Warmup: Verify. cos3xsin2x = (sin2x sin4x)cos x - mathew1

Warm­up:
Verify.
cos3xsin2x = (sin2x ­ sin4x)cos x
1
Section 5.5:
Double Angle and
Power Reducing
Formulas
2
More Trigonometric Identities:
Double Angle Formulas:
sin(2u) = 2sinucosu
cos(2u)= cos2u - sin2u
= 2cos2u - 1
= 1 - 2sin2u
tan(2u)=
3
Examples using double­angle formulas.
1. Find all solutions of 2cos x + sin 2x = 0.
4
2. Use a double­angle formula to rewrite the equation
sin 4x = ­2sin 2x Then find the values from [0, 2π)
5
3. Use a double­angle formula to rewrite the equation
cos x + cos 2x = ­ 1 Then find the values from [0, 2π)
6
4. Use the following to find sin 2x, cos 2x, and tan 2x.
cos x = 5 , 3π < x < 2π
13 2
7
*There are also Power Reducing, Half-Angle,
Product-to-Sum, and Sum-to-Product formulas that
you can find on pages 416-418 in your book.
8
Classwork/Homework:
pg. 418
#s 3-8,9,10,12,13,14
9