Algebra II Chapter 6 Practice Test

ALGEBRA II CHAPTER 6 PRACTICE TEST (SECTIONS 6.1 THROUGH 6.6)
Name_____Key______________________________
Period______
Date____________
Learning Target #27: I can create, graph, and evaluate exponential functions.
Learning Target #28: I can apply natural base e to exponential functions.
Graph the equation.
1.
𝑦 = (2)π‘₯
2.
𝑦 = 3𝑒 π‘₯
y
7
6
5
4
3
2
1
y
(2,4)
(1,2)
(0,1)
-4
-3
-2
-1
18
16
14
12
10
8
6 (1,8.15)
4
2
1
-1
x
2
3
4
-3
(0,3)
-2 (-1,1.1)
-1 -2
1
x
2
3
3. The number of cell phone subscribers 𝑦 (in millions) can be approximated by the model
𝑦 = 233(1.06)𝑑 , where 𝑑 is the number of years since 2006.
a. Tell whether the model represents exponential growth or exponential decay.
Growth; b-value is bigger than 1
b. Identify the annual percent increase or decrease in the population.
6% increase
c. Estimate when the number of subscribers will be 300,000,000.
About 4 years
4.
You deposit $6000 in an account that pays 4.25% annual interest. Find the balance after
π‘Ÿ 𝑛𝑑
4 years when the interest is compounded semi-annually. 𝐴 = 𝑃 (1 + 𝑛)
. 0425 2(4)
)
𝐴 = 6000 (1 +
= $7,099.17
2
Simplify the expression.
5.
8𝑒 7
24𝑒 9
1
3𝑒 2
Algebra II Chapter 6 Testβ€”LT #27-#33
6.
(3𝑒 2π‘₯ )4
34 𝑒 8π‘₯ = 81𝑒 8π‘₯
Practice Test
Learning Target #29: I can evaluate and simplify logarithm expressions.
7.
Rewrite log 6 36 = 2 in exponential form. 8.
62 = 36
1
Rewrite 8βˆ’2 = 64 in logarithmic form.
log 8
Evaluate the logarithm.
9.
log 9 81
10.
9? = 81
2
log 2
1
= βˆ’2
64
1
8
2? =
βˆ’3
Find the inverse of the function.
11. 𝑦 = 7π‘₯
12.
1
8
𝑦 = log(4π‘₯)
10π‘₯
4
log 7 π‘₯
Learning Target #30: I can graph logarithmic functions.
Learning Target #31: I can perform transformations of exponential and logarithmic functions.
Describe the transformation of 𝒇(𝒙) represented by π’ˆ(𝒙). Then graph π’ˆ(𝒙).
𝑓 (π‘₯ ) = 4π‘₯ ; 𝑔(π‘₯ ) = 4π‘₯βˆ’1 + 1
13.
14.
1 π‘₯
1 π‘₯+2
𝑓 (π‘₯ ) = ( ) ; 𝑔 ( π‘₯ ) = ( )
βˆ’1
2
2
Right 1 and Up 1
Left 2 and Down 1
y
(1,2)
(0,1.25)
Algebra II Chapter 6 Testβ€”LT #27-#33
y
x
(-4,3)
(-3,1)
(-2,0)
x
Practice Test
Write a rule for 𝐠.
Let the graph of g be a horizontal stretch by a factor of 2, followed by a translation 4
15.
units right and 3 units down of the graph of 𝑓(π‘₯ ) = 4π‘₯ .
1
𝑔(π‘₯ ) = 4(2)π‘₯βˆ’4 βˆ’ 3
16.
Let the graph of g be a translation 3 units right, followed by a reflection in the π‘₯-axis
of the graph of 𝑓 (π‘₯ ) = 9π‘₯ .
𝑔(π‘₯ ) = βˆ’9π‘₯βˆ’3
Graph the function.
𝑓 (π‘₯ ) = log 4 (π‘₯ + 1) βˆ’ 2
17.
9 y
8
7
6
5
4
3
2
1
Left 1 and Down 2
x
-1 -1 1 2 3 4 5 6 7 8 9
-2
(3,-1)
-3
(0,-2)
-4
Use the Change of Base Formula to evaluate each expression. Show your work and
round your answer to four decimal places.
1
log 4 64
18.
19.
log 4
1024
log 64
=3
1
log 4
log (1024)
= βˆ’5
log 4
Learning Target #32: I can apply properties of logarithms.
Expand or condense the logarithmic expression.
log 5 7𝑐
20.
21.
log 3 81 + 5 log 3 2
log 5 7 + log 5 𝐢
22.
log 4 + 2 log 3 βˆ’ log 9
log
4 βˆ— 32
9
Algebra II Chapter 6 Testβ€”LT #27-#33
log 3 81 βˆ— 25
23.
π‘₯ 3
log ( )
𝑀
3 log π‘₯ βˆ’ 3 log 𝑀
Practice Test
Learning Target #33: I can solve exponential and logarithmic equations and inequalities.
Solve the equation/inequality. Round to the nearest hundredth when necessary.
24.
25.
2𝑒 5π‘₯ = 26
53π‘₯βˆ’2 = 1252π‘₯+5
log 53π‘₯βˆ’2 = log 1252π‘₯+5
(3π‘₯ βˆ’ 2) log 5 = (2π‘₯ + 5) log 125
3π‘₯ βˆ’ 2 = (2π‘₯ + 5)(3)
3π‘₯ βˆ’ 2 = 6π‘₯ + 15
βˆ’17 = 3π‘₯
17
π‘₯=βˆ’
3
𝑒 5π‘₯ = 13
ln 𝑒 5π‘₯ = ln 13
5π‘₯ = ln 13
π‘₯ β‰ˆ .51
26.
34π‘₯βˆ’5 < 8
27.
log 34π‘₯βˆ’5 < log 8
(4π‘₯ βˆ’ 5) log 3 < log 8
4π‘₯ βˆ’ 5 < 1.89279
π‘₯ < 1.72
28.
log 2 3π‘₯ = log 2 (4π‘₯ βˆ’ 2)
log 7 2(π‘₯ + 5) = 10
710 = 2π‘₯ + 10
π‘₯ = 141,237,619.5
29.
4 log 2 π‘₯ βˆ’ log 2 5 = log 2 125
2
log 6 π‘₯ = 3
2
63 = π‘₯
π‘₯ β‰ˆ 3.30
3π‘₯ = 4π‘₯ βˆ’ 2
π‘₯=2
30.
log 7 2 + log 7 (π‘₯ + 5) = 10
31.
ln π‘₯ + ln(π‘₯ βˆ’ 1) = 6
π‘₯4
log 2
= log 2 125
5
4
π‘₯
= 125
5
π‘₯ 4 = 625
π‘₯=5
Algebra II Chapter 6 Testβ€”LT #27-#33
Practice Test