92 U −198983.71(32) −326608.6(1.2) −198984.71b −326608.5 b −198987(3) −326600(300) This work: A. V. Malyshev et al., PRA, 2014. a b c M. F. Gu, At. Data Nucl. Data Tables, 2005. M. H. Chen and K. T. Cheng, PRA, 1997. V. A. Yerokhin, A. Surzhykov, and S. Fritzsche, PRA, 2014. 8 Ionization potentials for Be-like ions, in eV Nucl. 56 26 Fe This work Other theory −1951.307(21) −1950.4(1.8)a −1951.4b 132 54 Xe −9590.935(37) −9581(4)c −9591.4b 238 92 U −32386.14(20) −32374(300)c This work: A. V. Malyshev et al., PRA, 2015. a E. Biémont, Y. Frémat, and P. Quinet, At. Data Nucl. Data Tables, 1999. M. F. Gu, At. Data Nucl. Data Tables, 2005. c G. C. Rodrigues et al., At. Data Nucl. Data Tables, 2004. (uncertainty prescribed by NIST) b 9 Isotope shifts Field-shift factor: δEFS = F δhr 2 i ⇔ F = dE(R) dhr 2 i R = hr 2 i is the root-mean-square nuclear radius. C. Brandau et al., PRL, 2008: Isotope shifts in Li-like 2s − 2p1/2 FS (th.) QED FS (th.) ··· IS (exp.) 150,142 Nd57+ (in meV) 2s − 2p3/2 −42.57 −44.05 0.22 0.24 ··· ··· −40.2(3)(6) −42.3(12)(20) ∼ 0.5% 10 Field-shift factor for the 2p3/2 − 2p1/2 transition in B-like ions (in GHz/fm2) Preliminary results CH(1s2 ) CH(1s2 2s2 ) LDF FSE 259 253 256 FScrSE −54 −48 −51 FVP −267 −260 −261 FScrVP 42 36 37 (1) Fint,QED 42 39 43 Ftot,QED 22(6) 20(6) 24(6) FCI −20570 −20570 ∼ 0.1% −20570 Two-electron ScrSE and ScrVP diagrams ∼ 1 Z 11 Summary The calculations of the ground-state binding energies of Be-like ions are performed in the range: 18 6 Z 6 96 The accuracy was significantly improved and the most precise theoretical predictions for the ground-state binding energies and ionization potentials in Be-like ions have been obtained Achieved accuracy allows tests of bound-state QED with Be-like ions on the level ∼ 0.2%, provided the corresponding experiments are performed to the required precision 12 Outlook High-precision QED calculations of Ionization potentials for the valence electrons in the 1s2 2s2 2p1/2 and 1s2 2s2 2p3/2 states of B-like ions Binding energies of excited states in Be-like ions More comprehensive analysis of the QED filed shift in B-like ions Outlook High-precision QED calculations of Ionization potentials for the valence electrons in the 1s2 2s2 2p1/2 and 1s2 2s2 2p3/2 states of B-like ions Binding energies of excited states in Be-like ions More comprehensive analysis of the QED filed shift in B-like ions Thank You for Your attention!
© Copyright 2026 Paperzz