Assessment of Potential Productivity of Tree Species in China, Mongolia and the Former Soviet Union: Methodology and Results Fischer, G., van Velthuizen, H.T. and Prieler, S. IIASA Interim Report March 2001 Fischer G, van Velthuizen HT, and Prieler S (2001) Assessment of Potential Productivity of Tree Species in China, Mongolia and the Former Soviet Union: Methodology and Results. IIASA Interim Report. IR-01-015, IIASA, Laxenburg, Austria Copyright © 2001 by the author(s). http://pure.iiasa.ac.at/6505/ Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] International Institute for Applied Systems Analysis Schlossplatz 1 A-2361 Laxenburg, Austria Interim Report Tel: +43 2236 807 342 Fax: +43 2236 71313 E-mail: [email protected] Web: www.iiasa.ac.at IR-01-015 Assessment of Potential Productivity of Tree Species in China, Mongolia and the Former Soviet Union: Methodology and Results Günther Fischer ([email protected]) Harrij van Velthuizen ([email protected]) Sylvia Prieler ([email protected]) Approved by Arne Jemelöv ([email protected]) Acting Director, IIASA March, 2001 Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. Contents Abstract vi Acknowledgements vii About the Authors viii Chapter 1 Approach for the Assessment of Tree Species Productivity 1 1.1 1.2 1.3 1 1 2 Background Ecological approach This report Chapter 2 Methodology Overview 3 Chapter 3 Land Resources Database 6 3.1 3.2 3.3 3.4 Chapter 4 Chapter 5 Chapter 6 Climate resources 3.1.1 Moisture regimes 3.1.2 Thermal regimes 3.1.3 Aspect and terrain slope effects on micro-climate Soil and terrain resources Seasonal wet sites Land cover and accessibility 6 6 7 8 8 9 10 Potential Productivity Analysis 11 4.1 4.2 4.3 4.4 4.5 4.6 11 13 19 31 32 35 Land utilization types Ecological requirements Biomass increment calculation Climatic related productivity constraints Soil and terrain suitability analysis Suitability analysis of seasonal wet sites Preliminary Results of Potential Forest Production Assessment 37 5.1 5.2 5.3 5.4 38 39 41 42 Assessment scenarios Results for biomass plantation forestry Results for traditional production forestry Results for conservation forestry 43 Concluding Remarks 45 References ii Figures Figure 1 Figure 2 Figure 3 Conceptual framework of methodology. 2 Productivity assessment for tree species. 3 Relationship between leaf area index (LAI) and maximum growth rate as a fraction of the maximum growth rate at LAI of 5. 27 Plates Plate 1 Plate 2 Plate 3 Plate 4 Plate 5 Plate 6 Plate 7 Plate 8 Plate 9 Plate 10 Plate 11 Plate 12 Plate 13 Plate 14 Plate 15 Plate 16 Plate 17 Plate 18 Plate 19 Plate 20 Plate 21 Plate 22 Plate 23 Length of growing periods. 50 Thermal climates. 51 Mean temperatures of coldest month. 52 Mean temperatures of warmest month. 53 Minimum temperatures of the coldest month. 54 Temperature growing periods (LGP t=5 ). 55 Frost-free periods (LGP t=10 ). 56 Temperature sums (t > 5o C). 57 o Temperature sums (t > 10 C). 58 Zones with accessibility to roads and railroads. 59 Agriculture and forest land. 60 Aridity index map. 61 States of the FSU and Oblasts within Russia Administrative areas of FSU. 62 Provinces of China. 63 Productivity of Salix viminalis (t/ha biomass yield). 64 Productivity of Salix viminalis in accessible areas, excluding cultivated and urban areas (t/ha biomass yield). 65 Suitability index for biomass plantation forestry (excluding cultivated and urban areas). 66 Suitability index for biomass plantation forestry of current forest areas. 67 Suitability index for biomass plantation forestry in accessible areas (excluding cultivated and urban areas). 68 Suitability index for traditional production forestry (excluding cultivated and urban areas). 69 Suitability index for traditional production forestry of current forest areas. 70 Suitability index for traditional production forestry of accessible areas currently forested. 71 Suitability index for conservation forestry (excluding cultivated and urban areas). 72 Tables Table 1 Table 2 Table 3 Table 4 Table 5 Soil moisture storage capacity classes derived for FAO soil units and soil depth/volume limiting soil phases 6 Thermal Climates 7 List of attributes derived from WISE soil profile database 8 Default slope classes 9 Post-winter period of water-logging due to snowmelt 10 iii Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Conservation forestry LUTs 12 Traditional forestry LUTs 12 Biomass forestry LUTs 13 Climatic requirements 15 Soil requirements 20 Rotation and productivity characteristics 23 Relationships between temperature and rate of photosynthesis (Pm in kg CH2 O ha-1 hr-1) for adaptability/productivity groups of boreal and temperate tree species 25 Growth periods of deciduous tree species 26 Assumed forest fire intervals for conservation forestry. LUTs 31 Terrain-slope ratings (Fm > 1300) 34 LGP suitability ratings for water collecting sites: Group II tree species 35 LGP suitability ratings for water collecting sites: Group III tree species 36 LGP suitability ratings for water collecting sites: Group IV tree species 36 Suitability classification for conservation forestry 37 Very suitable and suitable areas for biomass plantation with willow (Salix viminalis) 40 Very suitable and suitable areas for biomass plantation forestry 41 Very suitable and suitable areas for traditional production forestry 42 Areas suitable for conservation forestry 43 Appendixes Appendix 1 Administrative Divisions Table A1 List of States of the FSU, Oblasts of Russia. Appendix II Potential Productivity for Forestry - Scenario results. Salix viminalis: Table A2 Table A3 Table A4 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Biomass plantation forestry: Table A5 Table A6 Table A7 Table A8 Table A9 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Accessible areas currently under forest. All areas, excluding cultivated areas, urban areas and areas currently under forest. Traditional production forestry: Table A10 Table A11 Table A12 Table A13 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Accessible areas currently under forest. iv 73 74 Table A14 All areas, excluding cultivated areas, urban areas and areas currently under forest. Conservation forestry: Table A15 Table A16 Table A17 All areas. All areas, excluding cultivated and urban areas. All areas, excluding cultivated areas, urban areas and areas currently under forest. Appendix III Potential Productivity for Forestry - Scenario results. Table A18 Table A19 107 FAO '90 soil unit ratings for tree species in boreal, temperate and subtropical climates FAO '90 soil phase ratings for tree species in boreal, temperate and subtropical climates DISCLAIMERS Any part of this tree species productivity model and model parameters may be modified in the light of new or improved knowledge and/or new objectives. The model is expected to be expanded and refined with use. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of IIASA concerning the legal status of any sea area or concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. v Abstract Over the past twenty years, the term agro-ecological zones methodology (AEZ) has become widely used for global regional and national assessments of agricultural potentials. The AEZ methodologies and procedures have recently been extended and newly implemented to make use of the latest digital geographical databases, and to cope with the specific characteristics of seasonal temperate and boreal climates. This report presents details of a companion model of AEZ that enables assessments of potential productivity of forest tree species. It is referred to as FAEZ. The FAEZ methodology follows an environmental approach; it provides a standardized framework for the characterization of climate, soil and terrain conditions relevant to forest production and it uses environmental matching procedures to identify limitations of prevailing climate, soil and terrain for a range of tree species and assumed management objectives. The model for the estimation of biomass increments is based on two well established and robust models: the Chapman-Richard biomass increment model, and the AEZ potential biomass model. FAEZ includes an inventory of ecological adaptability characteristics as well as an inventory of specific ecological and environmental requirements for 52 boreal and temperate forest tree species. The natural resources inventory is based on the up-to-date LUC-GIS database of climate, soil, terrain and vegetation covering China, Mongolia and former Soviet Union. Results of potential productivity for tree species in North, Central and East Asia are presented under three different sets of assumptions of forest resources management and exploitation, namely: conservation forestry, traditional production forestry and biomass plantation forestry. vi Acknowledgments This study is a first systematic ecological assessment of land productivity for boreal and temperate tree species for a large area. It covers the territory of China, Mongolia and the States of the Former Soviet Union. The study builds on methodologies and procedures developed by IIASA and FAO for its recently completed Global Agro-Ecological Zones 2000 study. This current study, specifically for boreal and temperate tree species, would not have been carried out at this time without the financial support provided by the New Energy and Industrial Technology Development Organization(NEDO), (IIASAContract 99-148, NEDO, Paris, France), and the Netherlands Organization for Scientific Research (NWO), (IIASA Contract 00-140 -- NWO, The Netherlands) and without intellectual support and the facilities made available by IIASA's Land Use Change (LUC) project. Further we wish to express our gratitude to Mr. Otto Vaessen jr., student of Larenstein University of Professional Education in Velp, The Netherlands for assistance with data collection and to Ms. Cynthia Enzlberger-Vaughan for editing the report. vii About the Authors Günther Fischer is the leader of a major research project at IIASA on Modeling Land Use and Land Cover Changes in Europe and Northern Asia (LUC). A primary research objective of this project is the development of a GIS-based modelling framework, which combines economic theory and advanced mathematical methods with biophysical land evaluation approaches to model spatial and dynamic aspects of land-resources use. He was a member of the IGBP-HDP Core Project Planning Committee on Land-Use and LandCover Change (LUCC), and is a co-author of the LUCC Science Plan. He serves on the Scientific Steering Committee of the joint LUCC Core Project/Programme of the IGBPIHDP, and leads the LUCC Focus 3 office at IIASA. Harrij van Velthuizen has over twenty years experience in applied land resources ecology. He was a member of the working group that developed FAO's Agro-Ecological Zones (AEZ) methodology. As senior consultant and chief technical advisor, van Velthuizen has been working for projects on agro-ecological assessments for agricultural development planning in countries in Asia, Africa and South America. Since 1995, van Velthuizen has been working closely with the IIASA-Land Use Change Project on enhancement of the AEZ methodologies and various applications for the Former Soviet Union, China, Bangladesh, Kenya and Nigeria and at the global level. Recently he has also been serving as land resources ecologist in a FAO/UNDP project concerned with Utilization of Agro-ecological Zones Databases at the Bangladesh Agricultural Research Council, and as an advisor on agro-ecological zoning in a DANIDA/World Bank project on Environmental Information Systems Development in Ghana. Sylvia Prieler is a Research Scholar and Geographic Information Systems (GIS) expert with the Land-Use Change (LUC) Project at IIASA. In 1994 she obtained her Master's degree in landscape planning and ecology at the University of Agricultural Sciences, Vienna. She studied at the University of Manchester for a year in 1993, where she wrote her dissertation on Environmental Assessment - Assessing Impacts on Terrestrial Ecology and on the Landscape in the British context. In 1994 Ms. Prieler joined the IIASA project on "Regional Material Balance Approaches to Long-Term Environmental Policy Planning". In 1997 she joined the IIASA LUC project as a GIS expert. She maintains the large LUC Arc/Info GIS databases, and handles many requests for GIS-related services both from the LUC researchers and outside collaborators. In addition, Ms. Prieler is working on specific LUC research tasks with regard to climatic variability in China and its impact on agricultural production potential. viii Assessment of Potential Productivity of Tree Species in China, Mongolia and the Former Soviet Union: Methodology and Results Günther Fischer, Harrij van Velthuizen, and Sylvia Prieler Chapter 1 1.1 Approach for the Assessment of Tree Species Productivity Background Why do particular trees grow where they do? How do they cope with their environment? How do they respond to change? How productive are they – or could they become? These questions can only be answered if we know how trees and forests function from eco-physiological and environmental perspectives, and the way environmental factors and management (e.g. drought, competition, fertilization, thinning) affect growth and partitioning. Research in forestry has traditionally been empirical – treatments are applied and results are observed, usually over periods of years (Landsberg, 1986). Forest yield predictions are traditionally based on the site-index method and growth site correlation. The site-index estimation is made on the basis of the height of the dominant and co-dominant trees of a fully stocked and evenly aged stand. The index is estimated for permanent sample plots, which are normally established on sites with varying environmental conditions. Growth-site correlations are based on such sample plots, laid in a substantial number of stands that are well distributed over a range of environments found within an area, and are measured repeatedly over a period of time to obtain growth data. In each of the sample plots, values of land characteristics thought likely to affect tree growth are recorded. In this way, simple or multiple correlations can be established between growth and site factors. Site factors, significantly related to growth, are subsequently surveyed for other parts of the area for which no direct growth data is available, thus enabling yield predictions to be made for the entire study area. These techniques are empir ical instruments and do not employ information on tree and forest ecologies. With an increased emphasis on multiple use forestry, plantation forestry, community forestry, agroforestry, and more recently on forests as renewable energy sources and the role of forests in global CO2 balances, the scope of quantitative land evaluation for forestry is widening. In land evaluation, the definition of land qualities is generally dictated by the sophistication of the ecological characterization embodied in the land resources inventory. Also, the formulation of land use requirements, in terms of land qualities, depends on the knowledge concerning the processes that govern the growth of trees and forests, and how those processes are affected by the prevailing environmental conditions. 1.2 Ecological Approach Quantitative and semi-quantitative land evaluation methods in particular the FAO/IIASA AgroEcological Zones (AEZ) approach for crop productivity assessment, have been adapted for the development of a companion model that assesses potential productivity of forest tree species, referred to as FAEZ. Similar to AEZ, the FAEZ methodology follows an environmental approach; it provides a standardized framework for the characterization of climate, soil and terrain conditions relevant to forest production and it uses environmental matching procedures to identify land use specific limitations of prevailing climate, soil and terrain resources, for assumed management objectives. In its simplest form, FAEZ contains three basic elements as sketched in Figure 1 below: (i) Selected production systems with defined management objectives and species-specific environmental requirements and adaptability characteristics. These are termed Land Utilization Types; (ii) Geo-referenced climate, soil, terrain and land cover data which are combined into a land resources database, and (iii) Procedures for the calculation of potential biomass increments, and procedures for matching forest species environmental requirements with the respective environmental characteristics contained in the land resources database. 1.3 This Report This report presents the FAEZ methodology and results of potential productivity for tree species in North, Central and East Asia under different assumptions of forest resources management and explo itation, namely: conservation forestry, traditional production forestry and biomass plantation forestry. LAND (CLIMATE, SOIL AND TERRAIN DATA) LAND USE DATA LAND UTILIZATION TYPES (LUT) DATA ANALYSIS TREE SPECIES/LUT REQUIREMENTS LAND RESOURCES DATABASE BIOMASS CALCULATION ---------------------------- MATCHING OF LUT REQUIREMENTS WITH LAND RESOURCES TREE SPECIES PRODUCTIVITY Figure 1 Conceptual framework of methodology The report includes an inventory of ecological adaptability characteristics as well as an inventory of specific climate, soil and terrain requirements for 52 boreal and temperate forest tree species. It also provides the same details of the LUC-GIS database of climate, soil, terrain and vegetation covering China, Mongolia and former Soviet Union, which constitute the 'backbone' of the study. 2 Chapter 2 Methodology Overview Figure 2 presents a schematic overview of the flow and integration as implemented. The figure is explained in Box 1. The FAEZ procedures are implemented to operate on a GIS grid-cell database. For each grid-cell, first a climatic analysis is performed to derive climatic indicators relevant for matching climate conditions with thermal requirements of tree species. Then, for LUTs passing this thermal screen, a soil moisture balance is calculated and average annual biomass increments are estimated. Subsequently, these are adjusted for limitations due to soil and terrain conditions. The results are stored in a grid-cell LUT database, as input to scenario analysis, mapping and tabulation. GIS Forest Land Utilization Types (Forest/LUT) Soils Climate Database Climate Change Scenarios Elevation (DEM) Physiography Land cover ∆ P, ∆ T, ∆ Rad, ∆ CO2 Tree species/LUT Catalogue Ecological Requirements Biomass Parameters Partitioning Coefficients Tree species distribution Infrastructure/Settlements Admin. Boundaries Climate Analysis ETm, ETa, LGP, TR Calculator Land Resources Database Biomass Calculator Climatic and Edaphic Matching Procedures Tree species/LUT Productivity Database Multiple-Criteria Analysis Soil Association Composition Database Forest Landuse Scenarios Forest Land Use Options Figure 2 Productivity Assessment for Tree Species 3 Box 1 Forest Land UtilizationTypes (LUT) The forest land utilization types include definitions and descriptions of 52 tree species. The LUT attributes include characteristics of the tree species and information on management practices, inputs and utilization of produce. The LUTs have been defined for three management objectives, i.e., conservation forestry, traditional production forestry and biomass plantation forestry. Tree species/LUT catalogue The tree species catalogue database provides a quantified description of LUTs including crop adaptability characteristics such as: rotation length, vegetation period, photosynthetic pathway, photosynthesis temperature relationships, maximum leaf area index, partitioning coefficients, and parameters describing ecological requirements. Climate database The climate database with a 5 km grid-cell size contains long-term averages of monthly mean climate parameters. For China the climatic database was expanded with historical data on precipitation and temperatures for the period 1958-1997. Climate scenarios (not implemented for this initial study) FAEZ has been set up to allow application of climate sensitivity tests and GCM based climate scenarios. Land characteristics (GIS) Soils, elevation (DEM), physiography, vegetation zones, present land use/cover and administrative div isions are kept as individual layers in the geographical information system: • Soil and terrain data, from the Soil and Physiography database for North and Central Asia. (FAO/IIASA 1999), covering China, Mongolia, and the territory of the former Soviet Union • Elevation data, from the GTOPO30 data set (EROS Data Center, 1998). Altitude differences of neighboring grid-cells were applied to compile a terrain slope/aspect distribution database in terms of seven average slope range classes. • Land cover data was derived for China, from the 1:1,000.000 Land Use map of China (Wu Chuanjun, 1991); for the FSU from the IIASA/LUC Agricultural Regionalization and Land Categories databases (Stolbovoi at al., 1997a, b), and for Mongolia from the Vegetation Distribution Inventory for Mongolia (Sitch and van Minnen, 1996). • Infrastructure information has been derived from the Digital Chart of the World (DCW, 1993). It has been used to create an accessibility inventory for the territory of China, Mongolia and the FSU. • Tree species distribution in China, derived from the Vegetation map of China, Institute of Botany, Chinese Academy of Sciences in Beijing. For the FSU, from the IIASA/LUC Vegetation database http://www.iiasa.ac.at/Research/LUC/GIS Soil association composition database The soil association composition database contains occurrences of soil units, soil phases, textures and terrain slope classes. Land resources database (GIS) The land resources database includes layers of the digital soil map of North and Central Asia, the slope distribution database, land cover layers, infrastructure and administrative areas and associated attribute databases. Climate data analysis (ETo, ETa, LGP and TR calculation) From basic climatic data, monthly reference evapotranspiration (ETo) is calculated according to Penman Monteith. A water-balance model provides estimations of actual evapotranspiration (ETa) and length of growing period (LGP). Temperature and elevation/aspect data are used for the characterization of thermal regimes (TR) as follows: • Thermal climates, representing major latitudinal climatic zones; • Winter and summer temperatures and extreme temperatures; • Temperature growing periods (LGPt ), and 4 • Accumulated temperatures. Tree species/LUT thermal requirements Temperature requirements of individual tree species are matched with temperature regimes prevailing in individual grid-cells. For grid-cells with an optimum or sub-optimum match, biomass increment calculations are performed. Biomass increment calculation The FAEZ methodology for the calculation of potential biomass is based on the Chapman-Richard bio mass increment model and the eco-physiological biomass and yield model of Kassam. It provides temperature and radiation limited biomass increments of individual tree species. Climatic suitability Climatic constraints cause direct or indirect losses in the biomass increment. Climatic constraints1 are influenced by the following conditions: • • • • • The variability and degree of water-stress during the growing period; Constraints indirectly related to climatic conditions (e.g., pests, diseases and invasion of unwanted species or weeds); The climatic factors which effect the efficiency of forestry operations and costs of production; The risk of occurrence of late and early frost, and The risk of forest fire (for conservation forestry). The climatic constraints for individual tree species - by management objective – have been specified according to the prevailing temperature and moisture regimes. Soil and terrain suitability The edaphic suitability assessment is based on matching of soil and terrain requirements of tree species with prevailing soil and terrain conditions. These are management/input specific. Tree species/LUT productivity database The results of the matching of tree species/LUT-specific environmental requirements with prevailing climate, soil and terrain conditions is combined with quantified biomass increments. This data is stored in the tree species/LUT productivity database by grid-cell. Forest Land Use Scenarios/Multiple criteria analysis (not implemented for this initial study) Forest land-use scenarios are formulated on the basis of actual and desired land-use. These scenarios and the potential productivity for the Forest LUTs serve as input in the multiple criteria analysis tool, which in turn provides selection of individual grid-cells feasible for forest land-use alternatives. 1 At this stage of the methodology development, constraints indirectly related to climatic conditions such as pests, diseases, invasion of unwanted species or weeds and workability, have not been taken into account. 5 Chapter 3 Land Resources Database The FAEZ methodology for the productivity assessments of forest species provides a framework for establishing a spatial inventory and database of land resources. The land resources inventory (LRI) includes components of climate, soils, landform, current land cover and accessibility. The individual LRI components are selected, defined and classified in a manner that is as much as possible matching available specific ations of ecological requirements of tree species. The climatic resources inventory is based on the Leemans and Cramer climate database (Leemans and Cramer, 1991), which was enhanced in IIASA/LUC with the help of the Potsdam Institute for Climate Impact Research (PIK). The database offers a spatial resolution of 5 km and contains monthly climate averages which allow quantification of each 5 km grid-cell in terms of thermal climates, summer-, winter- and extreme temperatures, temperature sums, various types of length of growing periods, moisture deficits and surpluses, etc. The Soil and Physiography database for North and Central Asia (FAO/IIASA, 1999), covering China, Mongolia, and the territory of the former Soviet Union was used. This digital soil map presents soil associations in grid-cells of 5-km resolution. The composition of soil associations is described in terms of percentage occurrence of soil units, soil phases and textures. Terrain slopes were derived from the GTOPO30 digital elevation data. From this DEM also a terrainslope distribution database was compiled. 3.1 Climate Resources 3.1.1 Moisture regimes Monthly totals of reference evapotranspiration (ET0 ) are calculated for each grid-cell. A water-balance model, comparing moisture supply from rainfall/snow and storage in soils with potential evapotranspiration provides estimations of actual evapotranspiration (ETa). A general characterization of moisture conditions is achieved through the concept of length of growing period (LGP), i.e., the period during the year when both moisture availability and temperatures are adequate for plant growth. The growing period continues beyond the rainy season because of moisture stored in the soil profile. The amount of soil moisture stored in the soil profile, and available to plants varies with depth of the soil profile, the soil physical characteristics, and the rooting pattern of the plant. Depletion of soil moisture reserves causes the actual evapotranspiration to fall short of the potential rate. Soil moisture storage capacity of soils (Smax) depends on soil physical and chemical characteristics, but above all on effective soil depth or volume (Fisher et al., 2000). For tree species the maximum effective rooting depth has been assumed to range between 0.5 m and 2 m. The Smax values presented in Table 1 were used to set limits to available soil moisture, enabling calculation of possible extension of the growing period beyond the end of the rainy season by soil unit, soil texture class, and soil phase. Plate 1 presents length of growing period zones in map form. Table 1 Soil moisture storage capacity classes derived for FAO soil units and soil depth/volume limiting soil phases Class Smax (mm) 1 2 3 4 5 6 225 mm 185 mm 150 mm 115 mm 50 mm 15 mm Soils with Lithic Phase (mm) 50 mm 40 mm 35 mm 25 mm 15 mm n.a. Soils with Petroferric and Duripan 115/50 mm 90/40 mm 75/35 mm 55/25 mm 35/15 mm n.a. 6 Soils with Skeletic and Rudic Phases (Revised Le gend ’90) 115 mm 90 mm 75 mm 55 mm 25 mm n.a. 3.1.2 Thermal regimes Thermal regimes are quantified for each grid-cell in terms of four types of attributes, namely : • Thermal climates, representing major latitudinal climatic zones; • Winter and summer temperatures; • Temperature growing periods (LGP t ), and • Temperature sums Thermal Climates The thermal climates are obtained through classifying of monthly temperatures corrected to sea level (with an assumed lapse rate: 0.55°C/100m). The temperate and boreal belts have been subdivided according to continentality into three classes, namely: oceanic, sub-continental and continental. The subtropics have been subdivided into a summer and winter-rainfall type. Table 2 presents the thermal climate classification used for sub-tropical, temperate and boreal zones. The geographic distribution of the thermal climates is presented in Plate 2. Table 2 Thermal climates Thermal climate classification Subtropics: One or more months with monthly mean Subtropics Summer Rainfall temperatures, corrected to sea level, below 18oC but Northern hemisphere: rainfall in April - September ≥ above 5oC rainfall in October - March Southern hemisphere: rainfall in October - March ≥ rainfall in April - September Subtropics Winter rainfall Northern hemisphere: rainfall in October - March ≥ rainfall in April - September Southern hemisphere: rainfall in April - September ≥ rainfall in October - March Temperate: At least one month with monthly mean temOceanic Temperate: Seasonality less than 20°C* peratures, corrected to sea level, below 5°C and four or Sub-continental Temperate: Seasonality 20-35°C* more months above 10°C Continental Temperate: Seasonality more than 35°C* Boreal: At least one month with monthly mean temOceanic Boreal: Seasonality less than 20°C* peratures, corrected to sea level, below 5°C and more Sub-continental Boreal: Seasonality 20-35°C* than one but less than four months above 10°C Continental Boreal: Seasonality more than 35°C* Polar/Arctic: All months with monthly mean temperatures, corrected to sea level, below 10°C * Seasonality refers to the difference in mean temperature of the warmest and coldest month, respectively. Winter and summer temperatures Mean temperatures of the warmest and coldest months as well as minimum temperatures of the coldest month were determined. Plate 3, 4 and 5 present the respective isotherm maps. Temperature growing periods and temperature sums In addition to thermal climates and temperature extremes, temperature growing periods (LGP t ) have been calculated. For instance LGPt=5 of 5°C, i.e., the number of days when mean daily temperature exceeds 5°C, represents the period with temperatures suitable for plant growth. Similarly LGP t=10 of 10°C approximates the frost-free period. Lengths, beginning and ending dates of such periods are calculated for each grid-cell and are stored in the attribute database. Plate 6 and 7 present respectively maps of temperature growing periods (LGP t=5) and frost-free periods (LGP t=10). Accumulated temperatures have been calculated for base temperatures of 0, 5 and 10o C. Plate 8 and 9 present maps of temperature sums with base temperatures of respectively 5 and 10°C. 7 3.1.3 Aspect and terrain-slope effects on micro-climate Many studies have shown how micro-climate and forest responses differ on north and south facing slopes. The solar geometry calculations provide a means for computing incident solar radiation to any combination of slope aspects each day of the year (Garnier and Ohmura, 1968 and Swift, 1976). From differences in computed solar radiation aspect related temperature differences can be inferred. For instance a south facing slope would be 1-2o C warmer than flat terrain. A north facing slope however might be 1-2o C cooler than flat terrain. On south facing slopes snow may melt 1-2 months earlier than adjacent north facing slopes of the same elevation. The terrain slopes data derived from GTOP030 also provide information on aspect. With the help of procedures described by Warring and Running (1998), effects of slope/aspect combinations can be used to modify attributes of the climate database (including solar radiation, temperature, evapotranspiration and growing period parameters). Thus, the forest productivity assessment, in particular in high latitude zones, can take account of micro-climatic effects of prevailing aspect and terrain slope combinations. 3.2 Soil and Terrain Resources The source of soil information used is the Soil and Physiography database for North and Central Asia (FAO/IIASA 1999), covering China, Mongolia, and territory of the former Soviet Union. This digital soil map presents soil associations in grid-cells of 5-km resolution. The composition of soil associations is described in terms of percentage occurrence of soil units, soil phases and textures. Therefore, each 5 km grid-cell is considered as consisting of several land units. The soil units, classified according to the revised legend of the FAO/Unesco Soil Map of the World (FAO/Unesco/ISRIC, 1990), are defined in terms of measurable and observable properties of the soil itself. Many of these properties are relevant to the use and production potential of soils. Through linkage with the World Inventory of Soil Emissions Potential (WISE) soil profile database (Batjes et. al., 1997) statistics on physical and chemical soil attributes by 'FAO’90' soil unit/topsoil texture combinations were derived for matching soil requirements of the tree species with soil characteristics (Table 3). Table 3 List of soil attributes derived from WISE soil profile database Profile identifiers FAO-Unesco soil unit (1990 Legend) Topsoil textural class Attributes (for topsoil and subsoil) Organic carbon pH(H2 O) Sum of exchangeable Ca, Mg, Na and K (TEB) ◊ Ratio of exchangeable Ca/Mg ◊ Ratio of exchangeable (Ca+Mg)/K ◊ Effective CEC † CECsoil CECclay ◊ Base saturation (as %) CaCO3 content Gypsum content Exch. sodium percentage (ESP) ◊ Bulk density Total porosity (as derived from bulk density) ◊ % sand % silt % clay Available Water Capacity (AWC1 ; from pF 2.0 to pF 4.2) Available Water Capacity (AWC2 ; from pF 2.5 to pF 4.2) ◊ † Calculated from other measured soil properties. ECEC is defined as sum of exchangeable [Ca+Mg+K+Na]+ exchangeable [H+Al], after Van Reeuwijk (1993). 8 Two sources of geo-referenced terrain slopes are available for use: (i) terrain slopes indicated in the mapping unit expansion tables of the digital soil map, and (ii) terrain slopes derived from GTOPO30 data (EROS Data Center, 1998). The latter terrain-slope database has been generated with a rule-based algorithm to calculate slope distributions in terms of seven slope classes per 5 km grid-cell, based on neighborhood relationships among grid-cells in the 30 arc-second GTOPO30 database (Fischer et al. 2000). Terrain slopes indicated in the digital soil map distinguish three broad slope classes as follows: Class a: Class b: Class c: level to undulating, dominant slopes ranging between 0 and 8 percent; rolling to hilly, dominant slopes ranging between 8 and 30 percent; steeply dissected to mountainous, dominant slopes over 30 percent. The terrain slopes of the digital soil map apply to the dominant soil unit of a soil association mapping unit. Where two slopes are indicated for a mapping unit (i.e., a/b or b/c), they apply each to 50 percent of the extent of the dominant soil unit. For all associated and included soils, default slope classes (Table 4) are assigned to the individual soil units (FAO, 1978-81) as follows: Table 4 Default slope classes Default slope class a a/b b b/c Soil Units in FAO’90 Fluvisols, Gleysols, Histosols, Planosols, Solonchaks, Solonetz and Vertisols Arenosols, Anthrosols, Chernozems, Ferralsols, Greyzems, Gypsisols, Kastanozems, Luvisols, Lixisols, Podzoluvisols, Phaeozems, Plinthosols, and Podzols Acrisols, Alisols, Calcisols, Cambisols, Nitisols and Regosols Andosols, and Lepthosols The slope classes of the digital soil map are very broad and do not reflect the information contained in recent digital data sets. Hence, the above broad slope classes have been refined on the basis of know ledge about soil unit-slope relationships and information derived from GTOPO30. Slopes derived from the 30 arc-second DEM were allocated to soil units occurring within individual soil associations (Fisher et al., 2000). 3.3 Seasonal Wet Sites High groundwater levels, water-logging and flooding affect the distribution of tree species. These soil wetness conditions are restricted mainly to floodplain areas, water collecting sites and in some cases also to poorly drained flat terrain. Excessive soil wetness conditions are usually due to internal soil drainage characteristics or prolonged frozen condition of soils. In particular in continental temperate and boreal zones, poorly drained or frozen soils in flat terrain frequently become submerged or wate rlogged in early spring as a result of water accumulation from snowmelt. Fluvisols and Gleysols The flooding attributes of Fluvisols are generally controlled by external factors such as a river’s flood regime which in turn is influenced by hydrological features of the catchment area and catchment/site relations, rather than by the amount of 'on site' precipitation. The flooding regime in arid and semi-arid zones is often erratic. In some years severe flash floods may occur, while in other years no floods may occur at all. In sub-humid and humid zones flooding is more regular but duration and depth of flooding may vary widely from year to year. Gleysols are not directly affected by river flooding. These soils are however frequently situated in lowlying water collecting sites and when not artificially drained, Gleysols may be subject to water-logging or even inundation as a result of combinations of high groundwater tables and ponding rainwater. In sub-humid and humid areas Gleysols often remain wet for extensive periods, rendering them unsuitable for tree species sensitive to water-logging. On the other hand, certain trees species which are tolerant to flooding, water-logging and high groundwater tables may perform well on residual soil moisture available on both, Fluvisols and Gleysols. Therefore, the separate suitability classification for water collecting sites does account for 9 specific tolerances to excess moisture (high groundwater tables, water-logging and flooding/inundation). Gleysols are mostly but not necessarily subjected to water-logging and inundation, as are the 'natural Fluvisols'. Therefore, Gleysols with terrain-slopes of less than 2% in the model are handled as Fluvisols. Excess water due to snowmelt Excessive wetness might however also occur in other soils. For example, in continental temperate and boreal areas, as result of snowmelt at the end of the winter period, large tracts of land tend to become waterlogged or ponded with water. Especially flat terrain with poorly drained soils may be affected by substantial periods of wet conditions (Fischer et al., 2000). Depending on the amount of excess moisture from melted snow, the following assumptions were made for the period of waterlogged conditions 2 (Table 5). Table 5 Post-winter period of water-logging due to snowmelt Excess moisture from snowmelt (mm) 40 80 120 180 240 Length of period of water-logging (days) Very poorly drained soils Poorly/imperfectly drained soils 0 0 5 0 15 10 30 20 45 30 Note: Drainage classes are according to the FAO Guidelines for Soil Description. (FAO, 1990) 3.4 Land Cover and Accessibility Prior to the actual productivity assessments, current occurrence of cultivated areas and forested areas and accessibility to infrastructure was inventoried and integrated in the basic land resources database. From data available in the IIASA LUC project, a GIS3 coverage of agriculture and forest land for the territory of China, Mongolia and the former Soviet Union was compiled (Plate 12). This coverage has been used to mask or select areas, that are in use for cultivation, are under forest, or are under other permanent uses such as urban areas, mining areas etc. Infrastructure information of the Digital Chart of the World (DCW, 1993) has been used to create an accessibility inventory for the territory of China, Mongolia and the FSU. With standard GIS procedures buffer zones4 of 10 km around roads and railways were established, i.e., 5 km on each side (Plate 11). The coverage of buffer zones subsequently was converted into a 5km grid, which in turn served as a proxy for accessibility. 2 3 4 Periods of excessive rainfall may also lead to widespread waterlogging or even ponding during the vegetation period of trees. Therefore, levels of accumulated excess rainfall have been treated in a similar manner as wetness originating from snowmelt after the winter period. The map showing cultivated areas and forested areas has been compiled from the land categories inventory of the FSU (Stolbovoi et al. 1997a), the 1:1,000,000 land use map of China (Wu Chuanjun, 1994) and Vegetation Distribution for Mongolia (Sitch and van Minnen, 1996). These three data sets were combined, a reclassification was applied featuring agriculture and forest, and was transferred to the 5km grid. It has been assumed that a distance of 5km to nearest road or railway would facilitate sufficiently the accessibility required for forest management and logging operations. 10 Chapter 4 4.1 Potential Productivity Analysis Land Utilization Types The suitability of land for trees relates to the performance of the forestry system, which involves two components, the land unit and land utilization type. Land utilization types (LUTs) must be defined before the assessment of the suitability of land. Different LUTs have different requirements for land quality. If the quality of a land unit matches the land use requirement of a defined LUT, its suitability is high. Furthermore, selection and definition of LUTs guides the selection of land characteristics to be represented in the land resources inventory. These characteristics are then used as evaluation criteria in the suitability analysis (FAO, 1984). In this study, covering boreal, temperate and subtropical part of China, Mongolia and the former Soviet Union, the data used for the definition of LUT includes tree species characteristics such as: rotation height, rotation length, achieved maximum production levels, temperature dependent rates of photosynthesis, partitioning coefficients, moisture stress related yield reduction coefficients, wood density coefficients, and CO2 sequestration capacities. Further, parameters are included which describe ecological requirements of the individual tree species regarding radiation regimes, thermal regimes, moisture regimes and regarding soil and terrain conditions. Three kinds of forest resources management and exploitation are assumed. The first type has as management objectives, nature conservation, bio-diversity preservation and limited selective extraction of individual trees, and/or environmental protection objectives such as stabilization of steep slopes, dunes or shifting sand and windbreaks/dust filters. This type is referred to as 'conservation forestry'. The second type reflects traditional forestry, with main management objectives being maximizing quality and quantity of timber/wood/pulp production. This type is referred to as 'traditional production forestry'. The third type captures the fully mechanized bio-fuel and pulpwood production for energy generation and industrial application of pulpwood. This type is characterized by short rotations of single stem or coppice systems and is referred to as 'biomass plantation forestry'. The LUT data compiled for this study comprises 36 deciduous tree species, 14 coniferous species and 2 deciduous coniferous species (larches). Conservation forestry This forestry type consists of mixed forest with multi-aged stands. The management is focused on preservation of a diversified ecosystem; it includes some basic measures for fire protection and extraction of selected dominant and co-dominant trees. Invasion of exotic species as well as occurrences of pests and diseases are monitored and minimized. Stands are generally tending towards climax conditions. Extraction takes place at sub-optimum rotation lengths, generally mature or over-mature individual trees. Under unprotected conditions in arid and semi-arid environments (aridity index5 of vegetation period P/PET < 0.5), forest fires occur at intervals as short as 15 years to about 60 years. These zones are dominated by fire-susceptible light coniferous tree species (such as larch and pine) and some smallleaved species (such as Betula papyrifera). In moderately dry boreal, temperate and subtropical-winter rainfall zones (aridity index 0.5 - 1.0), characterized by a mix of mainly dark and light coniferous tree species and some broad-leaved species, forest fire intervals occur roughly between 75 and 150 years. In sub-humid and humid zones (including subtropics with summer rainfall) dominated by broadleaved and dark coniferous forest species, occurrences of forest fires are rare (adapted from Shvidenko and Nilsson, 1995). The size of areas affected by individual forest fires in the majority of the incidents is typical less than 5 ha, but in extreme cases in particular in dry boreal environments fires may cover areas as large as 50,000–200,000 ha (Payette, 1992). It has been assumed that the conservation forest LUTs are affected by fire hazards at regular intervals (see Section 4.4). 5 Plate 12 presents the aridity index map (P/PET) covering China, Mongolia and the FSU 11 The LUT attributes listed in Table 6 form the basis for the tree species suitability assessment for conservation forestry. Table 6 Conservation forestry LUTs LUT Attributes Tree species considered Produce Management objectives Capital Intensity Labour Intensity Power source Technology Productivity Environmental hazards Environmental benefits Infrastructure requirement Scale of operation Conservation Forestry Birch, Poplar, Willow, Oak, Beech, Hornbeam, Ash, Alder, Lime, Maple, Robinia, Chestnut, Walnut, Larch, Spruce, Pine and Fir. Wood for various purposes Land conservation: Sand dune fixing, slope stabilization, wind break, pollution/dust filters, soil improvement; pest, disease and fire control measures; limited tree extraction. Low Low; nature conservation personnel n.a. No fertilizer; self-seeding; limited pest, disease control, no fire prevention measures Low It is assumed that natural fires occur at intervals 15-60 years in dry boreal zones and at intervals between 75 and 150 years in moderately dry boreal, temperate and subtropical zones. No fire protection measures are assumed. Stable forest eco-systems: preservation of bio-diversity; carbon dioxide sequestration in stem-wood, roots and soil. Access to research information. Limited operations at small scales Traditional production forestry This type involves the control of forest composition, establishment and growth. Traditional planting/regeneration and harvest methods – clear-felling, seed-tree and shelter-wood in even-age management - are used for the planting/regeneration and subsequent growth of commercially important tree species. Harvest at age of maximum yield (optimum rotation length). In the productivity assessment for traditional forestry, adequate measures and management are assumed which would prevent from production loss due to natural uncontrolled forest fires. Table 7 presents the main LUT attributes for traditional production forestry. Table 7 Traditional production forestry LUTs LUT Attributes Tree species considered Produce Management objectives Capital Intensity Labour Intensity Power source Technology Productivity Environmental hazards Environmental benefits Infrastructure requirement Scale of operation Traditional Production Forestry Birch, Poplar, Oak, Beech, Robinia, Larch, Spruce, Pine and Fir. Timber/pulp Commercial timber and pulp production: pure equal-aged stands; optimum rotation lengths; maximization of high quality timber production; clear fell and other clearing systems. High Medium; planting/seeding, maintenance and clearing Mechanized Good planting material; mechanized planting; start-off fertilizer; proper thinning; pest, disease and erosion control; mechanized clear felling and full fire prevention measures (which may occupy up to 10% of the forest production area). High Soil erosion and nutrient leaching hazards; pest and diseases ; natural fire hazards are assumed minimized through adequate protection measures. Carbon dioxide sequestration in stem wood, roots and soil Adequate market accessibility; access to research information and advisory services. Large enterprises 12 Biomass plantation forestry This special type of forestry is concerned with maximization of wood biomass output per hectare for energy production 6 from bio-fuel and for the pulp and paper industry. Highly productive pioneer species are grown as monoculture plantations in short rotations. In this assessment only a short duration rotation coppice (SRC) system with willow (e.g., Salix viminalis) and short duration rotation single stem (SRSS) systems with suitable poplar, alder and ash species are considered. It is assumed that for the SRC system the first harvest takes place after five years and subsequently every three years up to an age of 20-25 years and for SRSS systems 7-10 year rotations apply. Fertilization, annual weeding and mechanical harvesting are assumed. The density of SRC systems is assumed 2500 surviving stools per hectare (Leave area index = 4). Further, it is assumed that optimum harvest periods are selected and that all harvested biomass is utilized. Table 8 presents main LUT attributes for biomass plantationforestry. Table 8 Biomass plantation forestry LUTs LUT Attributes Biomass Plantation Forestry Tree species considered Produce Selected Poplar, Alder, Ash and Willow species. Bio-fuel/pulp Management objectives Commercial bio-fuel and pulp production; plantations of fast growing willow in short duration rotation coppice systems and Poplar, Alder and Ash species in short duration single stem rotations; maximizing above ground biomass yields; felling systems with “harvesters”. Capital Intensity High Labor Intensity Low; mainly control of pest, disease and invasion of unwanted species. Power source Technology Highly mechanized Selected fully treated planting material; fully mechanized planting or coppicing; adequate use of fertilizer, pesticides; fully mechanized planting and clear felling and where required full fire prevention measures (which may occupy up to 10% of the biomass plantation area). Productivity Very High Environmental hazards Environmental benefits Pollution due to fertilization, use of pesticides and chemical weed control. Potential for groundwater quality improvement, e.g., through nitrate extraction by coppice tree crops; carbon dioxide sequestration in roots and soil. Infrastructure requirement Adequate pulp/paper industry and/or bio-energy production units or pellet/bricket production industry readily accessible. High level of advisory services and application of research findings. Medium and large enterprises Scale of operation 4.2 Ecological Requirements The ecological requirements of the 52 selected tree species are presented in two parts, namely (a) quantified climate requirements and (b) semi-quantified soil requirements. Main sources used are: Song Zhaomin and Meng Ping (1993); Chartier (Ed.) (1995); Shugart (Ed.) (1992); Kruessmann (1972); Schmidt-Vogt. (1987); Schuett et al. (1999); Jansen et al. (1995), and Shvidenko et al., (1996a, b). As part of the climatic suitability analysis, temperature requirements of tree species are matched with actual temperature regimes in grid-cells. When the temperature characteristics in a particular grid-cell 6 Several tree species are currently used for forest biomass production systems. Examples apart from willow include: poplar, eucalyptus, black locust and selected conifers. These species are used in either short rotation coppice systems or in short rotation single stem systems. In boreal and temperate environments mainly willow and to some extent poplar systems are used. The short rotation willow, apart from production of biomass is also being used for purification (nitrate reduction) of groundwater (Perttu and Aronsson, 1995). It is envisaged to compare potential productivity and energy efficiency of forests biomass production systems with energy crops, such as: rape, sunflower, sugar beet, sweet sorghum, wheat, cystle (Cynara cardunculu) and a C4 perennial grass (Miscanthus sinensis giganteus). Recent research with this C4 grass has shown that per annum dry matter yields of 20-25 t/ha are achievable. 13 match tree species temperature requirements in optimum or sub-optimum fashion, then this tree species is considered in the biomass increment calculations. Thermal suitability is assessed through matching thermal requirements of individual tree species/LUTs with average thermal conditions in a particular grid-cell. The thermal conditions considered are; mean temperatures of the coldest and the warmest month, length of frost-free period, length of vegetation period, length of dormancy period and temperature sums during vegetation and frost-free period (Table 9). In case all conditions are met in an optimum fashion, the rating is S1 (optimal conditions). In case one or more conditions only meet range conditions, the rating is S2 (sub-optimal conditions). When one or more conditions fall outside the range conditions, the rating of that particular cell is not suitable. The moisture suitability analysis is essentially based on the comparison of tree species specific drought tolerances with the moisture conditions during the respective vegetation period. For each of the tree species two thresholds have been set, one between optimum and sub-optimum conditions for growth (parameter κ) and one between sub-optimum growth and not suitable conditions (parameter λ). Further it is assumed that with increasingly dry conditions spacing of trees becomes wider. Therefore in such conditions gradually lower than optimum LAI values (parameter µ) are assumed see Table 11. Climatic requirements of tree species were expressed in optimum, range and not suitable conditions as presented in Table 9 and include the following parameters: (i) (ii) (iii) (iv) (v) (vi) (vii) Mean temperatures of the coldest and the warmest month; Minimum temperatures of the coldest month; Frost-free period (days with mean temperature > 10o C); Periods of biological activity (days with Tmean > 5o C); Dormancy periods; Accumulated temperatures (base temperatures of 5o C and 10o C); Length of growing periods (days); Sources: Barnes et al., (1998); Burschel and Huss, (1997); Chartier et al., (1995); Chen, (1999); IIASA-LUC (1998a, b, c); Jansen et al., (1995); (1968), Kassam, (1977); Köstler et al., (1968), Krüssmann. (1972, 1983); Mitscherlich, (1975); Nikolov and Helmisaari, (1992); Perttu and Aronsson, (1995); Schmidt-Vogt, (1987); Schmidt, (1987, 1989); Schober, (1975); Schuett (1999) Shugart, (1992); Shvidenko et al., (1996a, b); Stolbovoi et al., (1997a); Woods and Hall, (1994). All climatic parameters have been estimated/verified by overlaying species distribution maps and climatic maps. . 14 Table 9 Climatic requirements OPTIMUM CONDITIONS Temperate and Boreal Deciduous Tree Species Birch Poplar Willow Oak Beech Hornbeam Ash Alder Lime Maple Locust Chestnut Walnut 7 Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula platypphylla Betula papyrifera Populus nigra Populus euramericana cv rob. Populus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica Salix alba Salix viminalis Quercus robur Quercus petracea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Fagus sylvatica Carpinus betulus Fraxinus excelsior Fraxinus mandshurica Alnus glutinosa Tilia cordata Acer plantanoides Acer campestre Acer campbellii Robinia pseudoacacia Castanea sativa Junglans regia Tmean Jan (o C) Tmean July (o C) Tmin Jan (o C) LGPT 10 o C (days)7 LGPT 5 oC (days) Dormancy break (days) Tsum 10 o C (ddays) Tsum 5 oC (ddays ) >-40 >-40 >-40 >-40 >-30 >-28 >-30 >-30 >-30 >-35 >-35 >-35 >-15 >-20 >-30 >-30 >-20 >-5 >-10 >0 >-20 >-10 >-10 >-30 >-5 >-20 >-8 >-30 >-20 >-25 >-20 >-8 >-15 >-10 >0 >-20 12-20 14-20 12-16 12-16 14-23 14-23 15-30 15-30 17-30 16-26 15-26 15-26 17-26 20-30 16-28 16-28 15-27 15-28 16-24 20-32 16-27 20-27 20-27 16-20 16-22 16-25 18-25 16-24 16-24 14-22 16-24 18-24 15-24 16-27 16-22 16-24 -55 -50 -50 -55 -40 -40 -35 -35 -35 -45 -45 -45 -20 -25 -35 -35 -25 -10 -15 -5 -25 -15 -15 -35 -10 -25 -15 -35 -25 -30 -30 -15 -20 -15 -1 -25 >75 >90 >90 >75 >90 >90 >120 >120 >135 >90 >90 >90 >135 >135 >120 >120 >150 >165 >165 >180 >150 >180 >180 >120 >165 >150 >150 >150 >150 >135 >150 >150 >135 >165 >180 >150 >120 >135 >135 >120 >135 >135 >150 >150 >165 >120 >135 >135 >165 >165 >150 >150 >180 >210 >210 >240 >180 >225 >225 >135 >210 >180 >180 >180 >180 >165 >180 >180 >165 >225 >225 >180 >105 >90 >90 >105 >90 >90 >30 >30 >30 >75 >60 >60 >30 >30 >30 >30 0 0 >45 >30 0 >45 >45 >150 >60 0 0 0 0 0 0 0 0 0 >60 0 >1000 >1200 >1200 >1000 >1200 >1200 >2400 >2400 >3000 >1600 >1800 >1800 >3000 >3000 >1800 >1800 >2000 >2100 >2100 >3000 >2000 >3000 >3000 >1800 >2200 >2200 >2000 >2000 >2000 >1800 >2000 >2000 >2000 >2300 >2500 >2200 >1400 >1600 >1600 >1400 >1600 >1600 >2800 >2800 >3400 >2000 >2200 >2200 >3400 >3400 >2200 >2200 >2400 >2500 >2500 >3400 >2400 >3400 >3500 >2100 >2750 >2600 >2500 >2500 >2400 >2200 >2400 >2500 >2400 >2750 >3000 >2600 LGP (days) >120 >135 >135 >120 >135 >135 >135 >135 >150 >120 >135 >135 >150 >150 >135 >135 >150 >150 >180 >180 >150 >180 >150 >120 >180 >150 >165 >165 >165 >135 >150 >150 >150 >135 >195 >150 All temperate and boreal deciduous tree species are confined to areas with winter temperatures at least for some time below 10oC. For optimum levels LGPT10 < 330 days has been used as cut off. 15 OPTIMUM CONDITIONS Deciduous Coniferous Trees Larch Larix gmelinii Larix sibirica Tmean Jan (o C) Tmean July (o C) Tmin Jan (o C) LGPT 10 o C (days) LGPT 5 oC (days) Dormancy break. (days) Tsum 10 o C (ddays) Tsum 5 oC (ddays ) > -45 > -40 12-20 12-20 -55 -45 >75 >75 >120 >120 >165 >165 >950 >1000 >1300 >1400 LGP (days) >120 >120 OPTIMUM CONDITIONS Coniferous Trees Spruce Pine Fir Picea abies Picea asperata Picea ajanensiss Picea obovata Picea koreaiensis Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Abies alba Abies sibirica Cunninghamia lanceolata Tmean Jan (o C) Tmean July (o C) Tmin Jan (o C) LGPT 10 o C (days) LGPT 5 oC (days) Dormancy break. (days) Tsum 10 o C (ddays ) Tsum 5 oC (ddays) (days) >-20 >-16 >-30 >-35 >-20 >-35 >-35 >-13 >0 >0 >-20 > -5 > -40 >4 14-18 14-18 14-18 13-18 14-18 14-20 14-23 18-24 24-28 16-22 14-18 16-20 14-20 24-28 -25 -20 -35 -40 -30 -50 -50 -22 -5 -5 -30 -20 -45 -10 >105 >90 >90 >75 >120 >75 >75 >165 >240 >195 >120 >135 >75 >255 >135 >150 >135 >120 >135 >120 >120 >180 >270 >240 >150 >180 >120 >300 >105 >135 >165 >195 >165 >180 >90 >135 0 0 >165 >120 >165 0 >1150 <1100 >1150 >1000 >1150 >900 >1000 >2500 >4000 >4000 >1150 >2200 >950 >4000 >1600 >1400 >1500 >1350 >1600 >1400 >1400 >3000 >4500 >4500 >1600 >2750 >1400 >4500 >135 >150 >135 >120 >150 >120 >120 >165 >240 >180 >135 >165 >120 >270 16 LGP Table 9 Continued RANGE CONDITIONS Temperate and Boreal Deciduous Tree Species Birch Poplar Willow Oak Beech Hornbeam Ash Alder Lime Maple Locust Chestnut Walnut 8 Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula platyphylla Betula papyrifera Populus nigra Populus euramericana cv rob. Populus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica Salix alba Salix viminalis Quercus robur Quercus petracea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Fagus sylvatica Carpinus betulus Fraxinus excelsior Fraxinus mandshurica Alnus glutinosa Tilia cordata Acer plantanoides Acer campestre Acer campbellii Robinia pseudoacacia Castanea sativa Junglans regia Tmean Jan (o C) Tmean July (o C) Tmin Jan (o C) LGPT 10 o C (days)8 LGPT 5 oC (days) Dormancy break (days) Tsum 10 o C (ddays ) Tsum 5 oC (ddays) LGP (days) >-45 >-45 > -45 >-45 >-35 >-33 >-35 >-35 >-35 >-45 >-40 >-40 >-20 >-30 > -35 > -35 >-25 >-7 >-12 >-2 >-25 >-12 >-12 >-35 >-7 >-25 > -15 >-35 >-25 >-30 >-25 >-13 >-20 >-12 >-1 >-15 10-23 12-23 10-18 10-18 12-26 12-26 14-33 12-33 16-33 13-28 13-28 13-28 16-33 18-33 15-30 15-30 14-29 14-30 15-26 18-34 15-29 18-29 18-29 14-22 14-25 14-30 16-30 15-27 14-26 16-26 14-25 16-25 13-26 14-30 14-26 14-26 -60 -55 -55 -60 -45 -45 -40 -40 -40 -55 -55 -55 -25 -30 -40 -40 -30 -12 -20 -10 -30 -20 -20 -40 -12 -30 -25 -40 -30 -35 -35 -18 -25 -18 -3 -30 >60 >75 >75 >60 >75 >75 >105 >105 >120 >75 >75 >75 >120 >120 >105 >105 >120 >150 >150 >165 >135 >165 >165 >105 >150 >135 >135 >135 >135 >135 >120 >120 >120 >150 >165 >135 >105 >120 >120 >105 >120 >120 >135 >135 >150 >105 >120 >120 >150 >150 >135 >135 >150 >195 >195 >225 >165 >210 >210 >120 >195 >165 >165 >165 >165 >165 >150 >150 >150 >210 >210 >165 >90 >75 >75 >90 >75 >75 0 0 0 >60 >45 >45 0 0 0 0 0 0 >30 0 0 >30 >30 >135 >45 0 0 0 0 0 0 0 0 0 >30 0 >850 >1000 >1000 >850 >1000 >1000 >2200 >2200 >2300 >1300 >1500 >1500 >2700 >2700 >1500 >1500 >1800 >1900 >1900 >2800 >1800 >2800 >2800 >1600 >1900 >2000 >1800 >1800 >1800 >1600 >1800 >1800 >1800 >2100 >2300 >2000 >1100 >1250 >1250 >1100 >1250 >1250 >2600 >2600 >2800 >1800 >1900 >1900 >3100 >3100 >1900 >1900 >2200 >2350 >2400 >3200 >2200 >3200 >3300 >1900 >2400 >2400 >2250 >2250 >2200 >2000 >2200 >2200 >2200 >2500 >2800 >2400 >105 >120 >120 >105 >120 >120 >120 >120 >135 >105 >120 >120 >135 >135 >120 >120 >135 >135 >180 >180 >150 >180 >150 >105 >165 >135 >150 >150 >150 >135 >135 >135 >135 >120 >180 >135 All temperate and boreal deciduous tree species are confined to areas with winter temperatures at least for some time below 10oC. For range levels LGPT10 > 360 days has been used as cut off. 17 RANGE CONDITIONS Deciduous Coniferous Trees Larch Larix gmelinii Larix sibirica Tmean Jan (o C) Tmean July (o C) Tmin Jan (o C) LGPT 10 o C (days) LGPT 5 oC (days) Dormancy break. (days) Tsum 10 o C (ddays ) Tsum 5 oC (ddays) LGP (days) >-50 >-45 11-23 11-23 -60 -50 >60 >60 >105 >105 >135 >135 >800 >850 >1000 >1100 >105 >105 LGP RANGE CONDITIONS Coniferous Trees Spruce Pine Fir Picea abies Picea asperata Picea ajanensiss Picea obovata Picea koreaiensis Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Abies alba Abies sibirica Cunninghamia lanceolata Tmean Jan (o C) Tmean July (o C) Tmin Jan (o C) LGPT 10 o C (days) LGPT 5 oC (days) Dormancy break. (days) Tsum 10 o C (ddays ) Tsum 5 oC (ddays) (days) >-25 >-18 >-35 >-40 >-25 >-45 >-45 >-15 >-2 >-3 >-25 >-8 >-45 >0 12-20 12-20 12-20 12-19 12-20 12-23 12-25 16-26 22-30 15-24 12-21 14-23 12-23 22-30 -30 -22 -40 -45 -35 -60 -60 -25 -8 -8 -35 -25 >-50 >-15 >90 >75 >75 >60 >105 >60 >60 >150 >210 >180 >105 >120 >60 >240 >120 >135 >120 >105 >120 >105 >105 >165 >240 >225 >135 >165 >105 >270 >90 >120 >150 >180 >150 >165 >60 >120 0 0 >150 >90 >150 0 >1050 <1050 >1000 >900 >1050 >800 >850 >2300 >3750 >3750 >1050 >2000 >850 >3750 >1250 >1300 >1200 >1150 >1250 >1150 >1100 >2800 >4000 >4000 >1250 >2500 >1100 >4250 >120 >135 >120 >105 >135 >105 >105 >150 >210 >165 >120 >150 >105 >240 18 The soil suitability assessment is based on the comparison of soil requirements of tree species and prevailing soil conditions. The soil assessment also reflects constraints imposed by landform and other features that do not directly form a part of the soil but may have a significant influence on the use that can be made of the soil. Distinction is made between internal soil requirements of crop/LUTs, e.g., soil moisture regime, soil fertility, effective soil depth for root development, and other physical and chemical soil properties, and external requirements related to, e.g., soil slope, occurrence of flooding, and soil accessibility. In order to safeguard that production be achievable on a sustainable basis, a terrain-slope suitability classification is applied which not only concerns workability and accessibility but also prevents intolerable levels of topsoil erosion and fertility loss. Depending on prevailing rainfall aggressivity, upper limits have been set to slope gradients for traditional production forestry and biomass forestry. Beyond these slope gradients land has been classified not suitable for tree production under these management objectives. A number of soil characteristics affecting growth and production of tree species have been classified in terms of optimum, range and not suitable conditions for the 52 forest tree species considered (Table 10), including the following: (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 4.3 Soil fertility; Soil texture and structure; Soil internal drainage; Soil depth; Soil reaction; Soil stoniness; Soil salinity, and Water-logging/flooding conditions. Biomass Increment Calculation The AEZ methodology for the calculation of potential biomass is based on two well established and robust models: the Chapman-Richard biomass increment model (e.g., see Nilsson, 1983), and a potential biomass model adapted from Kassam (1977) and Kassam et al. (1991). Details of the calculation procedures are presented below. A generalized function for forest stand development Many practical applications in forestry employ a biomass increment model suggested by ChapmanRichard, expressing stand development in terms of relative yield over relative age. The generalized function is of the form: y ( r ) = α ⋅ (1 − β − r ) γ r =t/R (1) B( r ) = y ( r ) ⋅ B* where: R… t… r… y… B(r) … B* … α, β, γ 9 optimum rotation length9 age of stand relative age, i.e., age expressed relative to optimum rotation length relative yield, i.e., yield relative to biomass at age of maximum volume production biomass at relative age r biomass at age of maximum volume production parameters of Chapman-Richard function Rotation length is taken as the age at 'maximum volume production', and is the point in time when annual increment is equal to the mean increment over the total period since establishment. 19 Table 10 Soil requirements Deciduous Trees Birch Poplar Willow Oak Beech Hornbeam Ash Alder Lime Maple Black locust Chestnut Walnut Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula platyphylla Betula papyrifera Populus nigra Populus euramericana cv rob. Populus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica Salix alba Salix viminalis Quercus robur Quercus petracea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Fagus sylvatica Carpinus betulus Fraxinus excelsior Fraxinus mandshurica Alnus glutinosa Tilia cordata Acer plantanoides Acer campestre Acer campbellii Robinia pseudoacacia Castanea sativa Junglans regia Fertility low low low low low low high high high med./high med./high med./high high high high high medium medium medium medium medium medium medium medium medium medium high high high medium med./high med./high med./high medium med/high med/high Texture/Structure Optimum 9-16 10-16 10-16 9-16 10-16 10-16 9-15 9-15 9-16 9-16 9-16 9-16 9-15 9-15 9-16 9-16 9-15 9-16 9-15 9-15 9-15 9-16 9-16 9-15 9-15 9-15 9-15 9-15 9-15 9-15 9-16 9-16 9-16 9-16 9-15 9-16 Range 6-19 9-20 9-20 6-19 9-19 9-19 5-19 5-19 6-19 6-19 6-19 6-19 5-19 5-19 5-20 5-20 5-19 5-20 5-19 5-19 6-17 6-19 6-19 5-19 6-16 5-17 6-17 6-17 5-19 6-17 6-19 6-19 6-19 5-19 6-16 5-19 Drainage Optimum W-I W-MW W-MW W-I W-MW W-MW W-MW W-MW W-MW W-MW W-MW W-MW W-MW W-MW W-I W-I W-I W-MW W-MW W-I W-MW W-MW W-MW W-I W W-MW W-I W-I W-I W-MW W-MW W-MW W-MW W-MW W W 20 Range SE-VP E-I E-I SE-P SE-I SE-P SE-P SE-P SE-I SE-I SE-I SE-I SE-P SE-P SE-VP SE-VP SE-P E-I E-I SE-P SE-I SE-I SE-I SE-P SE-MW SE-I SE-P SE-P SE-VP SE-I SE-I SE-I SE-I SE-I SE-MW SE-MW Depth (cm) Optimum >100 >100 >100 >100 >100 >100 >150 >150 >150 >150 >150 >150 >150 >150 >100 >100 >100 >100 >150 >100 >100 >100 >100 >100 >150 >100 >100 >100 >100 >150 >100 >100 >100 >150 >150 >150 Marginal >30 >50 >50 >30 >50 >50 >75 >75 >75 >75 >75 >75 >75 >75 >50 >50 >50 >50 >75 >50 >50 >50 >50 >50 >75 >50 >30 >30 >30 >75 >50 >50 >50 >50 >75 >75 Reaction (pH) Optimum 4.5-7.5 4.5-7.0 4.5-7.0 4.5-7.5 4.5-7.5 4.5-7.5 6.5-7.5 6.5-7.5 6.0-7.0 6.0-7.0 6.0-7.0 6.0-7.0 6.5-7.5 6.5-7.5 5.0-7.5 5.0-7.5 5.5-7.5 5.0-7.0 5.5-7.5 6.0-8.0 5.5-7.5 5.5-7.5 5.5-7.5 5.5-7.5 5.5-7.5 5.0-7.0 5.8-7.5 5.8-7.5 5.0-7.0 5.0-7.5 5.0-7.0 5.5-7.5 5.5-7.5 5.5-7.5 5.0-7.0 6.5-7.5 Range 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 4.0-8.0 5.5-8.5 5.5-8.5 5.5-8.5 5.5-8.5 5.5-8.5 5.5-8.5 5.5-8.5 5.5-8.5 4.5-8.5 4.5-8.5 4.5-8.5 4.0-8.0 4.5-8.5 5.0-8.5 4.5-8.0 4.5-8.0 4.5-8.0 4.5-8.5 5.0-8.5 4.0-8.5 4.5-8.5 4.5-8.4 4.5-8.5 4.5-8.5 4.0-8.5 4.0-8.5 4.0-8.5 5.0-8.5 4.0-8.0 5.5-8.5 Water-logging/ Flooding Optimum F1 F0 F0 F0/F1 F0 F0 F1 F1 F0/F1 F0 F0/F1 F0/F1 F0/F1 F0/F1 F1 F1 F0/F1 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0/F1 F0/F1 F0/F1 F0 F0/F1 F0/F1 F0/F1 F0 F0 F0 Marginal F1/F2 F0/F1 F0/F1 F1 F0/F1 F0/F1 F1/F2 F1/F2 F1/F2 F0/F1 F1/F2 F1/F2 F1 F1 F2 F2 F1 F0 F0 F0/F1 F0/F1 F0/F1 F0/F1 F0/F1 F0 F0/F1 F1/F2 F1/F2 F1/F2 F0/F1 F1 F1 F1 F0 F0 F0 Deciduous Coniferous Trees Larch Fertility low low/med Larix gmelinii Larix sibirica Fertility Coniferous Trees Spruce Pine Fir medium medium medium medium medium low/med. low low/med. low/med. low/med. low/med. medium medium medium Picea abies Picea asperata Picea ajanensiss Picea obovata Picea koreaiensis Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Abies alba Abies sibirica Cunninghamia lanceolata TEXTURE/STRUCTURE symbol massive clay massive silty clay very fine clay, vertisol structure very fine clay, blocky structure clay, vertisol structure clay, blocky structure silty clay, blocky structure clay, oxisol structure silty clay loam clay loam silt Cm SiCm C+60,v C+60,s C-60,v C-60,s SiCs Co SiCL CL Si Texture/Structure Optimum 9-16 9-16 Range 6-20 6-19 Optimum W-MW W-MW Texture/Structure Optimum 9-16 9-16 9-16 9-16 9-16 9-16 9-16 9-16 9-16 9-16 9-16 9-16 9-16 9-16 Range 6-19 6-19 6-19 6-19 6-19 5-20 6-21 6-19 6-19 6-19 6-20 5-18 6-19 6-19 code TEXTURE/STRUCTURE 1 2 3 4 5 6 7 8 9 10 11 Drainage Depth (cm) Range SE-I SE-I Drainage Optimum W-MW W-MW W-MW W-MW W-MW W-MW W-I W-MW W W-MW W-MW W-MW W W Range SE-I SE-I SE-I SE-I SE-I SE-P E-P SE-I SE-MW SE-I SE-I SE-P SE-I SE-I code SiL SC L SCL SL LfS LS LcS fS S cS 12 13 14 15 16 17 18 19 20 21 22 21 Marginal >30 >50 Depth (cm) symbol silt loam sandy clay loam sandy clay loam sandy loam loamy fine sand loamy sand loamy coarse sand fine sand sand coarse sand Optimum >75 >100 Optimum >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >150 >150 >100 Marginal >50 >50 >50 >50 >50 >30 >30 >30 >30 >30 >30 >75 >75 >30 Reaction (pH) Optimum 5.0-7.5 5.0-7.0 Range 4.5-8.5 4.5-8.0 Reaction (pH) Optimum 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 5.0-6.0 5.0-6.5 5.0-6.5 5.0-6.5 5.0-6.5 5.0-6.5 4.5-7.5 4.5-7.0 4.5-7.0 Range 4.0-7.5 4.0-7.5 4.0-7.5 4.0-7.5 4.0-7.5 4.0-8.0 4.0-8.5 4.0-8.5 4.0-8.5 4.0-8.5 4.0-8.5 4.0-8.5 4.0-8.0 4.0-9.0 DRAINAGE Excessively drained Somewhat excessively drained Well Moderately well drained Imperfectly drained Poorly drained Very poorly drained Waterlogging/ Flooding Optimum F1 F0/F1 Marginal F1/F2 F1/F2 Waterlogging/ Flooding Optimum F0 F0 F0 F0 F0 F0/F1 F1 F0 F0 F0 F0/F1 F0 F0 F0 Marginal F0 F0 F0 F0 F0 F1 F1/F2 F0/F1 F0/F1 F0/F1 F1 F0/F1 F0/F1 F0/F1 Symbol E SE W MW I P VP WATERLOGGING/FLOODING No flooding/waterlogging Occasional floods/waterlogging (short periods) Frequent floods/waterlogging (longer periods) F0 F1 F2 According to the definitions of y, r, and R, the following conditions must hold: y ( 0) = 0 y (1) = 1 dy =1 dr r =1 (2) To fully specify the function, an additional condition is needed. Usually the relative standing biomass at 50% percent of the rotation length, i.e., y(0.5), is estimated at 38%, and this condition can be used to obtain the parameter values of the function. The tabulation below shows parameter values and derived properties of the Chapman-Richard function using a range of values for y (0.5): α 1.5052 1.5644 1.6416 1.7471 1.9014 y(0.5) 0.34 0.36 0.38 0.40 0.42 β 10.189 8.0876 6.3581 4.9385 3.7781 γ 3.9585 3.3907 2.8967 2.4661 2.0900 r* 0.5927 0.5840 0.5749 0.5651 0.5546 y(r*) 0.4753 0.4782 0.4813 0.4845 0.4878 ax 1.4764 1.4182 1.3601 1.3018 1.2431 In the above, r* denotes the relative age at which the maximum growth occurs, and a x the relative increment at the age of maximum growth, ax = dy dr (3) r= r* The rate of relative biomass increment a(r) at relative age r can be derived from (1): a (r) = dy = α ⋅ γ ⋅ ln( β ) ⋅ β −r ⋅ (1 − β −r ) γ −1 dr (4) In order to calculate biomass at age of maximum volume production B* , we integrate the rate of net biomass production b n (t) over the entire rotation R: R R B* = ∫ bn (t ) ⋅ dt = (bn ( r * ) / a x ) ⋅ ∫ a (t / R) ⋅ dt ≈ R ⋅ N ⋅ bnx / a x 0 (5) 0 where N denotes the length of the annual vegetation period (in days) and b nx the daily rate of biomass production at the age of maximum growth t * = r * ⋅ R (averaged for that year). Following the ecophysiological principles of Kassam (1977) and Kassam et al. (1991), we calculate b nx as the difference of maximum rate of gross biomass production b gm and respiration losses sm, b nx = bgm - sm (6) Maximum rate of gross biomass production The maximum rate of gross biomass production (b gm) is related to the maximum net rate of CO2 exchange of leaves (Pm), which is dependent on temperature, and the level of atmospheric CO2 concentration. For estimating biomass production, relationships between temperature and rate of photosynthesis of forest tree species have been established. The forest tree species in subtropical, temperate and boreal climates considered in the study have the C3 photosynthesis pathway, and rates of maximum photosynthesis (Pm) are in the range 5 – 20 kg CH2 O ha-1 hr-1 (Landsberg, 1986). Species are classified according to productivity into three classes, namely class I: Pm = 5-10 kg CH2 O ha-1 hr-1; class II: Pm = 10-15 kg CH2 O ha-1 hr-1; and class III: Pm = 15-20 kg CH2 O ha -1 hr-1. These classes of photosynthesis rates correspond to mean annual total biomass increments (including foliage, stem and roots) of < 10 t/ha, 10-15 t/ha and > 15 t/ha dry weight respectively, or annual wood 22 Table 11 Rotation and productivity characteristics Tree Species Birch Poplar Willow Oak Beech Hornbeam Ash Alder Lime 10 Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula platyphylla Betula papyrifera Populus nigra Populus euramericana Populus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica Salix alba Salix viminalis(SRC) Quercus robur Quercus petraea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Fagus sylvatica Carpinus betulus Fraxinus excelsior Fraxinus mandshurica Alnus glutinosa Tilia cordata Rotation Height (m) 32 30 20 25 20 30 35 35 30 30 30 30 30 30 35 8 30 35 25 20 35 12 25 30 36 27 30 30 23 30 Length (years) 65 65 65 65 65 65 25 25 25 30 30 30 25 25 40 3-5/25 75 75 45 40 70 35 70 75 85 70 40 40 60 65 Production (m3/ha/yr) 7.0 7.5 6.0 5.0 6.0 7.0 31.0 31.0 26.0 26.0 26.0 26.0 26.0 26.0 27.0 27.0 9.0 9.0 9.3 9.0 12.0 7.2 9.0 9.0 12.0 11.0 10.0 10.0 12.0 11.0 Density (g/cm3) Dry Weight (t/ha) Class LAI Drought Tolerance Parameters 10 ETa/ETo*100 Class κ λ µ 0.61 0.61 0.61 0.61 0.61 0.61 0.34 0.34 0.39 0.39 0.39 0.39 0.39 0.39 0.41 0.41 0.85 0.65 0.70 0.65 0.85 0.70 0.65 0.85 0.68 0.78 0.65 0.65 0.55 0.54 4.3 4.6 3.7 3.1 3.7 4.3 10.5 10.5 10.1 10.1 10.1 10.1 10.1 10.1 11.1 11.1 7.7 5.9 6.5 5.9 9.9 5.0 5.9 7.7 8.2 8.6 6.5 6.5 6.6 5.9 I I I I I I III III III III III III III III III III II II II II II II II II II II II II II II 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5 5.0 4.5 4.5 4.5 4.5 4.5 5.5 5.0 5.0 5.0 5.0 5.0 95 85 85 95 85 85 90 90 90 90 90 90 90 90 95 95 85 85 90 85 85 85 85 85 95 90 95 95 95 95 85 65 65 85 65 65 80 80 80 80 80 80 80 80 85 85 65 65 80 65 65 65 65 65 85 80 85 85 85 85 50 50 50 50 50 50 50 50 50 50 50 50 50 50 65 65 50 50 50 50 50 50 50 50 50 50 65 65 65 50 C A A C A A B B B B B B B B D D A A B A A A A A C B D D D C ET a /ET o thresholds are as follows: κ represents the threshold value above which full biomass increments are assumed; λ represents the threshold below which zero biomass increments are assumed; µrepresents the relative LAI at λ (LAI at κ is assumed 100%). Class A-D represent different combinations of κ, λ and µ. 23 Tree Species Acer Black locust Chestnut Walnut Larch Spruce Pine Fir Class I: Class II: Class III: Partitioning: Rotation Acer plantanoides Acer campestre Acer campbellii Robinia pseudoacacia Castanea sativa Junglans regia Larix gmelinii Larix sibirica Picea abies Picea asperata Picea ajanensiss Picea obovata Picea koreaiensis Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Abies alba Abies sibirica Cunninghamia lanceolata Height (m) 30 15 20 25 30 30 25 27 40 25 30 30 30 30 35 25 24 15 25 40 30 30 Length (years) 40 40 40 40 80 100 75 75 60 60 60 60 60 60 55 55 60 60 40 90 90 90 Production (m3/ha/yr) 8.0 8.0 8.0 12.0 11.4. 8.0 8.2 13.0 26.0 21.0 26.0 26.0 26.0 10.5 12.0 9.0 9.0 6.0 12.0 26.0 21.0 21.0 < 6.0 t/ha stem + branch wood biomass or < 10.0 t/ha total biomass 6.0-9.0 t/ha stem + branch wood biomass or 10.0 –15.0 t/ha total biomass > 9..0 t/ha stem + branch wood biomass or > 15.0 t/ha total biomass Soil/LGP rating VS: S/MS: mS: Density (g/cm3) Dry Weight (t/ha) Class LAI Drought Tolerance Parameters ETa/ETo*100 Class κ λ µ 0.67 0.67 0.59 0.73 0.63 0.64 0.65 0.65 0.44 0.44 0.44 0.44 0.44 0.51 0.51 0.43 0.43 0.43 0.44 0.45 0.47 0.40 5.4 5.4 4.7 8.8 7.2 5.1 5.3 8.5 11.4 9.2 11.4 11.4 11.4 5.4 6.1 3.8 3.8 2.6 5.3 11.7 9.9 8.4 II II I II II II II II III II III III III II II I I I I III II II 5.0 5.0 5.0 3.5 5.0 5.0 3.0 3.5 6.0 6.0 6.0 6.0 6.0 3.5 3.5 3.5 3.5 3.5 3.5 6.0 6.0 5.0 95 95 95 85 90 90 85 85 95 95 95 95 95 90 85 90 90 90 90 90 95 95 ≈ Pm = 5-10 kg CH2 O ha-1hr -1 ≈ Pm = 10-15 kg CH2 O ha-1 hr -1 ≈ Pm = >15 kg CH2 O ha-1hr -1 Stem+branch wood/leaves/roots = 60/20/20 Stem+branch wood/leaves/roots = 50/20/30 Stem+branch wood/leaves/roots = 40/20/40 24 85 85 85 65 80 80 65 65 85 85 85 85 85 85 65 80 80 80 80 80 85 85 50 50 50 50 50 50 50 50 65 65 65 65 65 50 50 50 50 50 50 50 50 65 C C C A B B A A D D D D D B A B B B B B C D biomass increments (stem and branch wood) of < 6 t/ha, 6-9 t/ha, and > 9 t/ha dry weight respectively. Table 11 presents rotation and productivity characteristics of selected deciduous and coniferous tree species (Jansen et al., 1995). For Pm = 20 kg ha -1 hr-1 and a maximum leaf area index LAI = 5, b gm is calculated from the equation: (7) b gm = F x bo + (1 - F) bc where: F= the fraction of the daytime the sky is clouded, F = (Ac - 0.5 Rg ) / (0.8 Ac), where Ac (or PAR) is the maximum active incoming short-wave radiation on clear days (de Wit, 1965), and Rg is incoming short-wave radiation (both are measured in cal cm-2 day-1) b o = gross dry matter production rate of a standard crop for a given location and time of the year on a completely overcast day, (kg ha -1 day-1) (de Wit, 1965) b c = gross dry matter production rate of a standard crop for a given location and time of the year on a perfectly clear day, (kg ha -1 day-1) (de Wit, 1965). For values of Pm less than 20 kg ha -1 hr-1, b gm is then calculated according to: (8) b gm = F (0.5 +0.025 Pm) bo + (1 - F) (0.05 Pm) b c Relationships between temperature and rate of photosynthesis (kg CH2 O ha -1 hr-1) for deciduous, coniferous and deciduous coniferous (larches) tree species by productivity classes are presented in Table 12. Table 13 shows estimated relationships between temperature regime and growth period for deciduous trees and larches. Table 12 Relationships between temperature and rate of photosynthesis (Pm in kg CH2 O ha-1 hr-1) for adaptability/productivity groups of boreal and te mperate tree species Day-time Air Temperature (oC) Adaptability/Productivity Class -5 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0* 0* 0* 4.5 7.5 12.5 6.0 10.0 15.0 7.5 12.5 17.5 6.0 10.0 15.0 3.0 5.0 7.5 0.75 1.5 2.5 0 0 0 0 0 0 0 0 0 0* 0* 0* 4.5 7.5 12.5 6.0 10.0 15.0 7.5 12.5 17.5 6.0 10.0 15.0 3.0 5.0 7.5 0.75 1.5 2.5 0 0 0 0.5 1.0 1.5 1.0 2.0 3.0 2.0 4.0 6.0 4.5 7.5 12.5 6.0 10.0 15.0 7.5 12.5 17.5 6.0 10.0 15.0 3.0 5.0 7.5 0.75 1.5 2.5 0 0 0 0 0 0 0 0 0 0.75 1.5 2.5 4.5 7.5 12.5 6.0 10.0 15.0 7.5 12.5 17.5 6.0 10.0 15.0 3.0 5.0 7.5 0.75 1.5 2.5 0 0 0 Deciduous Trees I II III Pm (max): 5-10 kg ha-1 hr -1 Pm (max): 10-15 kg ha-1hr -1 Pm (max): 15-25 kg ha-1hr -1 Deciduous Coniferous Trees I II III Pm (max): 5-10 kg ha-1 hr -1 Pm (max): 10-15 kg ha-1hr -1 Pm (max): 15-25 kg ha-1hr -1 ConiferousTrees (clear days) I II III Pm (max): 5-10 kg ha-1 hr -1 Pm (max): 10-15 kg ha-1hr -1 Pm (max): 15-25 kg ha-1hr -1 ConiferousTrees (overcast days) I II III Pm (max): 5-10 kg ha-1 hr -1 Pm (max): 10-15 kg ha-1hr -1 Pm (max): 15-25 kg ha-1hr -1 * no leave/needle photosynthesis 25 Table 13 Growth periods for deciduous tree species Growth Period11 Tree Species Start Conditions12 Birch Poplar Willow Oak Beech Hornbeam Ash Alder Lime Acer Black locust Chestnut Walnut Larch III III III III III III II II I I II II II II I I V V V V V V V V IV IV III IV III V V V V V V V II II Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula platyphylla Betula papyrifera Populus nigra Populus euramericana cv rob. Populus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica Salix alba Salix viminalis Quercus robur Quercus petracea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Fagus sylvatica,, Carpinus betulus Fraxinus excelsior Fraxinus mandshurica Alnus glutinosa Tilia cordata Acer plantanoides Acer campestre Acer campbellii Robinia pseudoacacia Castanea sativa Junglans regia Larix gmelinii Larix sibirica Σ t=5 > 450 Σ t=5 > 450 Σ t=5 > 450 Σ t=5 > 450 Σ t=5 > 450 Σ t=5 > 450 Σ t=5 > 400 Σ t=5 > 400 Σ t=5 > 350 Σ t=5 > 350 Σ t=5 > 400 Σ t=5 > 400 Σ t=5 > 400 Σ t=5 > 400 Σ t=5 > 350 Σ t=5 > 350 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 550 Σ t=5 > 550 Σ t=5 > 450 Σ t=5 > 550 Σ t=5 > 450 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 650 Σ t=5 > 400 Σ t=5 > 400 End Conditions Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Tmean <10oC Maximum growth rate at actual LAI The maximum rate of gross biomass production (b gm) refers to a reference LAI of 5. When actual LAI deviates, adjustment of b gm is achieved by means of a correction factor L, which equals the ratio of b gm at actual LAI to b gm at LAI of 5. As shown in Figure 3, the effect of LAI on bgm is small when LAI is larger than 5 and a near complete ground cover or light interception is achieved. 11 Based on calculations for Bologna (Italy), Vienna (Austria), De Bilt (Netherlands), Stockholm (Sweden), Moscow (Russia), and Kiruna (Sweden). 12 Species-specific thresholds for meeting phenological requirements for bud burst and flushing have been related to temperature sums for mean temperatures exceeding 5oC (Barnes et al., 1998). 26 Adjustment factor L 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 Leaf Area Index (LAI) Figure 3 Relationship between leaf area index (LAI) and maximum growth rate as a fraction of the maximum growth rate at LAI of 5 The LAI of individual tree species/LUTs has been adjusted when moisture stress thresholds are exceeded (Table 11). In case (e = ETa/ETo*100 ) falls short of the species specific drought tolerance parameter κ, but is not less than parameter λ, the leaf area index has been adjusted proportionately to the values between 100% and minimum value µ corresponding to position of e with regard to drought tolerance parameters κ and λ. In case e falls short of λ then zero biomass increment (not suitable) is assumed. The adjusted LAI has been calculated as follows: LAI adj LAI κ−e e−λ = LAI +µ⋅ κ − λ κ−λ not suitable e≥ κ α ≥e≥ λ (9) e<λ where: e = ETa/ETo*100 Respiration losses To calculate the maximum rate of net biomass production (b nx), the maximum rate of gross biomass production (b gm) and the rate of respiration (sm) are required. Here, growth respiration is considered a linear function of the rate of gross biomass production (McCree, 1974), and maintenance respiration a linear function of net biomass that has already been accumulated (Bm). When the rate of gross biomass production is b gm, the respiration rate sm is: (10) sm = k bgm + c Bm where k and c are the proportionality constants for growth respiration and maintenance respiration respectively, and Bm is the net biomass accumulated at the time of maximum rate of net biomass production. For both legume and non-legume species k equals 0.28. However, c is temperature dependent o and differs for the two species groups. At 30 C, factor C30 for a legume species equals 0.0283 and for a non-legume species 0.0108. The temperature dependence of Ct for both species groups is modeled with a quadratic function: 2 (11) Ct = C30 (0.044+0.0019 T+0.0010 T ). 27 Net average annual biomass increment In order to characterize land productivity, we calculate average annual biomass increments achievable in the longer term. Net average annual biomass increment (Ba ) is obtained from (5), Ba = B * / R = N ⋅ bnx / a x (12) In our simulations it is assumed that the standing biomass at 50% rotation length is 38% of the standing biomass at 100% of the optimum rotation length. In this case, the Chapman-Richard function implies that the maximum rate of biomass increase occurs at a relative age r* = 0.575, that the relative yield y(r* ) at relative age r* equals y(r* ) = 0.481, and that the maximum relative biomass increase a(r*) = a x =1.360. Using (6), (9) and (10) and the parameter values presented above, we calculate the average net biomass production Ba : Ba = ((1 − k ) ⋅ bgm ⋅ L ⋅ N / a x ) /(1 + N ⋅ y ( r * ) ⋅ C t / a x ) (13) and inserting parameter values we obtain, Ba = (0.529 ⋅ bgm ⋅ L ⋅ N ) /(1 + N ⋅ 0.354 ⋅ Ct ) (14) where, as before: bgm L N = maximum rate of gross biomass production at leaf area index (LAI) of 5 (kg CH2O ha -1day-1) = Maximum growth ratio, equal to the ratio of bgm at actual LAI to bgm at LAI of 5. = Length of growth period during the year (days) Ct = Maintenance respiration Partitioning of biomass Potential average annual constraint-free wood biomass increment13 (Bw) is calculated from Ba using the equation: (15) Bw = Hiwood x Ba where: Hiwood = harvest index, i.e., proportion of the net biomass of the species that is stem and branch wood (or in case of coppice systems shoots and twigs). The partitioning coefficients (wood, branches, twigs and foliage, and roots) are species-specific and are also closely related to soil water availability and fertilization. Reference values for stem wood and branches equal 0.6, for twigs and foliage 0.2 and 0.2 for roots. With fertilization and irrigation the harvest index for wood biomass may increase at the expense of root biomass. Thus, climate and tree species characteristics that apply in the computation of net biomass increments are: (a) heat and radiation regime over the vegetation period, (b) adaptability/productivity classes to determine applicable rates of photosynthesis, P m, (c) length of vegetation period, (d) maximum leaf area index, and (e) partitioning coefficients. 13 Similarly annual potential root biomass increment and annual foliage can be calculated by using the appropriate harvest indexes, Hiroots and Hitwigs and foliage , or in case of short rotation coppice systems Hishoots and twigs 28 Moisture limited biomass increments The calculation of moisture limited biomass increments uses the procedures described in FAO (1992) and FAO (1998), known as the CROPWAT method. In this approach, the species-specific potential c evapotranspiration ETo is related to reference evapotranspiration ETo as, EToc = k c x ETo (16) where k c is calculated from a piecewise linear function as sketched below: kc k2 c 1.0 k3 0.5 c k1 c d1 d2 d3 d4 crop cycle The function is parameterized by means of seven parameters. Four coefficients, d1, …, d4, relate to the characteristics of the seasonal leaf area development for deciduous tree species, denoting the length (in days) of four development stages, namely, leaf flushing, early stage, mid season stage, and late-season stage. Another three parameters, k 1c , k 2 c and k 3c , define relationship (16) for the individual stages. For non-deciduous tree species parameter k2c is used for the total period in which photosynthesis is possible. Let D1 , …, D4 denote the days belonging to each of the four development stages, D1 = { j 1 ≤ j ≤ d 1} , D2 = { j d 1 < j ≤ d 1 + d 2} , D3 = { j d1 + d 2 < j ≤ d 1 + d 2 + d 3} , and D4 = { j d 1 + d 2 + d 3 < j ≤ d 1 + d 2 + d 3 + d 4} , then the value of k c for a particular day j is defined by piecewise linear functions: k1c c c k1c + ( j − d 1) ⋅ k 2 − k1 d2 k cj = c k 2 c k3c − k 2c k 2 + ( j − ( d 1 + d 2 + d 3)) ⋅ d4 29 j ∈ D1 j ∈ D2 j ∈ D3 j ∈ D4 (17) Using (16) and (17), species-specific potential evapotranspiration over the four leaf area development c stages, TETokc , and the entire vegetation period, TETo can be calculated: TETokc = ∑k j∈Dk c j ⋅ ETo j k = 1, …,4 (18) d 0 = d1 + d 2 + d 3 + d 4 d0 (19) TEToc = ∑ k cj ⋅ ETo j j =1 Similarly, applying a species-specific soil water balance, actual evapotranspiration is calc ulated: TETack = ∑ ETa j∈Dk c j k = 1, …,4 (20) d0 TETac = ∑ ETa cj (21) j =1 where ETa c is determined according to: W jc+1 = min (W jc + Pj − ETa cj , Sa ) (22) ETo cj ETa = ρ j ⋅ETocj (23) c j if ( W jc + Pj )⋅d ≥ Sa⋅d ⋅( 1 − p cj ) else with, ρj = ETa cj ETocj = W jc + Pj (24) Sa⋅(1 − p cj ) p cj number of day in year available soil moisture holding capacity (mm/m) rooting depth (m) soil water depletion fraction below which ETa < ETo ρj actual evapotranspiration proportionality factor. j Sa d Sa and d are defined by the respective values of the soil units in individual grid-cells. The computation of water-limited biomass increment Bl is now easily obtained, following FAO (1979, 1992 and 1998): 1− Bl ETa c = k y ⋅ (1 − ) Ba ETo c (25) We evaluate (25) in two variants, first over the entire vegetation period and then according to individual growth stages. The more severe of the two conditions determines Bl . The respective reduction multipliers f 0 and f1 are defined by, f 0 = 1 − k 0y ⋅ (1 − TETac ) TEToc (26) and 30 4 f 1 = ∏ (1 − k ky ⋅ (1 − k =1 TETakc )) TETokc (27) y where the coefficient expressing the sensitivity of biomass increment to moisture deficit, k , are based on FAO (1992 and 1998). Applying (26) and (27) to potential biomass increment from (15), we obtain the final results, Bl = min( f 0 , f 1 ) ⋅ Ba 4.4 (28) Climate related Productivity Constraints Climatic constraints may cause direct or indirect losses of biomass increments. These constraints are influenced by the following conditions: • Constraints indirectly related to climatic conditions such as pests, diseases and invasion of unwanted species or weeds; • Climatic factors which affect the efficiency of forestry operations and costs of production, • Occurrence of late and early frost, and • Forest fires. The climatic constraints for individual tree species by management objective are specified for the temperature and moisture regimes in each grid-cell. In particular the climatic constraints are linked to: (i) length of thermal growing period (LGP t=5 ), (ii) length of frost-free period (LGP t=10), (iii) accumulated temperatures, (iv) length of moisture growing period (LGP), and (v) seasonal wetness. Frost risks Frost risks are accounted for in matching the early and late frost tolerance/sensitivity of individual tree species with prevailing periods during which mean daily temperatures exceed 10o C. These periods are assumed to represent, by and large, the frost-free periods (Table 9). Forest fire risks Forests fire risk has been assumed to be related to the following main factors: (i) climate conditions (aridity and wind), forest species susceptibility to fire, and (iii) forest fire prevention measures (access roads and fire protection barriers). Forest species may be listed in decreasing order of firesusceptibility as follows: (1) light coniferous species, (2) dark coniferous species and (3) broad-leaved species. Table 14 presents the assumptions we have made for forest fire intervals for unprotected forest resources of respectively broad-leaved, dark coniferous and light coniferous tree species under three distinct aridity conditions (see also Section 4.1, conservation forestry and Plate 12, Aridity Index). The tentative forest fire intervals presented in Table 14 are applied only for the suitability analysis of conservation forest LUTs. Traditional production forest and biomass plantation forest LUTs are assumed to require full fire protection by means of access roads and fire protection barriers. These measures, however, may take away between 5 and 10 % of potentially productive forest areas. Table 14 Assumed forest fire intervals for conservation forestry LUTs Dominantly broadleaved forest Dominantly dark coniferous forests Dominantly light coniferous forests < 0.5 n.a. n.a 25 years 31 Aridity Index Period (P/PET) 0.5-1.0 >1.0 >150 years >150 years 100 years >150 years 50 years >150 years Indirect climatic constraints At this stage of the model development, it has not been possible to implement in the climatic suitability assessment other climatically driven constraints such as pests and diseases, invasion of unwanted species or weeds, and limitations of workability and accessibility (due to excessive wetness), which may very well reduce annual biomass increments. 4.5 Soil and Terrain Suitability Analysis Soil suitability From the basic soil requirements of forest tree species, a number of soil characteristics have been established which relate to growth and biomass production. For the 52 forest tree species considered, optimal, sub-optimal and marginal/unsuitable levels of these soil characteristics have been established (Table 10). Beyond critical ranges, tree species cannot be expected to grow satisfactorily and produce biomass. Soil suitability classifications are based on knowledge of requirements, prevailing soil conditions, and applied management. In other words, soil suitability classifications describe in broad terms to what extent soil conditions match tree species requirements under defined input and management circumstances. Specifically for soil suitability evaluation purposes, a range of quantitative and qualitative attributes have been identified as being required for soil suitability assessments as follows: (i) Information that can be inferred from the soil units of legends of the soil maps. This includes: soil drainage, soil depth, gravel content, electrical conductivity, exchangeable sodium percentage, calcium carbonate content and gypsum content. (ii) Other attributes require quantitative data and are to be derived from soil profile databases. (see Section 3.2). In Appendix III soil unit and soil phase suitability ratings are proposed for the 52 tree species considered. Two sets of ratings have been compiled. One set for natural soil conditions, excluding consideration of any inputs or specific soil management. This set of ratings has been used for the soil suitability assessment regarding conservation forestry LUTs (see Table 6). A second set of ratings was applied for traditional production forest and biomass plantation forestry LUTs (see Tables 7 and 8). These latter ratings assume inputs in terms of nutrients and specific management, in particular, in support of juvenile growth. The ratings presented for soil units and soil phases in Appendix III are the following: S1 S2 S1/S2 S1/N S2/N N (1) (2) (3) (4) (5) (6) Optimal conditions Sub-optimal conditions 50% optimal and 50% sub-optimal conditions 50% optimal and 50% not suitable conditions 50% sub-optimal and 50% not suitable conditions Not suitable conditions Terrain suitability Sustainable forest production on sloping land is concerned with the prevention of erosion of topsoil and decline of fertility. Usually this is achieved by combining special forest management and soil conservation measures. Slopes with tree stands that are providing inadequate soil protection and without sufficient soil conservation measures, may cause a considerable risk of accelerated soil erosion. In the short term such situation may lead to production losses due to erosion of topsoil. In the long term, this may result in truncation of the soil profile and consequently reduction of natural soil fertility and of available soil moisture. 32 The terrain-slope suitability rating used in the FAEZ model captures the factors described above, which influence production and sustainability. This is achieved through: (i) defining for the various forest/LUTs permissible slope ranges by setting maximum slope limits; (ii) for slopes within the permissible limits, accounting for likely yield reduction due to loss of topsoil, and (iii) distinguishing among forestry practices ranging from manual to highly mechanized management. Ceteris paribus, i.e., under similar forest cover, soil erodibility and forestry and soil management, soil erosion hazards largely depend on amount and intensity of rainfall. Data on rainfall amount is available on a monthly basis in the 0.5 degree lat/long climate databases. To account for clearly existing differences in both amount and within-year distribution of rainfall, use has been made of the modified Fournier index (Fm), which reflects the combined effect of rainfall amount and distribution (FAO/UNEP, 1977), as follows: Fm = 12 12 ∑ i =1 pi 2 Pann where: p i = precipitation of month i Pann = total annual precipitation When precipitation is equally distributed during the year, i.e., in each month one-twelfth of the annual amount is received, then the value of Fm is equal to Pann. On the other extreme, when all precipitation is received within one month, the value of Fm amounts to twelve times Pann. Hence, Fm is sensitive to both total amount and distribution of rainfall and is limited to the range of Pann ≤ Fm ≤ 12 Pann. The Fm index has been calculated for all 0.5 degree grid-cells of the climatic inventory. The results have been grouped in six classes, namely: Fm < 1300, 1300-1800, 1800-2200, 2200-2500, 2500-2700, and Fm > 2700. Slope ratings are defined for the seven slope range classes used in the land resources database, namely: 0-2% flat, 2-5% gently sloping, 5-8 % undulating, 8-16% rolling, 16-30% hilly, 30-45% steep, and > 45% very steep. Three suitability-rating classes are employed: S1 S2 N Optimal conditions Sub-optimal conditions Not suitable conditions Table 15 presents percentage distributions of terrain-slope ratings for the three forest management types (conservation forestry, traditional production forestry and biomass forestry) for six class ranges of the modified Fournier index Fm (Fm < 1300; 1300-1800; 1800-2200; 2200-2500; 2500-2700 and >2700). . 33 Table 15 Terrain-slope ratings (Fm <1300) Slope Gradient Classes Suitability Distribution (%) Conservation Forestry Traditional Production Forestry Biomass Forestry 0-2 % S1 100 100 100 S2 2-5% N S1 100 100 100 S2 5-8% N S1 100 100 75 S2 8-16% N S1 100 100 25 16-30% S2 N 50 50 S1 100 50 S2 30-45% N S1 100 50 > 45% S2 N 50 50 100 100 S1 100 N N 100 100 (Fm: 1300-1800) Slope Gradient Classes Suitability Distribution (%) Conservation Forestry Traditional Production Forestry Biomass Forestry 0-2 % S1 100 100 100 S2 2-5% N S1 100 100 100 S2 5-8% N S1 100 100 75 S2 8-16% N S1 100 100 25 16-30% S2 N 50 50 S1 100 50 S2 30-45% N S1 100 50 > 45% S2 N 50 50 100 100 S1 100 N N 100 100 (Fm: 1800-2200) Slope Gradient Classes Suitability Distribution (%) Conservation Forestry Traditional Production Forestry Biomass Forestry 0-2 % S1 100 100 100 S2 2-5% N S1 100 100 100 S2 5-8% N S1 100 100 75 S2 8-16% N S1 100 100 16-30% S2 N 25 25 75 5-8% 8-16% S1 100 50 S2 30-45% N S1 100 50 > 45% S2 N 25 75 100 100 S1 100 N N 100 100 (Fm: 2200-2500) Slope Gradient Classes Suitability Distribution (%) Conservation Forestry Traditional Production Forestry Biomass Forestry 0-2 % S1 100 100 100 S2 2-5% N S1 100 100 100 S2 N S1 100 100 75 S2 N S1 100 100 25 16-30% S2 N 25 75 S1 100 50 S2 30-45% N S1 100 50 > 45% S2 N 25 75 100 100 S1 100 N N 100 100 (Fm: 2500-2700) Slope Gradient Classes Suitability Distribution (%) Conservation Forestry Traditional Production Forestry Biomass Forestry 0-2 % S1 100 100 100 S2 2-5% N S1 100 100 100 S2 5-8% N S1 100 100 50 S2 8-16% N S1 100 75 S2 16-30% N 25 50 S1 100 25 S2 30-45% N S1 100 S2 75 100 > 45% N S1 100 N 100 100 100 N 100 100 (Fm >2700) Slope Gradient Classes Suitability Distribution (%) Conservation Forestry Traditional Production Fo restry Biomass Forestry 0-2 % S1 100 100 100 S2 2-5% N S1 100 100 100 S2 5-8% N S1 100 100 50 S2 8-16% N 50 S1 100 75 S2 16-30% N 25 100 34 S1 100 25 S2 30-45% N 75 100 S1 100 S2 > 45% N 100 100 S1 100 N N 100 100 4.6 Suitability Analysis of Seasonal Wet Sites For assessing the suitability of wetness prone soils, the tree species have been grouped according their tolerance to excess moisture and resulting poor oxygen supply to rooting systems (Shugart et al., 1992): Group I Group II Group III Group IV Tree species not tolerant to wetness Tree species somewhat tolerant to wetness Tree species tolerant to wetness Tree species requiring wet conditions Group I: Fagus sylvatica, Quercus petracea, Q. rubra, Robinia pseudoacacia, Castanea sativa, Junglans regia, Picea abies, P. asperata, P. ajanensis, P. obovata and P. koreaiensis are not tolerant to wetness and cannot be grown on seasonal wet soils. All Fluvisols, Gleysols and sites affected by water-logging (Table 5) due to snowmelt are considered not suitable (N). Group II: Betula tortuosa, Populus tomentosa, P. euphraetica, Quercus robur, Acer plantanoides, A. campestre, A. campbellii,, Pinus sibirica, P. koreaiensis and to some extent Betula pendula, B. verrucosa, B. platyphylla, B. papyrifera, Populus termula, Quercus lanuginose, Q. cerris, Q. acutissima, Q. variablis, Q. mongolica, Carpinus betulus,Tilia cordata, Pinus tabulaeformis,P. massoniana, P. yunnanensis, Abies alba, A. sibirica and Cunnninghamia lanceolata are somewhat tolerant to wetness and benefit to some extent from high groundwater tables and extra residual moisture available in Fluvisols and Gleysols. In water collecting sites with less than 30 days LGP, it is assumed there is on the average insufficient water to grow successfully trees, especially since the contribution from rainfall is also almost non-existent. At LGPs longer than 120 days trees will grow irrespective additional water. It has been assumed that the Fluvisols/Gleysols are too wet in LGPs over 300 days. Table 16 presents suitability classes for the Group II tree species by length of growing period, accounting for differences in amounts of residual moisture and in periods with water-logging and inundation. Water-logging and inundation affect different parts of Fluvisols and Gleysols differently. Higher parts are much less affected than the lower parts. Areas affected by prolonged water-logging of more than 10 days as result of water from snowmelt (Table 5) are considered not suitable (N) for Group II tree species. Areas affected between 5 and 10 days are rated sub-optimal (S2). Table 16 LGP suitability ratings for water collecting sites: Group II tree species Suitability class Distribution of suitability classes (%) for water-collecting sites by LGP class 0 129 3059 6089 VS 33 mS 33 33 34 34 Group III: 120149 150179 180209 210239 33 33 33 33 33 33 33 33 33 33 33 S MS NS 90119 100 100 240269 270299 300329 330364 365- 365+ 100 100 100 100 33 34 34 34 34 34 33 33 33 34 34 Populus alba, P. basamiferas, P. maximowiczii, Fraxinus excelsior , F. mandshurica, Alnus glutinosa, Larix sibirica and surely Betula pubescens, Populus nigra, P. euramericana, Larix gmelinii and Pinus sylvestris are relatively tolerant to wet conditions. These species tolerate prolonged periods of water-logging and some inundation. Table 17 presents suitability classes for the Group III tree species by length of growing period, accounting for differences in amounts of residual moisture and for periods with waterlogging and inundation. Areas affected by snowmelt water are rated as 35 follows for Group III tree species. Water-logging periods of less than 10 days are considered to pose no constraint (S1) to growth of Group III tree species; periods between 10 and 30 days are considered sub-optimal (S2), and periods of more than 30 days not suitable (N). Table 17 Suitability class LGP suitability ratings for water collecting sites: Group III tree species Distribution of suitability classes (%) for water-collecting sites by LGP class 0 129 3059 6089 VS 120149 150179 180209 210239 240269 270299 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 S 33 MS mS NS 90119 100 33 33 33 67 34 34 300329 330364 365- 365+ 100 100 33 34 34 34 34 34 34 34 33 33 33 34 34 Group IV: Willows, Salix alba and especially Salix viminalis, are adapted to wet conditions and tolerate prolonged periods of water-logging and inundation. Long periods of waterlogging and/or inundation affect growth. Table 18 presents suitability classes for these tree species by length of growing period. Table 18 LGP suitability ratings for water collecting sites : Group IV tree species Suitability class Distribution of suitability classes (%) for water-collecting sites by LGP class 0 129 3059 6089 90119 120149 150179 180209 210239 240269 270299 300329 330364 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 34 34 34 34 34 34 33 33 34 33 VS S MS 33 33 mS 33 34 NS 100 100 34 365- 365+ 34 36 Chapter 5 Preliminary Results of Potential Forest Productivity Assessment This section describes preliminary results 14 of the FAEZ tree species productivity assessment. The study covers the territory of China, Mongolia and the former Soviet Union (FSU). Estimations of land suitability/productivity were made involving 52 different tree species and for three assumed management objectives. For biomass plantation forestry and traditional production forestry, results are expressed in terms of annual biomass increments over optimum rotation periods for the best producing species. For conservation forestry only land suitability was determined. The basic six suitability classes used in the presentation of the results reflect the performance of the best adapted species in each land unit as follows: Table 19 Suitability classification for conservation forestry Symbol VS S MS mS VmS NS Description Percentage of maximum attainable annual growth for best adapted species 80-100 60-80 40-60 20-40 5-20 <5 Very Suitable Suitable Moderately Suitable Marginally Suitable Very Marginally Suitable Not Suitable The suitability/productivity assessments were carried out for 5 km grid-cells, by matching climate characteristics, calculating gross biomass increments, and subsequently, by matching soil and terrain characteristics of each grid-cell with ecological requirements of each considered tree species by management objective. The results were stored in a large database, containing a distribution of land suitability classes and attainable annual biomass increments by 5 km grid-cell for each of the 52 tree species. For each grid-cell suitability results are also represented by a suitability index SI, reflecting the suitability make-up of a grid-cell in accordance with the definition of suitability classes, namely as: SI = VS*0.9 + S*0.7 + MS*0.5 + mS*0.3 + VmS*0.1. The grid-cell results have subsequently been aggregated by province for China, by individual state of the FSU (for Russia by oblast) and for Mongolia. Table A-1 in Appendix I presents a list of codes and names of the States of the FSU and the oblasts of Russia. (Plate 13 shows a map of the FSU15 and Plate 14 of China with the boundaries of the various administrative divisions 16). Depending on management objectives different sub-sets of the 52 tree species were considered as follows: (i) (ii) (iii) 14 15 16 Biomass plantation forestry - Poplar, Alder, Ash and Willow species. Traditional production forestry - Birch, Poplar, Oak, Beech, Robinia, Larch, Spruce, Pine and Fir species. Conservation forest - all 52 species. This is the first systematic forest p roductivity potential assessment in its kind and before publishing final results, substantial verification and validation of methodology and calculation procedures is required (see also disclaimer). The codes in Table A-1 correspond with the codes used in Plate 13. It should be noted that until recently Chengquing Province was a part of Sichuan Province. The results presented for the Sichuan Province include the territory of the new Province Chengquing. 37 From various data available in the IIASA LUC project, a GIS17 coverage of agriculture and forest land in China, Mongolia and the States of the Former Soviet Union was compiled (Plate 12). This coverage was used to mask or select areas that are in use for cultivation, under forest or under other permanent use such as urban areas. Also, a layer has been created to reflect accessibility18 . It records the presence of roads and railroads and marks grid-cells as accessible, that fall at least partly within a 10 km buffer zone around roads and railroads (Plate 11). This coverage was used to mask non-accessible areas (see Section 3.4) 5.1 Assessment Scenarios To demonstrate and test the application of FAEZ, a productivity analysis for the territory of China, Mongolia and the former Soviet Union has been carried out for seven scenarios, according to the following assumptions: Scenario 1: All land is assessed for biomass plantation, traditional and conservation forestry LUTs regardless accessibility or other current uses. Scenario 2: All accessible land is assessed for both biomass plantation and traditional production forestry LUTs. Scenario 3: As in scenario 1, excluding grid-cells classified as dominantly cultivated land and urban areas. Scenario 4: As in scenario 1, only for areas classified as currently under forest. Scenario 5: As in scenario 2, excluding cultivated land and urban areas. Scenario 6: As in scenario 2, only for areas currently under forest. Scenario 7: As in scenario 3, excluding areas currently under forest. Results aggregated by administrative units are presented in tabular form in the Appendix II. The results are organized by major LUTs: (i) Biomass plantation forestry (results have been provided separately for Willow (Salix viminalis) alone, and for the biomass plantation forestry species combined); (ii) Traditional production forestry (results for the traditional forestry species combined), and (iii) Conservation forestry (results for the conservation forestry species combined). Selected results as provided in the Appendix II are listed below: Salix viminalis: Table A2 Table A3 Table A4 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Biomass plantation forestry: Table A5 Table A6 Table A7 17 18 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. The map showing cultivated areas and forested areas has been compiled from the land categories and the agricultural regionalization inventories of the FSU (Stolbovoi et al., 1997a, 1997b), the 1:1,000,000 land use map of China (Wu Chuanjun, 1991) and Vegetation Distribution for Mongolia (Sitch and van Minnen, 1996). These three inventories were combined, a reclassification was applied featuring areas with dominantly agriculture and forest, and was transferred to the 5km grid. Based on existing infrastructure information of the Digital Chart of the World (DCW, 1993), an accessibility inventory has been created for the territory of the FSU, China and Mongolia. Standard GIS procedures were used to create buffer zones of 10 km around the roads and railways, i.e., 5 km on each side. The buffer coverage was then transferred to a 5 km grid, which in turn was used in this study as mask for accessibility. 38 Table A8 Table A9 Accessible areas currently under forest. All areas, excluding cultivated areas, urban areas and areas currently under forest. Traditional production forestry: Table A10 Table A11 Table A12 Table A13 Table A14 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Accessible areas currently under forest. All areas, excluding cultivated areas, urban areas and areas currently under forest. Conservation forestry: Table A15 Table A16 Table A17 All areas. All areas, excluding cultivated and urban areas. All areas, excluding cultivated areas, urban areas and areas currently under forest. The individual tables of Appendix II are organized as follows: The first data column (Total area) records how much land is assessed, given the scenario restrictions. For example, in Mongolia under scenario 1 (considering all the land) the total is 156,198 thousand hectares; under Scenario 2 (land that is accessible by road or railroad) the total is 63,130 thousand hectares; under Scenario 3 (land, excluding cultivated and urban areas) the total is 154,858 thousand hectares, under Scenario 4 (land currently under forest) the total is 7,058 thousand hectares, under Scenario 5 (land that is accessible by road or railroad, excluding cultivated and urban areas) the total is 62,805 thousand hectares, under Scenario 6 (land that is accessible by road or railroad and is currently under forest) the total is 1,163 thousand hectares, and finally under Scenario 7 (land that is neither under forest, nor cultivated or urban) the total is 147,800 thousand hectares. The next group of nine columns presents extents of land variously suitable for tree growth (see for definition of the suitability classes Table 19). In the case of biomass plantation forestry and traditional forestry LUTs a further eight columns follow, presenting production (total annual biomass increments by suitability classes). Finally a last group of eight columns presents per hectare production following the same logic. 5.2 Results for Biomass Plantation Forestry Table 20 provides extents of prime land for Willow considering respectively: all land, all accessible land, and all accessible land with the exclusion of cultivated and urban areas. Results for Willow, which is assumed to be grown in short rotation coppice system (SRCS) with rather specific environmental requirements for growth and management, indicate that prime land (VS+S) is quite rare. Some areas exist in mainly the Baltic States, Byelorussia, Ukraine, and Russia. A rather large area is found in China. However, as can be seen in Table 20, when only areas are considered that are accessible and when excluding cultivated and urban areas, then in China, only less than 3 million hectares remain from approximate 12 million hectares of potential prime willow land. Examples of selected results for Willow (Salix viminalis ) are presented in map-form as follows: Plate 15 Productivity of Salix viminalis (t/ha biomass yield). Plate 16 Productivity of Salix viminalis in accessible areas, excluding cultivated and urban areas (t/ha biomass yield). Table 21 presents results in the same format as Table 20, but now combined for all biomass plantation species considered (Poplar, Alder, Ash and Willow species). The pattern observed with the Willow only, remains in tact. Major tracts of potential prime land are found in Byelorussia, the Ukraina, Russia. The largest extents are found in China. However, when we confine to accessible areas and take away cultivated and urban areas, the extents generally reduce approximately three quarters. From this study it appears that seven of the countries investigated have virtually no potential prime land at all 39 for biomass plantation forestry. These countries are: Mongolia, Armenia, Azerbeijan, Kazakstan, Kirghiztan, Tajik istan and Turkmenistan. Examples of selected results for the biomass plantation species combined are presented in map-form as follows: Plate 17 Plate 18 Plate 19 Table 20 Suitability index for biomass plantation forestry (excluding cultivated and urban areas). Suitability index for biomass plantation forestry of current forest areas. Suitability index for biomass plantation forestry in accessible areas (excluding cult ivated and urban areas). Very suitable and suitable areas for biomass plantation with Willow (Salix viminalis) Total area (1) (000ha) Mongolia Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Russia Russia West of Urals Russia East of Urals China VS+S Total areas (2) (000ha) % of (1) Accessible areas (3) (000ha) % of (1) VS+S Accessible areas VS+S Accessible areas, e xcluding cultivated (4) land and urban areas (000 ha) % of (3) (000 ha) % of (4) 156,198 0 0 63,130 40 0 0 0 - 2,690 0 0 2,025 75 0 0 0 - 7,868 0 0 6,095 77 0 0 0 20,348 640 3 17,955 88 549 3 184 34 3,938 137 3 3,365 73 112 3 74 66 6,523 6 0 4,763 73 6 0 1 17 268,445 1 0 165,068 61 1 0 1 100 - 19,548 0 0 10,428 53 0 0 0 - 6,313 284 4 5,573 88 245 4 91 37 6,420 582 9 6,018 94 543 9 176 32 3,000 16 1 2,848 95 15 1 1 7 9,013 0 0 4,775 53 0 0 0 - 45,390 0 0 22,535 50 0 0 0 - 57,570 634 1 51,955 90 573 1 77 13 1,674,521 3,014 0 503,616 30 2.274 0 704 31 389,947 1,353 0 244,894 63 1,173 0 158 13 1,284,574 1,661 0 258,722 20 1,101 0 546 50 937,041 12,421 1 416,566 44 8,408 2 2,950 35 40 Table 21 Very suitable and suitable areas for biomass plantation Forestry Total area (1) (000ha) Mongolia Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Russia Russia West of Urals Russia East of Urals China 5.3 VS+S Total areas (2) (000ha) % of (1) Accessible areas (3) (000ha) % of (1) VS+S Accessible areas VS+S Accessible areas, e xcluding cultivated (4) land and urban areas (000 ha) % of (3) (000 ha) % of (4) 156,198 0 0 63,130 40 0 0 0 - 2,690 0 0 2,025 75 0 0 0 - 7,868 0 0 6,095 77 0 0 0 20,348 6,048 30 17,955 88 5,375 30 1,589 30 3,938 567 14 3,365 73 525 16 199 38 6,523 114 2 4,763 73 97 2 12 12 268,445 5 0 165,068 61 4 0 3 75 - 19,548 0 0 10,428 53 0 0 0 6,313 831 13 5,573 88 712 13 192 29 - 6,420 1893 29 6,018 94 1,757 29 876 50 3,000 190 6 2,848 95 182 6 14 8 9,013 0 0 4,775 53 0 0 0 - 45,390 0 0 22,535 50 0 0 0 57,570 8,732 15 51,955 90 7,973 15 816 - 1,674,521 23,110 1 503,616 30 18,488 4 6259 3 389,947 17,483 4 244,894 63 14,622 6 4515 31 1,284,574 5,627 0 258,722 20 3,866 1 1744 45 937,041 39,729 4 416,566 44 27,362 7 10,415 38 10 Results for Traditional Production Forestry Table 22 provides extents of prime land for traditional production forestry. To enable easy comparisons of results, Table 22 addresses the same categories as were provided for biomass plantation forestry in the Table 20 and 21, namely: all land, all accessible land and all accessible land with the exclusion of cultivated and urban land. The results presented are based on all species considered for traditional production forestry combined, i.e., Birch, Poplar, Oak, Beech, Robinia ; Larch, Spruce, Pine and Fir species. The relatively wide environmental tolerances of especially Pine, Spruce, Birch and Larch is the foremost reason for the large areas of prime land that we have estimated, about four times more than for the biomass plantation species. The slope limitations imposed for fully mechanized planting and harvesting assumed for the biomass plantation LUTs explains another part of the differences found. Countries with over one million hectares of potential prime land which is accessible and not already used for cultivation or urban purposes are: Byelorussia (more than 3 million), Lithuania (more than 1.4 million), Ukraine (more than 1.8 million), Russia (more than 68 million) and China (more than 46 million hectares). Examples of selected results for the traditional production forestry species combined are presented in map-form as follows: Plate 20 Plate 21 Plate 22 Suitability index for traditional production forestry (excluding cultivated and urban areas). Suitability index for traditional production forestry of current forest areas. Suitability index for traditional production forestry of accessible areas currently forested. 41 Table 22 Very suitable and suitable areas for traditional production forestry Total area (1) (000ha) Mongolia Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Russia Russia West of Urals Russia East of Urals China 5.4 VS+S Total areas (2) (000ha) % of (1) Accessible areas (3) (000ha) % of (1) VS+S Accessible areas VS+S Accessible areas, e xcluding cultivated (4) land and urban areas (000 ha) % of (3) (000 ha) % of (4) 156,198 96 0 63,130 40 9 0 9 100 2,690 53 2 2,025 75 47 2 39 87 7,868 63 1 6,095 77 49 1 45 92 20,348 10,413 51 17,955 88 9,261 52 3,047 33 3,938 1,735 44 3,365 73 1,543 46 547 37 6,523 404 6 4,763 73 351 7 91 26 268,445 814 0 165,068 61 495 0 385 79 19,548 53 0 10,428 53 43 0 28 65 6,313 2,226 35 5,573 88 1,951 35 609 31 6,420 2,900 45 6,018 94 2,719 45 1,479 54 3,000 805 27 2,848 95 778 27 26 3 9,013 0 0 4,775 53 0 0 0 - 45,390 0 0 22,535 50 0 0 0 57,570 20,665 36 51,955 90 18,794 36 1,827 10 - 1,674,521 204,248 12 503,616 30 123,126 24 68,967 56 389,947 113,377 29 244,894 63 84,497 35 40,271 48 1,284,574 90,871 7 258,722 20 38,629 15 28,696 74 937,041 129,701 14 416,566 44 80,347 19 46,120 57 Results for Conservation Forestry For the assessment of suitability for conservation forestry all 52 species considered in this study are used. The selection of tree species is based on criteria other then biomass production, as used for biomass plantation and traditional production forestry. For conservation forestry, the tree species with the best ecological adaptation (highest suitability index) has been selected irrespective of its productivity. The results are presented by suitability class (Appendix II Table A15-17 and Table 23). Table 23 provides results in terms of extents of land that is at minimum marginally suitable for at least one species. The results are presented for (i) all areas; all areas, but excluding cultivated and urban areas, and (iii) all areas excluding cultivated and urban areas and areas currently already under forest. The fact, that no slope limitations are imposed when assessing suitability for conservation forestry, a large number of species spanning a wide range of ecological adaptability are considered, and all land with at least marginal suitability is reported, resulted in large extents of suitable land in the majority of countries investigated. Very large shares of potential suitable land (more than 70% of total area) were found in Byelorussia, the Baltic states, Moldavia and the Ukraine. Low shares (less than 10 %) were found in Mongolia, Kazakstan, Tajikistan, and Turkmenistan. When discounting land in cult ivated or urban use or already under forest, then the highest shares (as percentage of total land) of land potentially suitable for conservation forest are found, in Armenia (16%), Azerbeijan (10%), Lithuania (21%) and China (11%). In absolute terms, the largest areas are found in the biggest countries, namely in Russia, more than 81 million, in particular in Russia east of the Urals with more than 65 million, and in China almost 100 million hectares. An example in map form of suitability results for conservation forestry is presented in Plate 23: Suitability index for conservation forestry (excluding cultivated and urban areas). 42 Table 23 Areas suitable for conservation forestry Total area (1) Mongolia Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Russia Russia West of Urals Russia East of Urals China Chapter 6 VS+S+MS+mS Total area (000ha) (000ha) 156,198 8,843 % of (1)) 6 2,690 688 7,868 1,495 20,348 3,938 VS+S+MS+mS VS+S+MS+mS Excluding cultivated and Excluding cultivated land, urban areas urban areas and areas currently under forest (000 ha) % of (1)) (000 ha) % of (1)) 8,774 6 8,074 5 26 499 19 429 16 19 1,110 14 783 10 19,061 94 7,014 34 1490 7 2,742 70 1,069 27 261 7 6,523 2,067 32 1,191 18 511 8 268,445 22,058 8 10,982 4 9,616 4 19,548 2,191 11 1,330 7 1,009 5 6,313 5,708 90 2,056 33 198 3 6,420 5,853 91 2,986 47 1,365 21 3,000 2,596 86 89 3 6 0 9,013 762 8 511 6 8 0 45,390 31 0 26 0 8 0 57,570 45,761 79 4,907 9 530 1 1,674,521 518,789 31 387,013 23 81,613 5 389,947 240,535 62 1239,849 36 16,289 4 1,284,574 278,245 22 247,164 19 65,324 5 937,041 374,584 40 248,019 26 99,412 11 Concluding Remarks This study confirms in quantitative manner the uneven distribution of potentials for tree growth and therefore to a large extent also the uneven distribution of the production potentials of renewable forest biomass resources within China, Mongolia and the FSU. The results indicate that the concentration of potential areas for the production of woody biomass is mainly located in the European part of the FSU and China. The results obtained through this exercise, in absolute terms, should be treated in a conservative manner at appropriate aggregation levels, which are commensurate with the resolution of basic data and the scale of the study. Relative results, i.e., the comparison of absolute results at sub-national level in China and the FSU, are likely more robust, when noting that for the entire study area procedures and data were uniformly applied. The study revealed that in order to obtain a more complete picture of potentials for forest production in particular of China, additional tree species should be included. In particular, species should be included that are specifically adapted to warm sub-tropical climate prevailing in Southeast China. It is expected that the FAEZ procedures and model parameters will be benefiting from scrutiny with further use. Limitations The FAEZ results presented are based on 5 km resolution environmental data sets of North, Central and East Asia. While representing the most recent data compilations for this territory, the quality and reliability of these datasets is known to be uneven across the region. Also silvicultural data, such as data on environmental requirements of individual tree species, contain assumptions and generalizations necessary for the scale of the study. In particular, further work is required to quantify occurrence and severity of constraints indirectly related to climate conditions that 43 adversely affect growth and productivity of tree species. These constraints include impacts due to pests, diseases, invasion of unwanted species or weeds, workability, and forest fires. Various types of land degradation may very well affect forest suitability and productivity. Land degradation information could not be considered in the present FAEZ assessment. In a future version soil degradation data available in the LUC-GIS database for North, Central and East Asia will be reviewed for use in FAEZ. For the above reasons the results obtained from this first implementation of FAEZ should be treated in a conservative manner at appropriate aggregation levels, which are commensurate with the resolution of underlying basic data and the scale of the study. Next steps The compatibility of the FAEZ approach with the methods for agriculture (AEZ) allows for consistent integration of agriculture and forest sector assessments. It provides key inputs in region specific applications of the IIASA/FAO multi-criteria model analysis (MCMA) tool which is targeted to provide better assistance for decision making for rural development planning at national and regional levels. Applications using the North, Central and East Asian LUC-GIS data sets have been started. With the already initiated integration of pan-European data sets, also further FAEZ/AEZ/MCMA applications are becoming possible. For Europe the LUC project focus will be initially on countries envisaged for the EU eastward enlargement. 44 References: Barnes, B.V., Zak, D. R., Denton, S. R. and Spurr, S. H., (1998): Forest Ecology. John Wiley & Sons, Inc., New York. Batjes, N.H., Fischer, G., Nachtergaele, F. N., Stolbovoy, V. S., van Velthuizen H. T, (1997): Soil data derived from WISE for use in global and regional AEZ studies. FAO/IIASA/ISRIC. Report IR 97-025, IIASA, Laxenburg, Austria. Burschel, P. and Huss, J. (1997): Grundriss des Waldbaus. Parey Buchverlag, Berlin Chartier, Ph., Beenackers, A. A., and Grassi, G. (1995): Biomass for Energy, Environment, Agriculture and Industry (3 Volumes). Pergamon. Oxford. Chen Cungen,(1999): Die Nadelwälder Chinas - Ökologische Grundlagen einer nachhaltigen Waldwirtschaft. Universität für Bodenkultur Wien - Gebirgswaldbau, Vienna. DCW, (1993): Digital Chart of the World, Scale 1:1,000,000, Environmental Systems Research Institute (ESRI). Based on original U.S. Defense Mapping Agency, online version: http://www.maproom.psu.edu/dcw/ EROS Data Centre, (1998): Global 30 arc-second Digital Elevation Model. FAO, (1976): A framework for land evaluation. Soils Bulletin 32, Rome. FAO/UNEP, (1977): Assessing soil degradation. FAO Soils Bulletin 34, FAO, Rome. FAO, (1978-81): Report on the Agro-Ecological Zones project. World Soil Resources Report 48, FAO, Rome. FAO. (1979): Yield response to water. Irrigation and Drainage Paper 33. FAO, Rome FAO (1984): Land evaluation for forestry. FAO Forestry Paper 48, Rome. FAO/Unesco/ISRIC (1990). Revised Legend of the Soil Map of the World. World Soil Resources Report 60. FAO, Rome. FAO. (1991): Fuel-wood productivity. (Technical Annex 6) Agro-ecological land resources assessment for agricultural development planning: A case study of Kenya. FAO/IIASA, Rome. FAO. (1992): CROPWAT: A computer program for irrigation planning and management. FAO Irrigation and Drainage paper 46. FAO, Rome. FAO, (1995): Digital Soil Map of the World and derived soil properties (Version 3.5). CD-ROM, FAO, Rome. FAO, (1998): Crop Evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome FAO/IIASA, (1999): Soil and terrain database for north and central Eurasia (Version 1.0) CD-ROM, FAO, Rome. Fischer, G., van Velthuizen, H.T., and Nachtergaele, F.O., (2000): Global Agro-Ecological Zones assessment: Methodology and results. (IIASA Interim Report, IR-00-064, Laxenburg, (IIASA, FAO). Garnier and Ohmura, (1968): A method of calculating the direct short-wave radiation income of slopes. Journal of Applied Meteorology, (7) 796-800. IIASA-LUC GIS webpages: http://www.iiasa.ac.at/Research/LUC/ Jansen, J. J., Sevenster, J., and Faber, P.J. (1995): Opbrengst tabellen voor belangrijke boomsoorten in Nederland. IBN –Report 21. Kassam, A.H., (1977): Net biomass and yield of crops. Consultant’s Report Agro-Ecological Zones project. FAO, Rome. 45 Kassam, A.H., van Velthuizen H.T., Fischer G.W. and Shah M.M. (1991): Fuelwood Productivity. Technical Annex 6. Agro-ecological land resources assessment for agricultural development planning, A case study for Kenya: ALL-FAO/IIASA, Rome. Köstler, J.MN., Brückner, E. & Bibelriether, H. (1968): Die Wurzeln der Waldbaüme. Parey Verlag, Hamburg. Kruessmann, G. (1972): Handbuch der Lobgehölze (3 Volumes) Berlin. Kruessmann, G. (1983): Handbuch der Nadelgehölze. Berlin. Landsberg, J.J. (1986): Physiological ecology of forest production. London: Academic Press. Leemans, R and Cramer, W. P., (1991). The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid RR-91-18, Laxenburg. McCree, K.J. (1974): Equations for the rate of dark respiration of white clover and grain sorghum as functions of dry weight, photosynthesis rate and temperature. In Crop Science, (14) 509-514. Mitscherlich, G. von (1975): Wald, Wachstum und Umwelt. J.D. Sauerländers Verlag, Frankfurt am Main. Nikolov, N. and Helmisaari, H. (1992): Silvics of the circumpolar boreal forest tree species. In: A systems analysis of the global boreal forest. Cambridge University Press, Cambridge. Nilsson, N.E. (1983): An alley model for forest resources planning. Statistics in theory and practice. Swedish University of Agricultural Sciences, Department of Biometry and Forest Management, Umea, Sweden. Payette, S. (1992): Fire as a controlling process in the North American boreal forest. In: A systems analysis of the global boreal forest. Cambridge University Press, Cambridge. Perttu, K. L.and Aronsson, P.G. (1995). In: Chartier, Ph., Beenackers, A.A., and Grassi, G. (1995): Biomass for Energy, Environment, Agriculture and Industry (3 Volumes). Pergamon. Oxford. Schmidt-Vogt, H. (1987): Die Fichte. Verlag Paul Parey, Hamburg. Schmidt, P. (1987, 1989): Nederlandse boomsoorten I en II. LUW-Bosteelt & Bosecologie . Wageningen. Schober, R. (Ed) (1975): Ertragstafeln wichtiger Baumarten bei verschiedenen Durchforstungen. Frankfurt am Main. Schuett P. (Ed.), (1999): Enzyklopaedie der Holzgewächse: Handbuch und Atlas der Dendrologie. Landsberg am Lech. Shugart, (Ed.), (1992): A systems analysis of the global boreal forest. Cambridge University Press, Cambridge. Shvidenko, A. and Nilsson, S. (1995): Extent, distribution , and ecological role of fire in Russian forests. In: Fire, climate change, and carbon cycling in the boreal forests, Eric S. Kasischke and Brian J Stocks editors. Springer, New York. Shvidenko, A., Venevsky, S., Raile, R., and Nilsson, S. (1996a): Dynamics of fully stocked stands in the territory of the former Soviet Union. IIASA, Laxenburg Shvidenko, A., Venevsky, S., and Nilsson, S. (1996b): Increment and mortality for major forest species of northern Eurasia with variable growing stock. IIASA, Laxenburg. Sitch, S. and van Minnen, J.G. (1996): Incorporating natural vegetation into the LUC project framework. IIASA, Laxenburg. Song Zhaomin and Meng Ping (1993): Forest and Climate. In: Climate and Agriculture in China. Cheng Chunshu, (Ed). China Meteorological Press, Beijing. 46 Stolbovoi V., Fischer, G., Ovechkin, S., van Minnen, J., and Rojkova, S. (1997a): The IIASA/LUCproject digital georeferenced database for the Former Soviet Union. Volume 5: Land Categories, IIASA. Stolbovoi, V., Fischer, G., Sheremet, B. and Rojkova, S. (1997b): The IIASA/LUC-project digital georeferenced database for the Former Soviet Union. Volume 6: Agricultural Regionalization, IIASA. Swift, L.W. (1976): Algorithm for solar radiation on mountain slopes. Water Resources Research (12) 108-112. Waring, R.H., and Running, S.W. (1998): Forest ecosystems: Analysis at multiple scales. Academic Press, San Diego. Wiselius, S. I. (1994): Hout Vademecum. Stichting Centrum Hout, Almere, The Netherlands. de Wit, C.T. (1965): Photosynthesis of leaf canopies. Agricultural Research Report 663. Centre for Agricultural Publications and Documentation, Wageningen, The Netherlands. Woods, J., and Hall, D.O. (1994): Bio-energy for development, Technical and environmental dimensions. FAO, Rome. Wu Chuanjun (1994): Land use of China. Sciences Press, Beijing, China (in Chinese). 47 PLATES Plate 1 Length of growing periods. Plate 2 Thermal climates. Plate 3 Mean temperatures of coldest month. Plate 4 Mean temperatures of warmest month. Plate 5 Mean minimum temperatures of coldest month. Plate 6 Temperature growing periods (LGP t=5 ). Plate 7 Frost-free periods (LGP t=10). Plate 8 Temperature sums (t > 5o C). Plate 9 Temperature sums (t > 10o C). Plate 10 Zones with accessibility to roads and railroads. Plate 11 Agriculture and forest land. Plate 12 Aridity index. Plate 13 States of the FSU and Oblasts within Russia Administrative areas of FSU. Plate 14 Provinces of China. Plate 15 Productivity of Salix viminalis (t/ha biomass yield). Plate 16 Productivity of Salix viminalis in accessible areas, excluding cultivated and urban areas (t/ha biomass yield). Plate 17 Suitability index for biomass plantation forestry (excluding cultivated and urban areas). Plate 18 Suitability index for biomass plantation forestry of current forest areas. Plate 19 Suitability index for biomass plantation forestry in accessible areas (excluding cult ivated and urban areas). Plate 20 Suitability index for traditional production forestry (excluding cultivated and urban areas). Plate 21 Suitability index for traditional production forestry of current forest areas. Plate 22 Suitability index for traditional production forestry of accessible current forest areas. Plate 23 Suitability index for conservation forestry (excluding cultivated and urban areas). 49 Plate 1 Length of growing period 50 Plate 2 Thermal climates 51 Plate 3 Mean temperatures of coldest month 52 Plate 4 Mean temperatures of warmest month 53 Plate 5 Mean minimum temperatures of coldest month 54 Plate 6 Temperature growing periods (LGPt=5) 55 Plate 7 Frost-free periods (LGPt=10) 56 Plate 8 Accumulated temperature s (t > 5o C) 57 Plate 9 Accumulated temperatures (t > 10o C) 58 Plate 10 Zones with accessibility to roads and railroads 59 Plate 11 Agriculture and forest land 60 Plate 12 Aridity index 61 Plate 13 States of the FSU and Oblasts within Rusia 62 Plate 14 Provinces of China 63 Plate 15 Productivity of Salix viminalis (t/ha biomass yield) 64 Plate 16 Productivity of Salix viminalis in accessible areas, excluding cultivated and urban areas (t/ha biomass yield) 65 Plate 17 Suitability index for biomass plantation forestry (excluding cultivated and urban areas) 66 Plate 18 Suitability index for biomass plantation forestry of current forest areas 67 Plate 19 Suitability index for biomass plantation forestry in accessible areas (excluding cultivated and urban areas) 68 Plate 20 Suitability index for traditional production forestry (excluding cultivated and urban areas) 69 Plate 21 Suitability index for traditional production forestry of current forest areas 70 Plate 22 Suitability index for traditional production forestry of accessible current forest areas 71 Plate 23 Suitability index for conservation forestry in non-cultivated areas 72 APPENDIX I Table A-1 List of States of the FSU and Oblasts of Russia, respectively west and east of the Urals Code States of the FSU (excluding Russia) 11 12 13 14 15 16 17 18 19 20 21 22 23 Code 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Oblasts in Russia (West of the Urals) Krasnodar Kray Stavropol Kray Arkhangelsk oblast Astrakhan oblast Belgorod oblast Bryansk oblast Vladimir oblast Volgograd oblast Vologda oblast Voronezh oblast Nizhni Novgorod oblast Nenets a.okr. Ivanovo oblast Kaliningrad oblast Tver oblast Kaluga oblast Kirov oblast Kostroma oblast Samara oblast Kursk oblast Komi-Permyak a.okr. Leningrad oblast Lipetsk oblast Moscow oblast Murmansk oblast Novgorod oblast Orenburg oblast Oryel oblast Penza oblast Perm oblast Pskov oblast Rostov oblast Ryazan oblast Saratov oblast Smolensk oblast Tambov oblast Tula oblast Ulyanovsk oblast Yaroslavl oblast Adigei Republic Bashkortostan Republic Extents (000 ha) 2690 7868 20348 3938 6523 268445 19548 6313 6420 3000 9013 45390 57570 457066 Code 182 183 185 186 187 188 189 190 191 192 194 196 197 Code 101 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 176 181 193 195 198 7620 6635 38190 4598 2665 3483 2925 11265 14628 5195 7515 16858 2270 1240 8395 2963 11930 6000 5118 3020 3280 7500 2410 4665 13960 5450 12418 2458 4320 12715 5568 10133 3935 10375 4943 3435 2553 3690 3260 775 14435 Oblasts in Russia (West of the Urals) Daghestn Republic Kabardino-Balkarian Republic Kalmyk-Khalm-Tangch Republic Karelia Republic Komi Republic Mari-El Republic Mordovian SSR North-Ossetian SSR Karachai-Cherkess Republic Tatarstan Republic Udmurt Republic Checheno-Ingush Republic Chuvash Republic West of URAL Total Oblasts in Russia (East of the Urals) Altai Kray Gorno-Altai Republic Krasnoyarsk Kray Primorski Kray Taymyr a.okr. Khabarovsk Kray Amur oblast Evenk a.okr Yevrey (Jewish) a.oblast Irkutsk oblast Ust-Orda Buryat a.okr. Kamchatka oblast Koryak a.okr. Kemerovo oblast Chukchi a.okr. Kurgan oblast Magadan oblast Novosibirsk oblast Omsk oblast Sakhalin oblast Sverdlovsk oblast Aga-Buryat a.okr. Tomsk oblast Tyumen oblast Khanty-Mansi a.okr. Yamalo-Nenets a.okr. Chelyabinsk oblast Chita oblast Buryat Republic Tuva Republic Chita oblast Buryat Republic Tuva Republic Khakass Republic Sakha (Yakutia) Republic Russia East of Urals 16653 9385 71140 16338 82285 77545 36283 75673 3700 76270 2178 17045 28903 9500 70770 7110 45830 17673 13980 8095 19273 1970 31145 15860 53163 66588 8763 41493 33533 17035 6120 303275 9750 3595 241375 1284574 Russia 1674521 Other States of the FSU 457066 2131587 FSU 73 Extents (000 ha) 5033 1238 7510 18253 41370 2365 2590 778 1468 6663 4150 1930 1808 389947 APPENDIX II Potential Productivity for Forestry - Scenario results. Salix viminalis: Table A2 Table A3 Table A4 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Biomass plantation forestry: Table A5 Table A6 Table A7 Table A8 Table A9 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Accessible areas currently under forest. All areas, excluding cultivated areas, urban areas and areas currently under forest. Traditional production forestry: Table A10 Table A11 Table A12 Table A13 Table A14 All areas. Accessible areas. Accessible areas, excluding cultivated and urban areas. Accessible areas currently under forest.. All areas, excluding cultivated areas, urban areas and areas currently under forest. Conservation forestry: Table A15 Table A16 Table A17 All areas. All areas, excluding cultivated and urban areas. All areas, excluding cultivated areas, urban areas and areas currently under forest. 74 APPENDIX II Table A2 PRODUCTION POTENTIALS FOR BIOMASS PLANTATIONS WITH WILLOW ( Salix viminalis ) - ALL AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 156198 0 0 0 0 0 0 0 78 156119 2690 7868 20348 3938 6523 268445 19548 6313 6420 3000 9013 45390 57570 0 0 640 137 6 1 0 284 582 16 0 0 634 0 0 2410 598 62 6 0 1038 1288 54 2 0 3059 0 320 3240 938 141 1907 85 1860 2070 93 23 1 5095 457066 2300 8517 Krasnodar Kray 12 7620 Stavropol Kray 12 6635 Arkhangelsk oblast 12 38190 Astrakhan oblast 12 4598 Belgorod oblast 12 2665 Bryansk oblast 12 3483 Vladimir oblast 12 2925 Volgograd oblast 12 11265 Vologda oblast 12 14628 Voronezh oblast 12 5195 Nizhni Novgorod oblast 12 7515 Nenets a.okr. 12 16858 Ivanovo oblast 12 2270 Kaliningrad oblast 12 1240 Tver oblast 12 8395 Kaluga oblast 12 2963 Kirov oblast 12 11930 Kostroma oblast 12 6000 Samara oblast 12 5118 Kursk oblast 12 3020 Komi-Permyak a.okr. 12 3280 Leningrad oblast 12 7500 Lipetsk oblast 12 2410 Moscow oblast 12 4665 Murmansk oblast 12 13960 Novgorod oblast 12 5450 Orenburg oblast 12 12418 Oryel oblast 12 2458 Penza oblast 12 4320 Perm oblast 12 12715 Pskov oblast 12 5568 Rostov oblast 12 10133 Ryazan oblast 12 3935 Saratov oblast 12 10375 Smolensk oblast 12 4943 Tambov oblast 12 3435 Tula oblast 12 2553 Ulyanovsk oblast 12 3690 Yaroslavl oblast 12 3260 Adigei Republic 12 775 Bashkortostan Republic 12 14435 Daghestn Republic 12 5033 Kabardino-Balkarian Republic 12 1238 Kalmyk-Khalm-Tangch Republic 12 7510 Karelia Republic 12 18253 Komi Republic 12 41370 Mari-El Republic 12 2365 Mordovian SSR 12 2590 North-Ossetian SSR 12 778 Karachai-Cherkess Republic 12 1468 Tatarstan Republic 12 6663 Udmurt Republic 12 4150 Checheno-Ingush Republic 12 1930 Chuvash Republic 12 1808 Altai Kray 12 16653 26 1 0 0 3 0 0 0 0 0 50 0 0 29 16 0 0 0 0 231 0 0 159 0 0 0 0 263 0 0 16 0 166 0 0 14 226 0 2 2 0 1 12 0 0 0 24 44 37 20 0 0 11 0 698 42 4 0 0 9 127 186 0 220 0 611 0 38 198 271 175 65 73 0 794 0 70 337 348 0 425 0 793 0 53 304 0 915 0 0 29 562 0 94 10 263 3 18 0 0 0 71 145 39 27 91 101 13 6 1532 FSU REPUBLICS Average annual biomass increments (000tons) ---------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 0 0 1 0 0 0 1 250 0 0 0 0 1 0 0 0 0 1 0 0 12 0 0 640 137 5 1 0 284 582 15 0 0 622 0 0 1770 461 56 5 0 754 706 38 2 0 2425 0 320 830 340 79 1901 85 822 782 39 21 1 2036 0 706 393 186 85 3428 103 273 260 42 55 1 541 2690 6274 16715 2814 6297 263111 19359 4180 4090 2865 8935 45388 51930 0 0 9391 1670 92 11 0 3669 7853 212 0 0 9292 0 0 28141 5947 696 53 0 10957 14766 587 16 0 35231 0 2221 33345 7987 1233 9723 450 15621 19376 836 139 7 48529 0 0 0 0 12 0 0 0 0 19 0 0 199 0 0 9391 1670 80 11 0 3669 7853 193 0 0 9093 0 0 18750 4277 604 42 0 7288 6913 375 16 0 25939 0 2221 5204 2040 537 9670 450 4664 4610 249 123 7 13298 0 1638 806 410 196 5881 182 558 524 95 110 3 1201 15773 14 2286 6217 7256 6073 434648 32190 96394 139467 230 31960 64204 43073 11604 651 5 152 0 223 367 233 16 1768 858 929 0 46 368 766 361 343 380 154 1195 142 1050 837 470 0 751 88 1090 618 467 738 196 1202 88 0 1306 699 141 378 199 1377 33 36 0 79 35 130 397 48 28 687 292 75 24 2949 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 14 6 0 0 2 0 0 14 1 0 0 3 0 0 0 0 0 50 0 0 29 16 0 0 0 0 231 0 0 159 0 0 0 0 263 0 0 16 0 166 0 0 14 226 0 2 2 0 1 10 0 0 0 24 44 23 14 0 0 9 0 698 16 3 0 0 6 127 186 0 220 0 561 0 38 169 255 175 65 73 0 563 0 70 178 348 0 425 0 530 0 53 288 0 749 0 0 15 336 0 92 8 263 2 6 0 0 0 47 101 2 7 91 101 2 6 834 609 1 152 0 214 240 47 16 1548 858 318 0 8 170 495 186 278 307 154 401 142 980 500 122 0 326 88 297 618 414 434 196 287 88 0 1277 137 141 284 189 1114 30 18 0 79 35 59 252 9 1 596 191 62 18 1417 298 15 25 0 369 86 0 9 144 301 66 0 0 18 44 0 210 67 322 224 31 643 213 0 0 212 219 7 918 221 114 117 17 154 27 375 0 573 17 58 1421 48 17 0 39 3 35 323 8 1 558 42 50 96 529 6665 6615 37993 4597 2073 3029 2692 11240 12715 4036 6520 16837 2225 855 7585 2602 11376 5554 4641 1600 3107 5806 1360 4195 13960 4488 12110 1361 2784 12027 4716 9819 2716 10132 4916 1753 1853 2976 2864 519 11636 4944 1184 7510 18126 41332 2200 1869 722 1439 5418 3815 1805 1688 13175 408 10 0 0 36 0 0 0 0 0 679 0 0 417 201 0 3 0 0 3096 0 0 2060 0 0 0 0 3658 0 0 207 0 2124 0 0 172 3179 0 29 28 4 14 170 0 0 0 333 542 542 276 0 0 158 0 8894 565 41 0 0 91 1293 1754 0 1910 0 6016 0 349 2169 2574 1721 688 684 0 8556 0 613 3754 3335 0 3960 0 8991 0 506 2868 0 9442 0 0 334 6550 0 870 103 2452 38 235 0 0 0 852 1601 565 345 943 932 182 67 16952 5038 47 776 0 1411 2775 2014 95 10214 5307 7876 0 392 3221 5337 2832 2215 2404 904 10928 746 5756 6706 4038 0 5784 460 10803 3540 2813 5222 1200 11109 528 0 7881 7372 819 2430 1489 8560 212 351 0 390 179 1227 3092 621 352 4308 1993 590 175 24546 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 36 0 0 0 0 0 234 95 0 0 35 0 0 196 10 0 0 36 0 0 0 0 0 679 0 0 417 201 0 3 0 0 3096 0 0 2060 0 0 0 0 3658 0 0 207 0 2124 0 0 172 3179 0 29 28 4 12 134 0 0 0 333 542 308 181 0 0 123 0 8894 157 31 0 0 55 1293 1754 0 1910 0 5337 0 349 1752 2373 1721 685 684 0 5460 0 613 1694 3335 0 3960 0 5333 0 506 2661 0 7318 0 0 162 3371 0 841 75 2448 24 65 0 0 0 519 1059 23 69 943 932 24 67 8058 4473 6 776 0 1320 1482 260 95 8304 5307 1860 0 43 1052 2763 1111 1527 1720 904 2372 746 5143 2952 703 0 1824 460 1812 3540 2307 2354 1200 1667 528 0 7547 822 819 1560 1386 6108 174 116 0 390 179 375 1491 56 7 3365 1061 408 108 7594 730 34 42 0 756 181 0 17 319 617 135 0 0 37 95 0 408 125 597 444 65 1148 415 0 0 404 382 14 1751 461 211 260 34 306 54 738 0 1086 33 142 2579 96 38 0 80 5 78 612 18 3 1032 94 110 183 1095 Average annual biomass yield (kg/ha) -----------------------------VS S MS mS vmS VS+S VS...MS VS...mS 0 0 1000 0 0 0 7026 3208 0 0 14673 12190 15333 11000 0 12919 13493 13250 0 0 14656 0 0 11677 9945 11226 8833 0 10556 11464 10870 8000 0 11517 0 6941 10292 8515 8745 5099 5294 8398 9360 8989 6043 7000 9525 13996 11318 15692 10000 0 0 12000 0 0 0 0 0 13580 0 0 14379 12563 0 3000 0 0 13403 0 0 12956 0 0 0 0 13909 0 0 12938 0 12795 0 0 12286 14066 0 14500 14000 4000 14000 14167 0 0 0 13875 12318 14649 13800 0 0 14364 0 12742 13452 10250 0 0 10111 10181 9430 0 8682 0 9846 0 9184 10955 9498 9834 10585 9370 0 10776 0 8757 11139 9583 0 9318 0 11338 0 9547 9434 0 10319 0 0 11517 11655 0 9255 10300 9323 12667 13056 0 0 0 12000 11041 14487 12778 10363 9228 14000 11167 11065 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used (short rotation coppice systems): VS conditions: shoots+twigs+leaves/stool+roots, 60/40; S and MS: 50/50; mS and VmS: 40/60 0 0 0 0 18634 0 0 0 0 16027 0 0 16049 0 0 14673 12206 15275 12247 0 12939 13482 13180 0 0 14607 0 9602 10595 9275 10802 9098 0 9665 9794 9946 8024 0 10697 0 6945 6271 5999 6764 5088 5265 5676 5898 6424 5829 6446 6531 0 2319 2050 2203 2317 1716 1773 2041 2018 2259 2009 2131 2219 8842 16429 13981 10327 5936 1911 7739 9400 5105 0 6327 7561 8644 5938 5777 6185 8478 0 8522 8753 6967 7845 6458 6326 5870 9145 5254 5482 8012 8591 0 7702 5227 9911 5728 6024 7076 6122 9242 6000 0 6034 10546 5809 6429 7482 6216 6424 9750 0 4937 5114 9438 7788 12938 12571 6271 6825 7867 7292 8323 18305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17097 16679 0 0 0 0 0 17125 16764 0 0 17115 0 0 14278 14653 0 0 12429 0 0 0 0 0 13653 0 0 14354 12440 0 13358 0 0 13391 0 0 12965 0 0 0 0 13885 0 0 12873 0 12772 0 0 12165 14087 0 12453 13766 12341 14108 13326 0 0 0 13787 12277 13405 13271 0 0 13792 0 12751 10047 10265 0 0 8884 10151 9442 0 8681 0 9513 0 9281 10386 9298 9849 10520 9419 0 9691 0 8727 9504 9585 0 9326 0 10070 0 9630 9256 0 9766 0 0 10912 10024 0 9112 10003 9297 10348 10766 0 0 0 11020 10435 10812 10637 10327 9229 10770 12190 9664 7345 6298 5101 0 6170 6181 5500 5892 5364 6188 5844 0 5604 6207 5585 5973 5482 5611 5861 5913 5253 5248 5900 5779 0 5594 5235 6107 5728 5568 5428 6107 5816 5980 0 5907 5984 5809 5491 7341 5483 5721 6551 0 4927 5124 6380 5907 6478 6258 5649 5549 6578 6138 5359 2453 2201 1703 0 2049 2098 0 1818 2212 2046 2040 0 0 2065 2176 0 1944 1876 1853 1985 2078 1785 1951 1869 0 1907 1743 1950 1907 2087 1855 2228 2011 1978 2004 1968 0 1895 1940 2459 1815 2018 2187 0 2015 1686 2247 1892 2160 2061 1850 2207 2191 1905 2068 APPENDIX II Table A2 PRODUCTION POTENTIALS FOR BIOMASS PLANTATIONS WITH WILLOW ( Salix viminalis ) - ALL AREAS ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic12 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 9385 0 3 44 0 0 3 41 21 9320 71140 31 202 1200 0 31 171 998 1022 68918 16338 111 359 720 0 111 248 361 177 15441 82285 0 0 0 0 0 0 0 0 82285 77545 95 693 1305 0 95 598 612 530 75703 36283 202 1168 3459 0 202 966 2291 1708 31116 75673 0 0 0 0 0 0 0 0 75672 3700 334 732 984 0 334 398 252 72 2645 76270 0 0 8 0 0 0 8 13 76250 2178 0 0 0 0 0 0 0 0 2177 17045 0 0 0 0 0 0 0 0 17022 28903 0 0 0 0 0 0 0 0 28902 9500 0 25 413 0 0 25 388 309 8778 70770 0 0 0 0 0 0 0 0 70745 7110 35 273 1228 0 35 238 955 913 4968 45830 0 0 0 0 0 0 0 0 45830 17673 53 1024 3433 0 53 971 2409 1333 12907 13980 0 26 2470 0 0 26 2444 751 10759 8095 0 0 3 0 0 0 3 15 7984 19273 16 872 2599 0 16 856 1727 595 16078 1970 0 0 0 0 0 0 0 8 1962 31145 0 143 1910 0 0 143 1767 856 28379 15860 0 216 2999 0 0 216 2783 1415 11446 53163 0 0 461 0 0 0 461 272 52429 66588 0 0 0 0 0 0 0 0 66580 8763 81 336 738 0 81 255 402 1066 6959 41493 0 0 0 0 0 0 0 130 41362 33533 0 0 1 0 0 0 1 22 33509 17035 0 0 0 0 0 0 0 9 17026 6120 5 20 55 0 5 15 35 17 6048 303275 0 0 0 0 0 0 0 0 303257 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 389947 1284574 1674521 1353 1661 3014 7530 7624 15154 22516 26979 49495 36 0 36 1317 1661 2978 6177 5963 12140 14986 19355 34341 8755 11783 20538 358600 1245632 1604232 18346 21954 40300 77949 78049 155998 164532 183406 347938 614 0 614 17732 21954 39686 59603 56095 115698 86583 105357 191940 16969 25688 42657 13559 13217 13371 10352 10237 10294 1640 1125 18480 15783 14798 16295 13863 19145 44848 413 9290 9250 13783 16663 18168 21050 11995 16385 23425 2840 56143 17725 37325 115468 20900 40580 5038 163355 119045 72183 40 0 0 0 1 228 1606 105 8 173 228 3376 523 2324 243 1174 1047 66 168 138 0 498 418 92 0 1 0 0 0 4 0 0 0 0 1 6 468 2721 218 38 535 346 5233 983 3929 801 2186 2519 193 353 545 0 1212 1076 203 1 7 4 0 0 11 0 0 48 228 1681 179 2099 4207 678 625 1577 346 5543 1168 4478 1291 2369 3259 309 495 767 0 1581 1094 225 145 82 31 78 1 15 1 0 0 0 0 0 15 535 10 0 0 114 1573 171 976 2 461 129 1 0 0 0 97 13 3 0 0 0 0 0 0 0 0 0 0 0 1 213 1071 95 8 173 114 1803 352 1348 241 713 918 65 168 138 0 401 405 89 0 1 0 0 0 4 0 0 0 0 1 5 240 1115 113 30 362 118 1857 460 1605 558 1012 1472 127 185 407 0 714 658 111 1 6 4 0 0 7 0 0 48 228 1680 173 1631 1486 460 587 1042 0 310 185 549 490 183 740 116 142 222 0 369 18 22 144 75 27 78 1 4 1 0 52 247 1768 575 1693 1153 462 136 204 0 100 43 97 182 16 92 36 30 86 0 181 0 40 192 552 85 109 4 3 4 0 1540 650 15031 15029 11006 10934 12722 18384 43067 67 3525 8040 9207 15189 15782 17700 11649 15861 22573 2840 54381 16630 37061 115130 20267 40464 4850 163350 119027 72177 40 0 0 2 13 3610 25467 1568 114 2472 3729 53869 8079 37620 3367 18334 15268 912 2204 1823 0 7738 6285 1348 0 13 4 0 0 57 0 0 0 0 9 57 6322 37185 2774 385 6211 4931 72656 12687 54203 8871 28381 29950 2177 4001 6094 0 15445 13313 2501 12 70 44 0 0 128 0 0 311 1512 11371 1147 17484 47122 5775 3721 11949 4933 74695 13802 57728 11777 29454 34332 2882 4841 7538 0 17886 13433 2649 819 564 198 400 4 153 4 0 0 0 0 0 269 9731 179 0 0 2095 28350 3126 18017 34 8302 2306 23 0 0 0 1860 246 49 0 0 0 0 0 2 0 0 0 0 2 13 3341 15736 1389 114 2472 1634 25519 4953 19603 3333 10032 12962 889 2204 1823 0 5878 6039 1299 0 13 4 0 0 55 0 0 0 0 7 44 2712 11718 1206 271 3739 1202 18787 4608 16583 5504 10047 14682 1265 1797 4271 0 7707 7028 1153 12 57 40 0 0 71 0 0 311 1512 11362 1090 11162 9937 3001 3336 5738 2 2039 1115 3525 2906 1073 4382 705 840 1444 0 2441 120 148 807 494 154 400 4 25 4 0 113 545 3983 1283 3848 2590 1001 261 432 0 226 89 218 359 31 180 79 67 190 0 405 0 92 403 1266 165 184 7 6 10 0 0 0 2000 13000 15833 15857 14933 14250 14289 16355 15956 15447 16188 13856 15617 14583 13818 13119 13210 0 15538 15036 14652 0 13000 4000 0 0 14250 0 0 0 0 9000 9500 13509 13666 12725 10132 11609 14251 13884 12906 13796 11075 12983 11890 11280 11334 11182 0 12743 12373 12320 12000 10000 11000 0 0 11636 0 0 6479 6632 6764 6408 8330 11201 8518 5954 7577 14257 13476 11817 12891 9122 12433 10535 9327 9780 9828 0 11313 12279 11773 5648 6878 6387 5128 4000 10200 4000 0 937041 12421 23589 34600 4100 8321 11168 11011 8142 894173 193896 308407 378484 74589 119307 114511 70077 18033 15610 13074 10939 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL LC 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Average annual biomass increments (000tons) ---------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 6 33 245 0 6 27 212 36 378 1806 7381 0 378 1428 5575 2222 1615 4134 6346 0 1615 2519 2212 376 0 0 0 0 0 0 0 0 1260 7370 11293 0 1260 6110 3923 1268 2766 11846 24359 0 2766 9080 12513 3169 0 0 0 0 0 0 0 0 4676 8662 10142 0 4676 3986 1480 139 0 0 57 0 0 0 57 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 2150 0 0 205 1945 642 0 0 0 0 0 0 0 0 440 2807 7838 0 440 2367 5031 1533 0 0 0 0 0 0 0 0 653 9392 23239 0 653 8739 13847 2935 0 221 12754 0 0 221 12533 2080 0 0 23 0 0 0 23 35 204 7935 17281 0 204 7731 9346 1132 0 0 0 0 0 0 0 24 0 1167 10921 0 0 1167 9754 2025 0 1922 16391 0 0 1922 14469 3902 0 0 2364 0 0 0 2364 696 0 0 0 0 0 0 0 0 1001 3408 5679 0 1001 2407 2271 1796 0 0 3 0 0 0 3 413 0 0 7 0 0 0 7 70 0 0 0 0 0 0 0 29 61 189 387 0 61 128 198 38 0 0 0 0 0 0 0 0 Average annual biomass yield (kg/ha) -----------------------------VS S MS mS vmS VS+S VS...MS VS...mS 6000 11000 5568 0 12447 8975 5171 1718 12194 8941 6151 0 12036 8347 5588 2175 14550 11515 8814 0 14590 10170 6124 2123 0 0 0 0 0 0 0 0 13263 10635 8654 0 13221 10222 6415 2392 13693 10142 7042 0 13694 9396 5462 1856 0 0 0 0 0 0 0 0 14000 11833 10307 0 14004 10008 5879 1942 0 0 7125 0 0 0 7570 2601 0 0 0 0 0 0 0 2980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8200 5206 0 0 8178 5017 2077 0 0 0 0 0 0 0 0 12571 10282 6383 0 12435 9941 5270 1679 0 0 0 0 0 0 0 0 12321 9172 6769 0 12216 9004 5748 2202 0 8500 5164 0 0 8516 5128 2769 0 0 7667 0 0 0 7059 2315 12750 9100 6649 0 12535 9031 5411 1903 0 0 0 0 0 0 0 3172 0 8161 5718 0 0 8144 5520 2366 0 8898 5465 0 0 8895 5200 2757 0 0 5128 0 0 0 5132 2555 0 0 0 0 0 0 0 0 12358 10143 7695 0 12385 9425 5653 1685 0 0 3000 0 0 0 7545 3181 0 0 7000 0 0 0 7601 3112 0 0 0 0 0 0 0 3315 12200 9450 7036 0 12145 8491 5612 2329 0 0 0 0 0 0 0 0 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used (short rotation coppice systems): VS conditions: shoots+twigs+leaves/stool+roots, 60/40; S and MS: 50/50; mS and VmS: 40/60 7307 17056 6798 #DIV/0! 7030 17056 13464 13217 13326 9649 9407 9530 5778 5443 5589 1938 2180 2077 0 0 0 0 17762 18190 17845 0 0 18409 18028 18242 18458 18484 18002 17941 17043 0 0 0 19143 19065 18500 0 0 0 0 0 17020 0 0 0 0 13300 12967 15720 14686 14660 13800 14328 14317 14151 14086 14543 13821 14068 14115 13579 13146 13222 0 14669 14918 14560 0 13849 13276 0 0 14020 0 0 0 0 9764 9451 11287 10511 10636 9146 10322 10226 10117 10018 10331 9862 9923 9977 9971 9731 10495 0 10797 10675 10412 10015 9946 9838 9021 8375 10048 0 0 6492 6617 6762 6305 6843 6688 6518 5684 5507 6103 6580 6038 6416 5926 5867 5919 6073 5918 6515 0 6621 6500 6719 5594 6600 5743 5116 4807 6076 5391 0 2164 2206 2254 2231 2274 2246 2169 1919 2119 0 2268 2094 2248 1979 1944 1966 2195 2241 2206 0 2229 2179 2312 2100 2295 1933 1691 1716 2230 2208 0 18192 14338 10253 6364 2215 APPENDIX II Table A3 PRODUCTION POTENTIALS FOR BIOMASS PLANTATIONS WITH WILLOW ( Salix viminalis ) - ACCESSIBLE AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 63130 0 0 0 0 0 0 0 46 63084 0 0 1 0 0 0 1 146 2025 6095 17955 3365 4763 165068 10428 5573 6018 2848 4775 22535 51955 0 0 549 112 6 1 0 245 543 15 0 0 573 0 0 2011 495 52 4 0 910 1199 51 2 0 2747 0 230 2741 779 115 1263 75 1650 1944 88 21 1 4558 0 0 0 0 1 0 0 0 0 1 0 0 12 0 0 549 112 5 1 0 245 543 14 0 0 561 0 0 1462 383 46 3 0 665 656 36 2 0 2174 0 230 730 284 63 1259 75 740 745 37 19 1 1811 0 524 341 151 65 2375 93 243 249 39 49 1 476 2025 4848 14873 2434 4582 161429 10260 3679 3824 2720 4706 22533 46921 0 0 8036 1370 85 9 0 3165 7321 203 0 0 8375 0 0 23504 4912 578 38 0 9578 13745 559 12 0 31607 0 1581 28069 6609 1005 6437 393 13768 18136 799 122 6 43432 303403 2044 7471 13465 14 2030 5427 5994 4606 284834 28564 84533 Krasnodar Kray 12 6715 Stavropol Kray 12 5428 Arkhangelsk oblast 12 14210 Astrakhan oblast 12 2923 Belgorod oblast 12 2248 Bryansk oblast 12 3095 Vladimir oblast 12 2510 Volgograd oblast 12 9108 Vologda oblast 12 9155 Voronezh oblast 12 4550 Nizhni Novgorod oblast12 6403 Nenets a.okr. 12 2583 Ivanovo oblast 12 1875 Kaliningrad oblast 12 1183 Tver oblast 12 6128 Kaluga oblast 12 2445 Kirov oblast 12 8750 Kostroma oblast 12 4263 Samara oblast 12 4408 Kursk oblast 12 2623 Komi-Permyak a.okr. 12 2220 Leningrad oblast 12 5678 Lipetsk oblast 12 2140 Moscow oblast 12 4130 Murmansk oblast 12 4110 Novgorod oblast 12 3935 Orenburg oblast 12 8305 Oryel oblast 12 2018 Penza oblast 12 3893 Perm oblast 12 8423 Pskov oblast 12 4508 Rostov oblast 12 8245 Ryazan oblast 12 3453 Saratov oblast 12 8433 Smolensk oblast 12 4113 Tambov oblast 12 2905 Tula oblast 12 2283 Ulyanovsk oblast 12 3218 Yaroslavl oblast 12 2350 Adigei Republic 12 605 Bashkortostan Republic12 8983 Daghestn Republic 12 3843 Kabardino-Balkarian Republic 12 898 Kalmyk-Khalm-Tangch 12 Republic4735 Karelia Republic 12 9165 Komi Republic 12 14183 Mari-El Republic 12 1575 Mordovian SSR 12 2315 North-Ossetian SSR 12 608 Karachai-Cherkess Republic 12 1085 Tatarstan Republic 12 5278 Udmurt Republic 12 3425 Checheno-Ingush Republic 12 1555 25 1 0 0 3 0 0 0 0 0 41 0 0 25 10 0 0 0 0 201 0 0 140 0 0 0 0 222 0 0 12 0 150 0 0 5 201 0 2 2 0 1 10 0 0 0 18 42 35 17 0 0 10 40 4 0 0 9 116 165 0 137 0 542 0 25 185 189 151 46 38 0 699 0 49 296 322 0 288 0 663 0 43 235 0 810 0 0 16 500 0 74 9 190 3 16 0 0 0 50 136 37 21 70 84 12 589 5 94 0 194 334 207 15 1019 772 827 0 31 343 532 310 251 258 144 1057 101 741 740 433 0 515 60 901 550 308 596 151 1070 79 0 1110 624 121 263 189 969 31 33 0 59 19 88 362 46 22 536 239 74 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 13 5 0 0 2 13 1 0 0 3 0 0 0 0 0 41 0 0 25 10 0 0 0 0 201 0 0 140 0 0 0 0 222 0 0 12 0 150 0 0 5 201 0 2 2 0 1 8 0 0 0 18 42 22 12 0 0 8 15 3 0 0 6 116 165 0 137 0 501 0 25 160 179 151 46 38 0 498 0 49 156 322 0 288 0 441 0 43 223 0 660 0 0 11 299 0 72 7 190 2 6 0 0 0 32 94 2 4 70 84 2 549 1 94 0 185 218 42 15 882 772 285 0 6 158 343 159 205 220 144 358 101 692 444 111 0 227 60 238 550 265 361 151 260 79 0 1094 124 121 189 180 779 28 17 0 59 19 38 226 9 1 466 155 62 259 13 16 0 314 74 0 9 75 269 57 0 0 17 30 0 148 42 292 196 25 459 187 0 0 164 142 5 830 168 103 88 16 137 24 318 0 504 13 56 967 43 17 0 29 2 19 289 8 0 427 39 50 5862 5410 14085 2922 1739 2686 2303 9084 8061 3509 5519 2582 1844 824 5566 2135 8351 3962 3971 1370 2093 4478 1213 3697 4110 3257 8102 1111 2512 7947 3808 8006 2366 8217 4089 1477 1659 2592 2073 360 7046 3762 848 4735 9074 14161 1469 1664 554 1062 4315 3147 1432 403 9 0 0 36 0 0 0 0 0 556 0 0 360 126 0 2 0 0 2693 0 0 1805 0 0 0 0 3072 0 0 151 0 1917 0 0 59 2831 0 24 26 3 13 141 0 0 0 254 511 516 255 0 0 132 553 36 0 0 91 1176 1563 0 1190 0 5316 0 231 2017 1785 1487 491 359 0 7523 0 426 3289 3088 0 2667 0 7506 0 413 2211 0 8357 0 0 181 5827 0 684 97 1768 30 201 0 0 0 598 1494 537 298 714 780 155 FSU REPUBLICS Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 0 0 1000 0 0 0 6961 3206 0 0 0 0 11 0 0 0 0 19 0 0 198 0 0 8036 1370 74 9 0 3165 7321 184 0 0 8177 0 0 15468 3542 493 29 0 6413 6424 356 12 0 23232 0 1581 4565 1697 427 6399 393 4190 4391 240 110 6 11825 0 1212 699 334 151 4076 165 495 502 88 98 2 1058 120357 228 28336 55969 35824 8880 13975 11315 4585 41 479 0 1231 2526 1791 89 5895 4777 6982 0 264 2995 3704 2436 1612 1592 844 9640 534 4062 5910 3728 0 3924 316 8958 3154 1899 4174 928 9868 474 0 6650 6567 705 1725 1417 6046 188 313 0 291 98 837 2831 593 302 3347 1643 562 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30 0 0 0 0 0 227 91 0 0 28 191 9 0 0 36 0 0 0 0 0 556 0 0 360 126 0 2 0 0 2693 0 0 1805 0 0 0 0 3072 0 0 151 0 1917 0 0 59 2831 0 24 26 3 11 111 0 0 0 254 511 289 164 0 0 104 150 27 0 0 55 1176 1563 0 1190 0 4760 0 231 1657 1659 1487 489 359 0 4830 0 426 1484 3088 0 2667 0 4434 0 413 2060 0 6440 0 0 122 2996 0 660 71 1765 17 60 0 0 0 344 983 21 43 714 780 23 4032 5 479 0 1140 1350 228 89 4705 4777 1666 0 33 978 1919 949 1121 1233 844 2117 534 3636 2621 640 0 1257 316 1452 3154 1486 1963 928 1511 474 0 6469 740 705 1041 1320 4278 158 112 0 291 98 239 1337 56 4 2633 863 407 637 29 28 0 644 156 0 16 163 552 115 0 0 34 65 0 288 80 540 388 52 819 364 0 0 308 248 10 1583 345 191 195 32 270 47 626 0 957 26 138 1758 86 37 0 57 4 43 547 18 1 790 86 109 16120 9000 0 0 12000 0 0 0 0 0 13561 0 0 14400 12600 0 2000 0 0 13398 0 0 12893 0 0 0 0 13838 0 0 12583 0 12780 0 0 11800 14085 0 12000 13000 3000 13000 14100 0 0 0 14111 12167 14743 15000 0 0 13200 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used (short rotation coppice systems): VS conditions: 60/40; S and MS: 50/50; mS and VmS: 40/60. 0 0 14638 12232 14167 9000 0 12918 13483 13533 0 0 14616 0 0 0 0 0 0 6874 0 0 9602 11688 10240 0 14646 10577 9923 8484 0 12190 9239 11115 8739 18529 15248 10657 9500 5097 0 12217 8967 0 5240 0 0 0 10525 8344 0 12903 9644 11464 9329 0 13485 9793 10961 9080 16028 13205 9971 6000 5810 0 0 8023 0 6000 0 0 0 11506 9529 16049 14579 10688 0 6867 6256 5982 6757 5084 5251 5660 5894 6425 5850 6455 6528 0 2313 2050 2205 2320 1716 1771 2033 2014 2258 2008 2130 2222 8939 16286 13959 10313 5977 1928 13825 7784 18305 14301 10068 9000 8200 0 14583 10235 0 5096 0 0 0 0 0 0 0 0 10111 6345 0 12429 8884 10138 7563 0 0 10144 9473 8652 0 0 9451 0 5933 0 0 0 8686 5785 0 0 8671 0 6188 0 0 0 9808 8443 0 13577 9505 0 0 0 0 0 9240 8516 0 0 9285 10903 8732 0 14341 10386 9444 6962 0 12427 9292 9848 7858 0 0 9847 10674 6422 0 13279 10541 9447 6171 0 0 9445 0 5861 0 0 0 10763 9120 0 13395 9698 0 5287 0 0 0 8694 5482 0 0 8719 11111 7986 0 12925 9503 9590 8610 0 0 9594 0 0 0 0 0 9260 7619 0 0 9275 0 5267 0 0 0 11321 9942 0 13820 10050 0 5735 0 0 0 9605 6166 0 0 9604 9409 7003 0 12815 9254 0 6146 0 0 0 10317 9222 0 12766 9757 0 6000 0 0 0 0 0 0 0 0 11313 5991 0 12075 10993 11654 10524 0 14087 10024 0 5826 0 0 0 9243 6559 0 12453 9125 10778 7497 0 13724 9997 9305 6239 0 12352 9265 10000 6065 17097 14048 10296 12563 9485 16646 13347 10782 0 0 0 0 0 0 4932 0 0 0 0 5158 0 0 0 11960 9511 0 13767 10896 10985 7820 0 12288 10425 14514 12891 17137 13430 10791 14190 13727 16785 13226 10588 10200 6244 0 0 10223 9286 6874 0 0 9274 12917 7595 17181 13875 10783 7349 6335 5094 0 6169 6178 5505 5897 5337 6189 5840 0 5595 6209 5586 5972 5475 5612 5861 5913 5267 5252 5902 5780 0 5551 5224 6106 5731 5617 5431 6136 5814 5977 0 5913 5982 5810 5507 7337 5494 5651 6556 0 4908 5117 6367 5918 6478 6193 5654 5578 6578 2456 2195 1703 0 2050 2103 0 1823 2160 2047 2032 0 0 2066 2182 0 1949 1879 1847 1984 2064 1786 1951 1869 0 1879 1744 1950 1908 2059 1848 2227 2014 1977 2005 1970 0 1897 1959 2459 1818 1997 2187 0 1954 1689 2286 1893 2160 2072 1851 2195 2191 APPENDIX II Table A3 PRODUCTION POTENTIALS FOR BIOMASS PLANTATIONS WITH WILLOW ( Salix viminalis ) - ACCESSIBLE AREAS ADM REG NAME 197 101 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Chuvash Republic 12 Altai Kray 12 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 1678 0 5 21 0 0 5 16 92 1565 0 57 156 0 0 57 99 174 11538 486 1036 2075 0 486 550 1039 342 9120 6202 11601 17158 0 6202 5399 5557 684 2693 0 3 36 0 0 3 33 16 2640 6 33 203 0 6 27 170 28 16560 26 157 819 0 26 131 662 687 15055 309 1404 5094 0 309 1095 3690 1502 7290 68 229 453 0 68 161 224 93 6744 988 2625 3996 0 988 1637 1371 199 2848 0 0 0 0 0 0 0 0 2847 0 0 0 0 0 0 0 0 9013 45 250 429 0 45 205 179 76 8505 601 2600 3671 0 601 1999 1071 169 9438 142 630 1543 0 142 488 913 653 7241 1951 6659 11796 0 1951 4708 5137 1245 6140 0 0 0 0 0 0 0 0 6140 0 0 0 0 0 0 0 0 1545 189 408 534 0 189 219 126 29 982 2651 4839 5575 0 2651 2188 736 54 17280 0 0 7 0 0 0 7 12 17261 0 0 54 0 0 0 54 32 1180 0 0 0 0 0 0 0 0 1180 0 0 0 0 0 0 0 0 3853 0 0 0 0 0 0 0 0 3852 0 0 0 0 0 0 0 0 5013 0 0 0 0 0 0 0 0 5012 0 0 0 0 0 0 0 0 5290 0 15 280 0 0 15 265 210 4800 0 121 1454 0 0 121 1333 446 8158 0 0 0 0 0 0 0 0 8155 0 0 0 0 0 0 0 0 5195 30 217 940 0 30 187 723 680 3575 368 2226 6026 0 368 1858 3800 1142 9245 0 0 0 0 0 0 0 0 9245 0 0 0 0 0 0 0 0 9910 32 678 1691 0 32 646 1013 732 7487 387 6195 12056 0 387 5808 5861 1542 8545 0 17 1549 0 0 17 1532 582 6413 0 147 8047 0 0 147 7900 1626 4795 0 0 3 0 0 0 3 13 4776 0 0 22 0 0 0 22 31 12618 16 665 1813 0 16 649 1148 444 10361 204 6060 12344 0 204 5856 6284 844 663 0 0 0 0 0 0 0 4 658 0 0 0 0 0 0 0 13 7415 0 55 795 0 0 55 740 474 6146 0 447 4638 0 0 447 4191 1096 7043 0 118 872 0 0 118 754 755 5416 0 1059 5140 0 0 1059 4081 2130 6830 0 0 34 0 0 0 34 51 6745 0 0 202 0 0 0 202 132 2680 0 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 0 6338 62 270 580 0 62 208 310 781 4977 765 2731 4486 0 765 1966 1755 1318 7850 0 0 0 0 0 0 0 93 7757 0 0 0 0 0 0 0 298 6650 0 0 1 0 0 0 1 16 6633 0 0 6 0 0 0 6 50 5043 0 0 0 0 0 0 0 7 5035 0 0 0 0 0 0 0 24 3093 5 18 50 0 5 13 32 14 3029 61 175 353 0 61 114 178 32 46970 0 0 0 0 0 0 0 0 46970 0 0 0 0 0 0 0 0 244894 258722 503616 1173 1101 2274 6275 4766 11041 18033 14504 32537 34 0 34 1139 1101 2240 5102 3665 8767 11758 9738 21496 7032 6764 13796 219786 237437 457223 15895 14493 30388 65196 48922 114118 133683 102321 236004 590 0 590 15305 14493 29798 49301 34429 83730 68487 53399 121886 13656 14637 28293 1385 863 13455 8953 10518 10775 11258 14803 26983 370 5798 5938 9145 10700 9940 11740 8395 12815 15593 700 26720 8415 23453 56150 8803 15968 2450 32755 29875 21850 0 0 0 0 0 167 1239 98 8 90 206 2175 380 1710 141 749 612 52 132 86 0 343 230 61 0 0 0 0 0 1 0 0 0 0 0 1 341 2095 203 35 294 312 3385 707 2883 515 1368 1582 147 273 356 0 816 595 124 0 2 2 0 0 3 0 0 40 180 1302 123 1499 3244 605 502 1021 312 3620 841 3311 830 1489 2115 233 380 511 0 1072 607 140 116 47 17 37 0 4 1 0 0 0 0 0 12 417 10 0 0 103 1003 123 709 1 289 41 1 0 0 0 79 8 3 0 0 0 0 0 0 0 0 0 0 0 0 155 822 88 8 90 103 1172 257 1001 140 460 571 51 132 86 0 264 222 58 0 0 0 0 0 1 0 0 0 0 0 1 174 856 105 27 204 106 1210 327 1173 374 619 970 95 141 270 0 473 365 63 0 2 2 0 0 2 0 0 40 180 1302 122 1158 1149 402 467 727 0 235 134 428 315 121 533 86 107 155 0 256 12 16 116 45 15 37 0 1 1 0 43 194 1365 442 1192 907 401 104 139 0 80 37 76 127 10 65 29 22 61 0 122 0 33 136 457 47 48 2 1 3 0 1302 488 10787 8386 7826 6625 10251 14196 25822 57 2094 5061 5758 9743 8441 9560 8132 12413 15021 700 25526 7808 23279 55898 8298 15903 2365 32753 29870 21846 0 0 0 1 4 2644 19631 1465 114 1286 3376 34731 5862 27656 1957 11665 8798 711 1731 1139 0 5415 3473 887 0 3 3 0 0 14 0 0 0 0 5 18 4604 28613 2587 363 3396 4464 47006 9138 39797 5641 17803 18458 1659 3101 3994 0 10521 7377 1545 2 24 25 0 0 30 0 0 257 1191 8814 787 12534 36296 5211 3034 7369 4466 48567 9948 42557 7503 18512 21609 2185 3733 5003 0 12213 7453 1652 639 322 113 192 2 38 3 0 0 0 0 0 212 7580 170 0 0 1897 18092 2252 13075 22 5204 738 22 0 0 0 1516 158 47 0 0 0 0 0 2 0 0 0 0 1 4 2432 12051 1295 114 1286 1479 16639 3610 14581 1935 6461 8060 689 1731 1139 0 3899 3315 840 0 3 3 0 0 12 0 0 0 0 4 14 1960 8982 1122 249 2110 1088 12275 3276 12141 3684 6138 9660 948 1370 2855 0 5106 3904 658 2 21 22 0 0 16 0 0 257 1191 8809 769 7930 7683 2624 2671 3973 2 1561 810 2760 1862 709 3151 526 632 1009 0 1692 76 107 637 298 88 192 2 8 3 0 93 428 3078 990 2712 2037 870 200 294 0 182 77 171 251 20 129 63 50 135 0 270 0 77 276 1051 93 82 3 2 7 0 416566 8480 16039 24199 2799 5681 7559 8160 6143 386209 132566 210171 262203 50987 81579 77605 52032 13641 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used (short rotation coppice systems): VS conditions: 60/40; S and MS: 50/50; mS and VmS: 40/60. Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 0 11400 7429 0 0 12194 6093 1901 12761 11198 8269 0 12754 9809 5346 2003 6000 11000 5639 0 12447 8975 5198 1727 11885 8943 6220 0 12043 8384 5578 2186 14529 11463 8821 0 14439 10165 6134 2143 0 0 0 0 0 0 0 0 13356 10400 8557 0 13375 9735 5984 2229 13739 10570 7645 0 13744 9639 5624 1906 0 0 0 0 0 0 0 0 14026 11860 10440 0 14051 9995 5844 1866 0 0 7714 0 0 0 7559 2599 0 0 0 0 0 0 0 2980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8067 5193 0 0 8152 5028 2118 0 0 0 0 0 0 0 0 12267 10258 6411 0 12434 9941 5252 1680 0 0 0 0 0 0 0 0 12094 9137 7130 0 12210 8985 5784 2107 0 8647 5195 0 0 8497 5155 2794 0 0 7333 0 0 0 7051 2303 12750 9113 6809 0 12535 9024 5475 1903 0 0 0 0 0 0 0 3162 0 8127 5834 0 0 8144 5665 2312 0 8975 5894 0 0 9011 5413 2822 0 0 5941 0 0 0 5890 2599 0 0 0 0 0 0 0 0 12339 10115 7734 0 12409 9453 5652 1688 0 0 0 0 0 0 7090 3195 0 0 6000 0 0 0 7646 3114 0 0 0 0 0 0 0 3300 12200 9722 7060 0 12145 8501 5646 2362 0 0 0 0 0 0 0 0 13551 10390 13163 10265 13363 10336 9663 9394 9551 5825 5484 5670 1942 2164 2051 0 0 9959 9611 11260 10493 10678 9154 10363 10228 10148 10026 10352 9849 9918 9958 9970 9741 10576 0 10802 10706 10387 9363 10219 9876 0 0 10093 0 0 6489 6614 6764 6292 6847 6689 6522 5720 5461 6104 6632 6055 6443 5919 5863 5912 6079 5917 6514 0 6598 6470 6803 5496 6588 5833 5162 4957 6152 5324 0 2163 2205 2254 2237 2275 2247 2168 1928 2117 0 2269 2105 2251 1979 1943 1971 2196 2236 2207 0 2217 0 2309 2032 2300 1964 1699 1726 2254 2227 0 15633 13104 10835 18216 14360 10267 6376 2221 0 0 1000 4000 15832 15844 14949 14250 14289 16388 15968 15426 16173 13879 15574 14376 13673 13114 13244 0 15787 15100 14541 0 3000 3000 0 0 14000 0 0 0 0 5000 18000 13501 13658 12744 10371 11551 14308 13887 12925 13804 10953 13014 11668 11286 11359 11219 0 12893 12398 12460 2000 12000 12500 0 0 10000 0 0 7413 17353 13437 7055 #DIV/0! 13163 7253 17353 13303 6425 6617 6770 6398 8362 11189 8613 6044 7217 14314 13416 11829 12853 9040 12433 10217 9378 9824 9791 0 11393 12278 11800 5509 6851 6647 5189 2000 9500 3000 0 0 0 0 0 17757 18174 17840 0 0 18413 18030 18256 18448 18415 18003 17959 17056 0 0 0 19149 19065 18569 0 0 0 0 0 17020 0 0 0 0 13295 13114 15649 14658 14723 13800 14247 14320 14191 14074 14566 13799 14054 14124 13533 13132 13289 0 14755 14939 14480 0 14077 13383 0 0 13735 0 0 APPENDIX II Table A4 PRODUCTION POTENTIALS FOR BIOMASS PLANTATIONS WITH WILLOW ( Salix viminalis ) - ACCESSIBLE AREAS, EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 62805 0 0 0 0 0 0 0 46 62759 1448 4205 6503 1303 3013 134203 8128 1875 3013 93 3495 20363 5253 0 0 184 74 1 1 0 91 176 1 0 0 77 0 0 866 240 16 4 0 310 396 2 1 0 407 0 123 1130 357 35 410 16 534 795 3 10 1 603 192895 605 2242 Krasnodar Kray 12 1820 Stavropol Kray 12 805 Arkhangelsk oblast 12 13708 Astrakhan oblast 12 2853 Belgorod oblast 12 73 Bryansk oblast 12 638 Vladimir oblast 12 1008 Volgograd oblast 12 1703 Vologda oblast 12 7900 Voronezh oblast 12 473 Nizhni Novgorod oblast12 3318 Nenets a.okr. 12 2583 Ivanovo oblast 12 848 Kaliningrad oblast 12 145 Tver oblast 12 2598 Kaluga oblast 12 1038 Kirov oblast 12 5758 Kostroma oblast 12 3273 Samara oblast 12 370 Kursk oblast 12 80 Komi-Permyak a.okr. 12 1838 Leningrad oblast 12 4743 Lipetsk oblast 12 80 Moscow oblast 12 2008 Murmansk oblast 12 3965 Novgorod oblast 12 3273 Orenburg oblast 12 1840 Oryel oblast 12 53 Penza oblast 12 575 Perm oblast 12 5435 Pskov oblast 12 2258 Rostov oblast 12 313 Ryazan oblast 12 1050 Saratov oblast 12 845 Smolensk oblast 12 563 Tambov oblast 12 255 Tula oblast 12 213 Ulyanovsk oblast 12 780 Yaroslavl oblast 12 850 Adigei Republic 12 225 Bashkortostan Republic12 3123 Daghestn Republic 12 3370 Kabardino-Balkarian Republic 12 555 Kalmyk-Khalm-Tangch Republic 12 3825 Karelia Republic 12 8518 Komi Republic 12 14183 Mari-El Republic 12 943 Mordovian SSR 12 593 North-Ossetian SSR 12 405 Karachai-Cherkess Republic 12 895 Tatarstan Republic 12 540 Udmurt Republic 12 1400 Checheno-Ingush Republic 12 1028 Chuvash Republic 12 643 Altai Kray 12 6125 14 1 0 0 0 0 0 0 0 0 29 0 0 9 2 0 0 0 0 7 0 0 3 0 0 0 0 2 0 0 5 0 0 0 0 0 1 0 1 2 0 1 10 0 0 0 14 12 21 14 0 0 10 0 170 26 4 0 0 0 3 86 0 101 0 153 0 6 36 58 12 30 23 0 26 0 39 6 134 0 238 0 8 0 16 126 0 161 0 0 0 9 0 20 9 23 3 16 0 0 0 38 32 22 18 3 16 12 2 434 FSU REPUBLICS Average annual biomass increments (000tons) ---------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 0 0 1 0 0 0 1 146 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 184 74 1 1 0 91 176 1 0 0 76 0 0 682 166 15 3 0 219 220 1 1 0 330 0 123 264 117 19 406 16 224 399 1 9 1 196 0 242 65 82 21 920 15 74 144 2 18 1 30 1447 3472 5307 864 2957 132872 8096 1267 2074 88 3468 20361 4619 0 0 2693 896 10 9 0 1187 2372 10 0 0 1154 0 0 9951 2442 170 37 0 3301 4521 23 5 0 4733 0 834 11613 3148 305 2109 83 4573 6869 32 54 6 6008 0 0 0 0 2 0 0 0 0 0 0 0 21 0 0 2693 896 8 9 0 1187 2372 10 0 0 1133 0 0 7258 1546 160 28 0 2114 2149 13 5 0 3579 0 834 1662 706 135 2072 83 1272 2348 9 49 6 1275 0 549 135 176 50 1578 28 152 287 4 36 2 65 4017 1 604 1637 1775 1614 186892 8331 25183 104 4 77 0 5 43 96 0 839 59 205 0 8 60 192 63 202 191 21 36 87 652 15 153 0 432 1 16 43 155 405 0 186 6 0 51 19 30 83 13 98 24 16 0 52 19 66 62 24 19 54 39 18 11 1043 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 9 4 0 0 2 0 0 8 1 0 0 0 0 0 0 0 0 29 0 0 9 2 0 0 0 0 7 0 0 3 0 0 0 0 2 0 0 5 0 0 0 0 0 1 0 1 2 0 1 8 0 0 0 14 12 12 10 0 0 8 0 170 12 3 0 0 0 3 86 0 101 0 124 0 6 27 56 12 30 23 0 19 0 39 3 134 0 238 0 6 0 16 121 0 161 0 0 0 8 0 19 7 23 2 6 0 0 0 24 20 1 4 3 16 2 2 264 78 0 77 0 5 40 10 0 738 59 52 0 2 24 134 51 172 168 21 10 87 613 9 19 0 194 1 8 43 139 279 0 25 6 0 51 10 30 63 4 75 21 0 0 52 19 28 30 2 1 51 23 6 9 609 82 3 14 0 10 2 0 0 56 19 10 0 0 2 6 0 95 38 52 1 25 362 3 0 0 147 2 0 99 73 90 0 0 10 2 17 0 134 2 2 110 32 0 0 26 2 14 38 2 0 35 10 8 31 224 1634 799 13602 2852 57 592 912 1702 7004 394 3102 2582 840 84 2400 975 5460 3044 297 43 1725 3728 62 1854 3965 2694 1837 35 433 5208 1763 312 863 830 560 186 194 616 766 210 2914 3307 539 3825 8437 14161 863 492 378 876 452 1351 1002 601 4858 229 9 0 0 0 0 0 0 0 0 395 0 0 125 24 0 0 0 0 88 0 0 38 0 0 0 0 35 0 0 63 0 0 0 0 0 9 0 7 26 0 13 141 0 0 0 190 153 318 195 0 0 132 0 2177 347 35 0 0 0 34 821 0 874 0 1595 0 52 402 542 122 313 216 0 275 0 345 70 1285 0 2189 0 100 0 152 1173 0 1577 0 0 0 84 0 178 97 216 30 201 0 0 0 457 349 324 237 28 164 155 26 4821 35634 23 8308 16852 10451 3062 906 36 390 0 33 284 876 0 4791 372 1906 0 61 547 1281 426 1239 1154 123 336 461 3561 122 1395 0 3254 4 150 245 934 2673 3 1722 35 0 300 144 174 522 122 627 150 204 0 255 98 635 527 339 241 316 300 195 79 8114 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30 0 0 0 0 0 153 65 0 0 28 0 0 118 9 0 0 0 0 0 0 0 0 395 0 0 125 24 0 0 0 0 88 0 0 38 0 0 0 0 35 0 0 63 0 0 0 0 0 9 0 7 26 0 11 111 0 0 0 190 153 165 130 0 0 104 0 2177 118 26 0 0 0 34 821 0 874 0 1200 0 52 277 518 122 313 216 0 187 0 345 32 1285 0 2189 0 65 0 152 1110 0 1577 0 0 0 75 0 171 71 216 17 60 0 0 0 267 196 6 42 28 164 23 26 2644 559 1 390 0 33 250 55 0 3917 372 311 0 9 145 739 304 926 938 123 61 461 3216 52 110 0 1065 4 50 245 782 1500 3 145 35 0 300 60 174 344 25 411 120 3 0 255 98 178 178 15 4 288 136 40 53 3293 201 7 23 0 20 4 0 0 120 40 21 0 0 4 12 0 184 71 93 2 52 646 6 0 0 272 3 0 188 164 165 0 1 19 4 34 0 252 3 6 200 65 1 0 50 4 32 71 5 1 64 22 19 59 442 Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 0 0 1000 0 0 0 6961 3205 0 0 14636 12108 10000 9000 0 13044 13477 10000 0 0 14987 0 0 0 0 0 0 6780 0 0 9602 11491 10277 0 14667 10643 10175 8818 0 12130 9324 10625 8714 19111 14041 10982 9250 5144 0 12215 8977 0 5188 0 0 0 10648 8564 0 13022 9665 11417 8640 0 13471 9781 11500 10667 16377 15410 11041 5000 5400 0 0 8039 0 6000 0 0 0 11629 9964 15931 14931 10843 13770 11232 16357 9000 0 0 0 0 0 0 0 0 13621 0 0 13889 12000 0 0 0 0 12571 0 0 12667 0 0 0 0 17500 0 0 12600 0 0 0 0 0 9000 0 7000 13000 0 13000 14100 0 0 0 13571 12750 15143 13929 0 0 13200 0 12806 13346 8750 0 0 0 11333 9547 0 8653 0 10425 0 8667 11167 9345 10167 10433 9391 0 10577 0 8846 11667 9590 0 9197 0 12500 0 9500 9310 0 9795 0 0 0 9333 0 8900 10778 9391 10000 12563 0 0 0 12026 10906 14727 13167 9333 10250 12917 13000 11108 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used (short rotation coppice systems): VS conditions: shoots+twigs+leaves/stool+roots, 60/40; S and MS: 50/50; mS and VmS: 40/60. 8871 23000 13755 10294 8712 9000 5065 0 6600 6605 9125 0 5710 6305 9298 0 7625 9117 6672 6762 6134 6042 5857 9333 5299 5462 8133 9118 0 7532 4000 9375 5698 6026 6600 3000 9258 5833 0 5882 7579 5800 6289 9385 6398 6250 12750 0 4904 5158 9621 8500 14125 12684 5852 7692 10833 7182 7779 19613 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17097 16646 0 0 0 0 0 17124 16753 0 0 17181 0 0 14655 14583 0 0 0 0 0 0 0 0 13649 0 0 14316 12408 0 0 0 0 13409 0 0 13147 0 0 0 0 14258 0 0 12699 0 0 0 0 0 13760 0 12464 13724 0 14048 13347 0 0 0 13768 12250 13315 13263 0 0 13875 0 12832 9996 10271 0 0 0 10327 9544 0 8630 0 9708 0 9415 10314 9186 9874 10337 9296 0 9774 0 8734 9340 9595 0 9213 0 10155 0 9704 9162 0 9795 0 0 0 9929 0 9012 9997 9331 10308 10782 0 0 0 10918 9813 10655 10582 11011 10030 10783 12181 10001 0 6777 6288 6039 6931 5099 5287 5689 5881 6648 5674 6455 6497 0 2270 2059 2136 2360 1714 1831 2049 1995 2283 2021 2130 2188 5888 1897 7165 6144 5093 0 6159 6201 5544 0 5309 6256 5929 0 5627 6170 5532 6015 5387 5594 5819 5946 5283 5246 5791 5716 0 5494 5011 6087 5704 5644 5383 6197 5772 6016 0 5830 6013 5759 5456 6543 5480 5688 6353 0 4908 5117 6422 5867 6468 6193 5686 5898 6534 6010 5409 2439 2231 1702 0 2048 2112 0 0 2122 2072 2034 0 0 2062 2211 0 1936 1857 1777 2003 2064 1786 1932 1860 0 1850 1641 0 1901 2254 1828 2061 2359 1988 1997 1953 0 1888 1903 2451 1811 2001 2178 0 1895 1689 2327 1893 2158 2017 1827 2246 2202 1908 1972 APPENDIX II Table A4 PRODUCTION POTENTIALS FOR BIOMASS PLANTATIONS WITH WILLOW ( Salix viminalis ) - ACCESSIBLE AREAS, EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 2668 0 3 36 0 0 3 33 16 2615 13728 19 78 433 0 19 59 355 393 12902 6520 59 205 412 0 59 146 207 87 6021 2825 0 0 0 0 0 0 0 0 2825 8873 40 216 386 0 40 176 170 74 8409 8108 78 423 1190 0 78 345 767 591 6327 6128 0 0 0 0 0 0 0 0 6127 1450 163 354 471 0 163 191 117 29 949 16035 0 0 7 0 0 0 7 10 16018 693 0 0 0 0 0 0 0 0 692 3853 0 0 0 0 0 0 0 0 3852 5010 0 0 0 0 0 0 0 0 5010 3498 0 3 134 0 0 3 131 107 3256 8158 0 0 0 0 0 0 0 0 8155 2403 2 26 321 0 2 24 295 317 1765 9245 0 0 0 0 0 0 0 0 9245 6220 4 180 739 0 4 176 559 473 5008 5035 0 16 396 0 0 16 380 412 4228 4760 0 0 3 0 0 0 3 13 4741 10428 1 323 1085 0 1 322 762 293 9049 630 0 0 0 0 0 0 0 4 626 6968 0 48 717 0 0 48 669 415 5836 4585 0 67 651 0 0 67 584 467 3468 6780 0 0 31 0 0 0 31 50 6700 2678 0 0 0 0 0 0 0 0 2677 2578 10 45 100 0 10 35 55 165 2312 7260 0 0 0 0 0 0 0 80 7180 6045 0 0 0 0 0 0 0 10 6035 4778 0 0 0 0 0 0 0 6 4772 2370 0 3 20 0 0 3 17 7 2344 46870 0 0 0 0 0 0 0 0 46870 Average annual biomass increments (000tons) ---------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 6 33 202 0 6 27 169 28 224 730 2737 0 224 506 2007 847 847 2323 3588 0 847 1476 1265 188 0 0 0 0 0 0 0 0 536 2258 3277 0 536 1722 1019 165 1069 4332 8574 0 1069 3263 4242 1110 0 0 0 0 0 0 0 0 2281 4181 4863 0 2281 1900 682 54 0 0 51 0 0 0 51 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 674 0 0 28 646 210 0 0 0 0 0 0 0 0 26 258 1752 0 26 232 1494 529 0 0 0 0 0 0 0 0 46 1633 5063 0 46 1587 3430 1037 0 132 2357 0 0 132 2225 1120 0 0 22 0 0 0 22 31 9 2894 7030 0 9 2885 4136 566 0 0 0 0 0 0 0 12 0 388 4162 0 0 388 3774 961 0 583 3739 0 0 583 3156 1333 0 0 180 0 0 0 180 129 0 0 0 0 0 0 0 0 123 499 811 0 123 376 312 276 0 0 0 0 0 0 0 256 0 0 1 0 0 0 1 33 0 0 0 0 0 0 0 19 0 28 109 0 0 28 81 15 0 0 0 0 0 0 0 0 122175 223305 345480 158 546 704 1515 2424 3939 5054 8175 13229 23 0 23 135 546 681 1357 1878 3235 3539 5751 9290 1666 4243 5909 115414 210872 326286 2190 7344 9534 15065 25121 40186 34548 57306 91854 389 0 389 1801 7344 9145 12875 17777 30652 19483 32185 51668 3210 9388 12598 705 70 5220 3418 1513 4635 3945 7378 15713 0 583 3165 4535 7530 7245 9118 6195 7700 11093 475 15890 5543 20278 48138 5088 11770 1600 28288 29138 20918 0 0 0 0 0 8 501 3 0 34 0 105 33 952 54 495 348 37 96 56 0 47 134 46 0 0 0 0 0 1 0 0 0 0 0 1 20 856 5 7 108 0 170 77 1565 234 865 998 103 200 236 0 108 360 92 0 2 2 0 0 3 0 0 0 1 39 7 181 1246 40 73 268 0 200 108 1800 385 937 1362 162 280 337 0 124 369 102 62 41 10 37 0 4 0 0 0 0 0 0 0 158 0 0 0 0 43 2 393 1 185 7 1 0 0 0 2 6 1 0 0 0 0 0 0 0 0 0 0 0 0 8 343 3 0 34 0 62 31 559 53 310 341 36 96 56 0 45 128 45 0 0 0 0 0 1 0 0 0 0 0 1 12 355 2 7 74 0 65 44 613 180 370 650 66 104 180 0 61 226 46 0 2 2 0 0 2 0 0 0 1 39 6 161 390 35 66 160 0 30 31 235 151 72 364 59 80 101 0 16 9 10 62 39 8 37 0 1 0 0 0 1 40 40 173 260 45 13 47 0 15 6 59 69 2 45 18 16 39 0 11 0 25 65 25 17 45 1 1 1 0 705 69 5141 3370 1159 3129 3860 7292 15398 0 367 3052 2676 7076 6306 7709 6014 7404 10716 475 15755 5173 20151 48010 5022 11743 1519 28286 29133 20916 0 0 0 1 4 114 7894 35 0 473 0 1669 466 15381 753 7686 4977 511 1264 741 0 693 2022 660 0 3 2 0 0 14 0 0 0 0 5 16 236 11634 56 59 1225 0 2342 903 21771 2535 11369 11481 1172 2269 2634 0 1338 4437 1133 2 20 19 0 0 30 0 0 0 5 267 54 1334 14258 282 415 2097 0 2543 1090 23331 3431 11794 13639 1533 2743 3294 0 1443 4493 1203 352 279 64 189 1 38 1 0 0 0 0 0 0 2847 0 0 0 0 779 39 7214 16 3330 127 19 0 0 0 42 120 14 0 0 0 0 0 2 0 0 0 0 1 4 114 5047 35 0 473 0 890 427 8167 737 4356 4850 492 1264 741 0 651 1902 646 0 3 2 0 0 12 0 0 0 0 4 12 122 3740 21 59 752 0 673 437 6390 1782 3683 6504 661 1005 1893 0 645 2415 473 2 17 17 0 0 16 0 0 0 5 262 38 1098 2624 226 356 872 0 201 187 1560 896 425 2158 361 474 660 0 105 56 70 350 259 45 189 1 8 1 0 0 2 91 91 394 586 97 25 117 0 35 13 135 137 5 90 39 35 86 0 24 0 58 146 55 33 76 2 2 3 0 286887 2950 6012 8175 799 2151 3062 2163 1079 277626 45363 76686 90173 14549 30814 31323 13487 2377 Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 6000 11000 5611 0 12447 8975 5196 1726 11789 9359 6321 0 12015 8552 5656 2157 14356 11332 8709 0 14381 10126 6119 2146 0 0 0 0 0 0 0 0 13400 10454 8490 0 13392 9764 5983 2225 13705 10241 7205 0 13773 9463 5531 1877 0 0 0 0 0 0 0 0 13994 11811 10325 0 13975 9938 5815 1863 0 0 7286 0 0 0 7588 2628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9333 5030 0 0 8136 4946 1961 0 0 0 0 0 0 0 0 13000 9923 5458 0 12600 9806 5066 1669 0 0 0 0 0 0 0 0 11500 9072 6851 0 12147 8993 6138 2194 0 8250 5952 0 0 8498 5862 2722 0 0 7333 0 0 0 7051 2303 9000 8960 6479 0 11896 8966 5427 1931 0 0 0 0 0 0 0 3157 0 8083 5805 0 0 8121 5643 2315 0 8701 5743 0 0 8743 5404 2858 0 0 5806 0 0 0 5866 2597 0 0 0 0 0 0 0 0 12300 11089 8110 0 12303 10613 5667 1677 0 0 0 0 0 0 7090 3202 0 0 1000 0 0 0 7548 3162 0 0 0 0 0 0 0 3300 0 9333 5450 0 0 9231 4888 2128 0 0 0 0 0 0 0 0 13861 9944 13451 10363 13543 10202 9488 9466 9475 5505 5596 5562 1927 2213 2132 0 0 9959 9583 10581 10545 10263 9012 10127 0 10349 10046 10429 9884 9957 10000 9982 9702 10510 0 10617 10667 10321 9363 10192 9894 0 0 10093 0 0 0 6742 6785 6358 6826 6724 6532 5428 5448 0 6794 6073 6637 5944 5876 5932 6075 5901 6508 0 6670 6485 6774 5621 6557 5824 5169 5275 6152 5522 0 0 2247 2262 2259 2277 2254 2151 1870 2505 0 2272 2096 2278 1991 1946 1975 2201 2228 2198 0 2254 0 2309 2253 2239 1933 1704 1815 2254 1891 0 15377 12755 11030 18209 14325 10230 6235 2203 0 0 1000 4000 14250 15756 11667 0 13912 0 15895 14121 16157 13944 15527 14302 13811 13167 13232 0 14745 15090 14348 0 3000 2000 0 0 14000 0 0 0 0 5000 16000 11800 13591 11200 8429 11343 0 13776 11727 13911 10833 13143 11504 11379 11345 11161 0 12389 12325 12315 2000 10000 9500 0 0 10000 0 0 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used (short rotation coppice systems): VS conditions: shoots+twigs+leaves/stool+roots, 60/40; S and MS: 50/50; mS and VmS: 40/60. 6836 16913 13341 7010 #DIV/0! 13451 6943 16913 13429 0 5000 6846 7714 7370 11443 7050 5685 7825 0 12715 10093 12962 8912 12587 10014 9463 9796 9774 0 11637 12176 11794 5677 6805 6400 5108 1000 9500 1000 0 0 0 0 0 0 18056 0 0 0 0 17967 18456 18356 18424 18011 18019 17046 0 0 0 19189 19077 17540 0 0 0 0 0 17020 0 0 0 0 13295 13287 14878 14718 13468 12582 13998 0 14435 14000 14606 13822 14062 14201 13607 13120 13132 0 14444 14878 14456 0 14056 13337 0 0 13735 0 0 APPENDIX II Table A5 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ALL AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha)-------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 156198 0 0 54 0 0 0 54 191 155953 Average annual biomass increments (000tons)----------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 0 0 235 0 0 0 235 510 2690 7868 20348 3938 6523 268445 19548 6313 6420 3000 9013 45390 57570 0 0 6048 567 114 5 0 831 1893 190 0 0 8732 0 0 14103 1362 191 35 4 2679 3646 276 5 0 16809 2 520 15879 1974 291 7645 198 4480 4431 394 56 9 22853 0 0 0 0 62 0 0 0 0 77 0 0 1215 0 0 6048 567 52 5 0 831 1893 113 0 0 7517 0 0 8055 795 77 30 4 1848 1753 86 5 0 8077 2 520 1776 612 100 7610 194 1801 785 118 51 9 6044 27 780 505 213 116 7285 167 429 506 257 79 7 4315 2661 6000 3964 1751 6115 253515 19182 1403 1484 2350 8878 45374 30398 0 0 87097 7056 1805 64 0 10950 25982 2706 0 0 121860 0 3 171363 14445 2618 341 35 28221 43089 3545 37 0 207474 11 3584 182486 17821 3261 39862 1309 38357 47735 4332 323 56 248112 0 0 0 0 1088 0 0 0 0 1240 0 0 19477 0 0 87097 7056 717 64 0 10950 25982 1466 0 0 102383 0 3 84266 7389 813 277 35 17271 17107 839 37 0 85614 11 3581 11123 3376 643 39521 1274 10136 4646 787 286 56 40638 50 1812 1035 455 254 12653 350 857 1015 588 154 15 9676 457066 18380 39110 58732 1354 17026 20730 19622 14686 383075 257520 471171 587249 21805 235715 213651 116078 28914 Krasnodar Kray 12 7620 Stavropol Kray 12 6635 Arkhangelsk oblast 12 38190 Astrakhan oblast 12 4598 Belgorod oblast 12 2665 Bryansk oblast 12 3483 Vladimir oblast 12 2925 Volgograd oblast 12 11265 Vologda oblast 12 14628 Voronezh oblast 12 5195 Nizhni Novgorod oblast12 7515 Nenets a.okr. 12 16858 Ivanovo oblast 12 2270 Kaliningrad oblast 12 1240 Tver oblast 12 8395 Kaluga oblast 12 2963 Kirov oblast 12 11930 Kostroma oblast 12 6000 Samara oblast 12 5118 Kursk oblast 12 3020 Komi-Permyak a.okr. 12 3280 Leningrad oblast 12 7500 Lipetsk oblast 12 2410 Moscow oblast 12 4665 Murmansk oblast 12 13960 Novgorod oblast 12 5450 Orenburg oblast 12 12418 Oryel oblast 12 2458 Penza oblast 12 4320 Perm oblast 12 12715 Pskov oblast 12 5568 Rostov oblast 12 10133 Ryazan oblast 12 3935 Saratov oblast 12 10375 Smolensk oblast 12 4943 Tambov oblast 12 3435 Tula oblast 12 2553 Ulyanovsk oblast 12 3690 Yaroslavl oblast 12 3260 Adigei Republic 12 775 Bashkortostan Republic12 14435 Daghestn Republic 12 5033 Kabardino-Balkarian Republic 12 1238 Kalmyk-Khalm-Tangch Republic 12 7510 Karelia Republic 12 18253 Komi Republic 12 41370 Mari-El Republic 12 2365 Mordovian SSR 12 2590 North-Ossetian SSR 12 778 Karachai-Cherkess Republic 12 1468 Tatarstan Republic 12 6663 Udmurt Republic 12 4150 Checheno-Ingush Republic 12 1930 Chuvash Republic 12 1808 Altai Kray 12 16653 67 2 0 0 43 653 270 0 0 6 878 0 1016 541 871 752 602 113 0 636 0 162 431 1290 0 909 0 572 15 184 1525 1 1015 0 2330 71 733 0 477 13 318 2 32 0 0 0 158 228 112 23 155 220 23 34 1260 101 7 386 0 114 2406 1858 0 3057 33 4394 0 1859 808 4235 1885 2630 1694 0 1430 474 1071 913 2832 0 3053 0 1375 175 1587 3455 2 2775 0 3746 352 1568 7 1873 24 1236 5 50 0 80 429 724 788 128 29 425 1341 29 129 2580 3623 1479 2152 0 439 2894 2188 266 8810 977 5204 0 1963 978 6878 2158 5742 4215 377 1754 1237 3476 1339 3560 0 4431 160 1541 1060 3583 4142 2058 3054 561 3826 1598 1671 196 2723 229 2732 149 235 162 316 838 1086 1200 187 56 1163 2155 327 222 5356 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 5 0 0 0 0 0 42 6 0 0 6 0 0 46 2 0 0 43 653 270 0 0 6 878 0 1016 541 871 752 602 113 0 636 0 162 431 1290 0 909 0 572 15 184 1525 1 1015 0 2330 71 733 0 477 11 318 2 27 0 0 0 158 228 70 17 155 220 17 34 1260 34 5 386 0 71 1753 1588 0 3057 27 3516 0 843 267 3364 1133 2028 1581 0 794 474 909 482 1542 0 2144 0 803 160 1403 1930 1 1760 0 1416 281 835 7 1396 11 918 3 18 0 80 429 566 560 16 6 270 1121 6 95 1320 3522 1472 1766 0 325 488 330 266 5753 944 810 0 104 170 2643 273 3112 2521 377 324 763 2405 426 728 0 1378 160 166 885 1996 687 2056 279 561 80 1246 103 189 850 205 1496 144 185 162 236 409 362 412 59 27 738 814 298 93 2776 1154 877 1682 0 349 53 255 485 1086 808 264 0 58 18 182 50 2022 514 720 79 526 1611 230 60 0 234 435 10 1151 672 109 1708 46 808 126 783 0 781 48 97 1360 110 94 38 505 914 336 211 23 36 948 185 153 278 1601 2836 4279 34336 4597 1878 535 483 10514 4733 3410 2046 16837 249 243 1335 754 4167 1271 4021 1187 1517 2412 841 1045 13960 785 11823 907 2109 8461 1316 6366 834 9005 990 1055 881 2712 489 450 10344 4764 910 7310 17424 39619 942 1178 567 1375 4552 1811 1450 1308 9696 1038 32 0 0 541 9472 3485 0 0 70 11729 0 13170 7833 10994 10091 7769 1446 0 8802 0 1988 5747 16895 0 11486 0 8228 172 2261 19783 10 13889 0 30757 891 10188 0 5986 180 3959 33 424 0 0 0 2010 2891 1670 332 1872 2770 323 434 15845 1371 77 3132 0 1207 27680 18690 0 26600 350 45871 0 21063 10599 41842 21170 26015 15999 0 16645 3978 9726 10485 31419 0 30914 0 16452 1862 14663 37656 16 31128 0 44087 3822 18498 75 18705 294 12580 66 594 0 639 3511 7493 8226 1831 395 4515 12912 382 1329 28121 26531 9707 11814 0 3210 30723 20567 1303 56463 6179 50609 0 21651 11657 56353 22796 42964 30129 2117 18566 8009 22283 13036 35466 0 38395 809 17463 7021 25500 41463 13152 32763 2848 44547 11276 19115 1179 23365 1790 21144 948 1801 911 1840 5567 9757 10751 2212 576 8880 17448 2269 1883 42738 395 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 0 5 78 0 0 0 0 0 719 108 0 0 102 0 0 643 29 0 0 541 9472 3485 0 0 70 11729 0 13170 7833 10994 10091 7769 1446 0 8802 0 1988 5747 16895 0 11486 0 8228 172 2261 19783 10 13889 0 30757 891 10188 0 5986 147 3959 28 346 0 0 0 2010 2891 951 224 1872 2770 221 434 15845 333 45 3132 0 666 18208 15205 0 26600 280 34142 0 7893 2766 30848 11079 18246 14553 0 7843 3978 7738 4738 14524 0 19428 0 8224 1690 12402 17873 6 17239 0 13330 2931 8310 75 12719 114 8621 33 170 0 639 3511 5483 5335 161 63 2643 10142 59 895 12276 25160 9630 8682 0 2003 3043 1877 1303 29863 5829 4738 0 588 1058 14511 1626 16949 14130 2117 1921 4031 12557 2551 4047 0 7481 809 1011 5159 10837 3807 13136 1635 2848 460 7454 617 1104 4660 1496 8564 882 1207 911 1201 2056 2264 2525 381 181 4365 4536 1887 554 14617 2760 1920 2771 0 720 110 481 853 1933 1657 505 0 109 37 346 98 3565 960 1340 153 893 2967 451 112 0 444 718 20 2214 1256 204 3600 98 1534 241 1554 0 1500 91 240 2503 237 206 75 900 1524 700 423 49 80 1790 378 334 546 2990 FSU REPUBLICS Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha)--------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 0 0 4352 0 0 0 4390 2675 0 0 14401 12444 15833 12800 0 13177 13725 14242 0 0 13956 0 3000 12151 10606 13707 9743 8750 10534 11818 12844 7400 0 12343 14011 12047 15493 16000 0 0 12581 14505 12907 0 0 11667 13359 0 12963 14479 12622 13419 12905 12796 0 13840 0 12272 13334 13097 0 12636 0 14385 11467 12288 12972 10000 13684 0 13200 12549 13899 0 12549 13846 12450 16500 13250 0 0 0 12722 12680 14911 14435 12077 12591 14043 12765 12575 13574 11000 8114 0 10588 11505 10059 0 8701 10606 10439 0 11330 13118 9880 11231 9892 9445 0 11640 8392 9081 11484 11094 0 10126 0 11965 10640 9239 10899 8000 11217 0 11769 10858 11797 10714 9987 12250 10178 13200 11880 0 7988 8184 10349 10439 14305 13621 10624 9629 13172 10302 10900 5500 0 0 0 6892 0 12452 9047 11492 0 14401 10461 9028 0 12444 9295 11206 17540 13841 10492 5214 0 12661 9322 6611 0 0 9246 8562 0 13172 9347 10773 0 13726 9760 10995 16200 13033 9760 5768 0 0 8098 6222 0 0 0 10857 16033 13619 10599 9999 16104 13844 10306 7323 6563 5490 0 7312 10616 9400 4898 6409 6324 9725 0 11030 11919 8193 10563 7482 7148 5615 10585 6475 6411 9736 9962 0 8665 5056 11332 6624 7117 10010 6391 10728 5077 11643 7056 11439 6015 8581 7817 7739 6362 7664 5623 5823 6643 8984 8959 11829 10286 7635 8097 6939 8482 7979 18445 15904 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17694 0 16963 16565 0 0 0 0 0 17143 16652 0 0 16811 0 0 13947 13155 0 0 12523 14496 12909 0 0 11749 13352 0 12966 14479 12616 13428 12912 12787 0 13847 0 12252 13332 13096 0 12629 0 14396 11707 12291 12971 13689 13680 0 13201 12634 13891 0 12548 14020 12461 13509 13003 0 0 0 12761 12663 13590 13044 12086 12609 13297 12849 12576 9928 9907 8124 0 9383 10384 9578 0 8702 10307 9709 0 9364 10361 9169 9779 8998 9208 0 9873 8385 8513 9822 9420 0 9062 0 10242 10533 8840 9261 9778 9794 0 9415 10437 9953 10221 9112 10096 9395 9897 9686 0 8006 8191 9680 9522 9912 10031 9781 9049 10217 9417 9298 6099 6890 6263 5518 6456 5193 6561 5627 5921 6688 5613 6427 6723 1861 2323 2051 2143 2185 1737 2093 1995 2005 2290 1955 2042 2242 5916 1969 7145 6540 4915 0 6168 6237 5690 4896 5191 6177 5851 0 5635 6207 5490 5952 5447 5604 5613 5937 5285 5220 5984 5557 0 5430 5054 6091 5831 5430 5540 6387 5853 5075 5714 5983 5981 5838 5485 7311 5725 6109 6543 5615 5088 5032 6245 6130 6413 6686 5914 5573 6333 5984 5266 2391 2191 1648 0 2064 2078 1889 1759 1781 2050 1912 0 1866 2065 1905 1939 1763 1868 1862 1943 1698 1841 1967 1875 0 1895 1653 1917 1924 1870 1868 2108 2132 1898 1904 1986 1596 1920 1889 2469 1840 2145 2191 1965 1782 1668 2081 2000 2153 2239 1889 2046 2174 1960 1868 APPENDIX II Table A5 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ALL AREAS ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 Total Suitable Areas (000ha)-------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 9385 1 19 62 0 1 18 43 16 9306 71140 58 883 2818 0 58 825 1935 2189 66132 16338 182 666 1600 5 177 484 934 361 14376 82285 0 0 0 0 0 0 0 0 82285 77545 316 1696 2624 0 316 1380 928 1060 73855 36283 1041 2460 5533 0 1041 1419 3073 2471 28279 75673 0 0 0 0 0 0 0 0 75672 3700 491 1248 1544 0 491 757 296 94 2061 76270 0 0 117 0 0 0 117 227 75926 2178 0 0 1 0 0 0 1 6 2170 17045 0 0 0 0 0 0 0 0 17022 28903 0 0 0 0 0 0 0 0 28902 9500 0 462 1289 0 0 462 827 405 7806 70770 0 0 0 0 0 0 0 0 70745 7110 175 579 1602 0 175 404 1023 801 4707 45830 0 0 0 0 0 0 0 0 45830 17673 937 2395 5777 0 937 1458 3382 1431 10465 13980 8 470 5675 0 8 462 5205 1234 7069 8095 0 5 17 0 0 5 12 30 7956 19273 764 3734 8183 0 764 2970 4449 1067 10022 1970 0 0 6 0 0 0 6 39 1925 31145 4 1355 5405 0 4 1351 4050 2575 23165 15860 112 775 5659 0 112 663 4884 1842 8359 53163 0 426 1432 0 0 426 1006 839 50892 66588 0 0 0 0 0 0 0 0 66580 8763 269 640 1247 0 269 371 607 1263 6252 41493 0 0 81 0 0 0 81 222 41189 33533 0 0 32 0 0 0 32 120 33381 17035 0 0 12 0 0 0 12 14 17009 6120 9 108 299 0 9 99 191 201 5620 303275 0 0 0 0 0 0 0 0 303257 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 389947 1284574 1674521 17483 5627 23110 57572 20501 78073 103370 56371 159741 82 5 87 17401 5622 23023 40089 14874 54963 45798 35870 81668 1640 1125 18480 15783 14798 16295 13863 19145 44848 413 9290 9250 13783 16663 18168 21050 11995 16385 23425 2840 56143 17725 37325 115468 20900 40580 5038 163355 119045 72183 40 0 0 2 19 878 4056 1473 1787 4537 267 5320 1049 5525 2282 5040 3006 78 319 571 0 1793 770 645 105 156 17 0 0 34 0 0 1 0 10 49 1547 5763 2012 3018 9806 385 7405 1641 7975 3195 6627 4428 213 570 1157 0 4348 1730 1016 517 332 63 0 1 52 0 0 202 270 2735 697 4100 7345 3211 5756 15317 385 7679 1869 8597 3766 6818 5126 333 727 1432 0 5648 1800 1207 2549 1040 181 129 23 108 4 0 0 0 0 3 270 1418 454 430 163 151 2500 326 1980 1105 2239 1224 5 70 116 0 194 77 127 0 8 1 0 0 9 0 0 0 0 2 16 608 2638 1019 1357 4374 116 2820 723 3545 1177 2801 1782 73 249 455 0 1599 693 518 105 148 16 0 0 25 0 0 1 0 8 30 669 1707 539 1231 5269 118 2085 592 2450 913 1587 1422 135 251 586 0 2555 960 371 412 176 46 0 1 18 0 0 201 270 2725 648 2553 1582 1199 2738 5511 0 274 228 622 571 191 698 120 157 275 0 1300 70 191 2032 708 118 129 22 56 4 0 237 267 2856 1083 2459 1222 1123 1093 1672 0 73 42 61 230 16 107 38 35 96 0 197 0 202 3794 714 238 198 72 32 16 0 1201 588 12888 14002 8239 7728 9529 12296 27858 28 1415 7339 5125 12667 11334 15816 11623 15623 21897 2840 50298 15924 35916 109124 19146 40161 4710 163260 118905 72162 40 2 0 32 268 13382 63478 21601 25223 64594 4436 85240 16098 87550 36873 79888 47305 1080 4558 8244 0 27044 11830 9874 1283 2250 231 1 1 531 0 0 937041 39729 63861 89054 12870 26859 24132 25193 18173 829682 612897 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL LC 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 25282 261223 20108 1207911 45390 1469134 Average annual biomass increments (000tons)----------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 18 175 403 0 18 157 228 27 696 7659 19138 0 696 6963 11479 5195 2614 7602 13411 87 2527 4988 5809 739 0 0 0 0 0 0 0 0 4218 17375 22935 0 4218 13157 5560 2353 14043 27576 44161 0 14043 13533 16585 4490 0 0 0 0 0 0 0 0 6883 14366 16100 0 6883 7483 1734 181 0 0 786 0 0 0 786 553 0 0 9 0 0 0 9 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3763 8171 0 0 3763 4408 853 0 0 0 0 0 0 0 0 2162 6175 11572 0 2162 4013 5397 1355 0 0 0 0 0 0 0 0 11307 25682 42863 0 11307 14375 17181 2965 98 4584 30108 0 98 4486 25524 2445 0 44 108 0 0 44 64 70 9267 35089 58479 0 9267 25822 23390 1946 0 0 24 0 0 0 24 73 42 11777 35349 0 42 11735 23572 5955 1334 7652 33042 0 1334 6318 25390 4287 0 3466 8976 0 0 3466 5510 2029 0 0 0 0 0 0 0 0 3359 6790 10076 0 3359 3431 3286 2131 0 1 367 0 0 1 366 515 0 0 197 0 0 0 197 313 0 0 54 0 0 0 54 37 111 959 2031 0 111 848 1072 375 0 0 0 0 0 0 0 0 231651 71997 303648 606564 868806 208856 401098 815420 1269904 1443 87 1530 230208 71910 302118 374913 136859 511772 262242 192242 454484 48200 41892 90092 1318 1786 17989 4865 37969 91814 34814 52640 148090 5640 108216 23401 116689 49493 96968 65840 3170 7958 16215 0 63359 22456 14929 15518 8850 1376 787 124 986 22 0 0 0 2 51 4721 25559 7717 6922 2540 2782 45074 5904 36636 20186 40409 21998 86 1219 1980 0 3673 1481 2341 0 144 24 0 0 170 0 0 2 0 30 217 8661 37919 13884 18301 62054 1654 40166 10194 50914 16687 39479 25307 994 3339 6264 0 23371 10349 7533 1283 2106 207 1 1 361 0 0 5 0 78 280 7058 17889 5400 12264 52734 1202 21188 5928 25218 9195 15954 14376 1356 2464 6173 0 27678 10187 3794 3713 1773 443 3 13 178 0 0 1311 1786 17879 4317 17529 10447 7813 15153 30762 2 1788 1375 3921 3425 1126 4159 734 936 1798 0 8637 439 1261 10522 4827 702 783 110 277 22 0 515 590 6263 2395 5655 2761 2434 1940 2953 0 175 89 139 441 31 207 84 77 213 0 439 1 463 7243 1625 470 394 132 57 33 0 859441 1013282 231619 381278 246544 153841 37819 7 0 110 548 20440 81367 27001 37487 117328 5638 106428 22026 112768 46068 95842 61681 2436 7022 14417 0 54722 22017 13668 4996 4023 674 4 14 709 0 0 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha)--------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 18000 9211 6500 0 12446 8624 5266 1710 12000 8674 6791 0 11921 8438 5931 2373 14363 11414 8382 16003 14319 10307 6216 2047 0 0 0 0 0 0 0 0 13348 10245 8740 0 13360 9537 5991 2220 13490 11210 7981 0 13493 9535 5398 1817 0 0 0 0 0 0 0 0 14018 11511 10427 0 14009 9881 5858 1921 0 0 6718 0 0 0 6694 2439 0 0 9000 0 0 0 6013 2600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8145 6339 0 0 8141 5330 2105 0 0 0 0 0 0 0 0 12354 10665 7223 0 12334 9938 5275 1691 0 0 0 0 0 0 0 0 12067 10723 7420 0 12068 9857 5081 2073 12250 9753 5305 0 11631 9702 4903 1981 0 8800 6353 0 0 9207 5462 2305 12130 9397 7146 0 12132 8695 5257 1823 0 0 4000 0 0 0 4288 1874 10500 8692 6540 0 11665 8685 5820 2313 11911 9874 5839 0 11905 9530 5198 2327 0 8136 6268 0 0 8128 5478 2419 0 0 0 0 0 0 0 0 12487 10609 8080 0 12471 9257 5410 1686 0 1000 4531 0 0 8449 4488 2320 0 0 6156 0 0 0 6172 2614 0 0 4500 0 0 0 4471 2670 12333 8880 6793 0 11976 8554 5617 1868 0 0 0 0 0 0 0 0 13250 10536 12795 10188 13139 10444 9352 9201 9311 5726 5359 5565 1906 2083 1985 9485 0 9468 9468 10555 10478 10025 9967 10008 10226 10161 10019 10294 10075 10055 10107 10016 9810 10539 0 10833 10615 10227 9008 10059 9589 8964 9222 9786 0 0 6510 6622 6561 6660 6867 6604 6517 5534 5582 6122 6516 6041 6308 5994 5884 5955 6104 5952 6539 0 6644 6238 6610 5177 6823 5952 6061 5125 4971 5227 0 2173 2206 2193 2211 2300 2259 2167 1776 1766 0 2392 2094 2269 1919 1944 1932 2191 2209 2207 0 2230 2194 2290 1909 2277 1975 1987 1829 1819 2047 0 15427 13458 11378 17997 14196 10216 6106 2081 2000 0 16000 14105 15241 15650 14665 14115 14237 16614 16023 15346 15846 16158 15851 15737 13846 14288 14438 0 15083 15364 15309 12219 14423 13588 1000 1000 15618 0 0 7000 0 11000 11184 13213 14119 13420 12421 11965 14644 14372 13422 14140 14419 14462 13930 11437 12319 12461 0 12586 12727 13453 9663 12117 10698 4000 14000 13635 0 0 8405 17598 13230 7115 17400 12791 7950 17586 13122 6525 6615 6577 6980 9261 12500 10842 9145 9668 14649 14092 12521 13573 13142 14222 12844 9520 10946 11323 0 11218 12476 12369 6088 8510 7602 6101 5391 9130 5500 0 16056 0 16089 16928 17459 18030 17014 16091 15570 18378 18029 18104 18499 18269 18047 17973 16661 17436 17030 0 18963 19339 18484 0 17957 16754 0 0 18709 0 0 13330 0 13197 13178 14255 14373 13624 13483 14188 14316 14245 14097 14362 14179 14097 14204 13640 13394 13772 0 14613 14924 14544 12169 14201 13317 12277 12150 14376 0 0 APPENDIX II Table A6 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ACCESSIBLE AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 63130 0 0 34 0 0 0 34 97 63000 0 0 147 0 0 0 147 276 2025 6095 17955 3365 4763 165068 10428 5573 6018 2848 4775 22535 51955 0 0 5375 525 97 4 0 712 1757 182 0 0 7973 0 0 12434 1212 163 23 3 2348 3408 264 3 0 15142 2 382 14001 1729 245 5149 172 3938 4151 375 47 7 20602 0 0 0 0 52 0 0 0 0 73 0 0 1141 0 0 5375 525 45 4 0 712 1757 109 0 0 6832 0 0 7059 687 66 19 3 1636 1651 82 3 0 7169 2 382 1567 517 82 5126 169 1590 743 111 44 7 5460 26 587 449 176 93 4977 150 381 475 242 68 6 3947 1997 4633 3504 1460 4425 154943 10106 1254 1391 2230 4660 22523 27407 0 0 77379 6534 1536 46 0 9365 24113 2608 0 0 111172 0 1 151127 12900 2218 219 27 24631 40227 3408 28 0 187047 10 2607 160928 15745 2742 26817 1135 33565 44623 4149 275 42 223784 0 0 0 0 917 0 0 0 0 1185 0 0 18294 0 0 77379 6534 619 46 0 9365 24113 1423 0 0 92878 0 1 73748 6366 682 173 27 15266 16114 800 28 0 75875 303403 16625 35000 50800 1266 15359 18375 15800 11577 240533 232753 421833 516422 20396 212357 Krasnodar Kray 12 6715 Stavropol Kray 12 5428 Arkhangelsk oblast 12 14210 Astrakhan oblast 12 2923 Belgorod oblast 12 2248 Bryansk oblast 12 3095 Vladimir oblast 12 2510 Volgograd oblast 12 9108 Vologda oblast 12 9155 Voronezh oblast 12 4550 Nizhni Novgorod oblast12 6403 Nenets a.okr. 12 2583 Ivanovo oblast 12 1875 Kaliningrad oblast 12 1183 Tver oblast 12 6128 Kaluga oblast 12 2445 Kirov oblast 12 8750 Kostroma oblast 12 4263 Samara oblast 12 4408 Kursk oblast 12 2623 Komi-Permyak a.okr. 12 2220 Leningrad oblast 12 5678 Lipetsk oblast 12 2140 Moscow oblast 12 4130 Murmansk oblast 12 4110 Novgorod oblast 12 3935 Orenburg oblast 12 8305 Oryel oblast 12 2018 Penza oblast 12 3893 Perm oblast 12 8423 Pskov oblast 12 4508 Rostov oblast 12 8245 Ryazan oblast 12 3453 Saratov oblast 12 8433 Smolensk oblast 12 4113 Tambov oblast 12 2905 Tula oblast 12 2283 Ulyanovsk oblast 12 3218 Yaroslavl oblast 12 2350 Adigei Republic 12 605 Bashkortostan Republic12 8983 Daghestn Republic 12 3843 Kabardino-Balkarian Republic 12 898 Kalmyk-Khalm-Tangch 12 Republic4735 Karelia Republic 12 9165 Komi Republic 12 14183 Mari-El Republic 12 1575 Mordovian SSR 12 2315 North-Ossetian SSR 12 608 Karachai-Cherkess Republic 12 1085 Tatarstan Republic 12 5278 Udmurt Republic 12 3425 Checheno-Ingush Republic 12 1555 64 2 0 0 39 557 223 0 0 5 772 0 833 519 657 617 462 67 0 561 0 124 378 1163 0 685 0 477 10 150 1273 1 906 0 1935 47 657 0 395 12 219 2 29 0 0 0 114 208 109 21 94 185 21 94 6 196 0 101 2129 1598 0 2048 31 3720 0 1542 771 3128 1565 1934 1160 0 1261 301 793 805 2543 0 2206 0 1138 144 1194 2852 2 2432 0 3107 284 1403 7 1364 22 847 4 46 0 60 147 525 712 125 25 286 1100 27 3245 1178 1331 0 379 2570 1884 223 5564 873 4396 0 1629 929 5021 1795 4144 2968 343 1545 825 2622 1187 3148 0 3188 117 1272 934 2602 3419 1698 2676 495 3169 1350 1498 171 1947 215 1869 142 221 148 235 321 753 1082 184 50 891 1765 305 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 0 41 6 0 0 6 43 2 0 0 39 557 223 0 0 5 772 0 833 519 657 617 462 67 0 561 0 124 378 1163 0 685 0 477 10 150 1273 1 906 0 1935 47 657 0 395 10 219 2 25 0 0 0 114 208 68 15 94 185 15 30 4 196 0 62 1572 1375 0 2048 26 2948 0 709 252 2471 948 1472 1093 0 700 301 669 427 1380 0 1521 0 661 134 1044 1579 1 1526 0 1172 237 746 7 969 10 628 2 17 0 60 147 411 504 16 4 192 915 6 3151 1172 1135 0 278 441 286 223 3516 842 676 0 87 158 1893 230 2210 1808 343 284 524 1829 382 605 0 982 117 134 790 1408 567 1696 244 495 62 1066 95 164 583 193 1022 138 175 148 175 174 228 370 59 25 605 665 278 1029 747 1074 0 295 47 217 411 664 703 214 0 50 17 127 38 1513 365 644 64 398 1239 207 51 0 174 297 9 1043 478 96 1413 40 703 109 660 0 691 40 93 911 103 88 35 373 579 203 180 23 31 781 166 147 2436 3503 11790 2922 1572 479 409 8473 2928 2974 1791 2582 196 236 980 612 3093 930 3420 1013 997 1817 746 931 4110 572 7891 736 1916 5343 993 5135 736 7235 834 895 785 2356 363 297 6203 3590 588 4552 8554 13282 619 1053 399 1004 3606 1494 1104 991 27 0 0 495 8080 2888 0 0 59 10302 0 10796 7519 8284 8291 5969 850 0 7771 0 1520 5040 15259 0 8650 0 6864 120 1841 16513 10 12398 0 25551 598 9130 0 4958 172 2732 27 394 0 0 0 1445 2642 1638 300 1138 2336 287 1291 71 1597 0 1080 24397 16072 0 17772 332 38941 0 17445 10130 30939 17567 19222 10901 0 14678 2546 7235 9236 28274 0 22416 0 13633 1528 11080 31140 16 27355 0 36588 3075 16549 70 13792 273 8662 51 559 0 481 1212 5415 7434 1798 342 3006 10633 345 23810 7753 7182 0 2795 27145 17703 1098 36017 5545 42902 0 17938 11113 41332 18936 31255 21040 1939 16365 5334 16792 11517 31642 0 27740 588 14448 6132 18730 34276 10877 28787 2512 36944 9457 17115 1029 16996 1686 14526 895 1705 833 1370 2094 6840 9692 2179 510 6552 14350 2124 387 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 4 72 0 0 0 0 0 709 103 0 0 93 604 25 0 0 495 8080 2888 0 0 59 10302 0 10796 7519 8284 8291 5969 850 0 7771 0 1520 5040 15259 0 8650 0 6864 120 1841 16513 10 12398 0 25551 598 9130 0 4958 141 2732 23 322 0 0 0 1445 2642 929 197 1138 2336 194 FSU REPUBLICS 10 2606 9801 2845 524 26598 1108 8934 4396 741 247 42 36737 49 1361 920 376 200 8694 313 757 950 554 133 11 8858 189080 94589 23176 300 44 1597 0 585 16317 13184 0 17772 273 28639 0 6649 2611 22655 9276 13253 10051 0 6907 2546 5715 4196 13015 0 13766 0 6769 1408 9239 14627 6 14957 0 11037 2477 7419 70 8834 101 5930 24 165 0 481 1212 3970 4792 160 42 1868 8297 58 22519 7682 5585 0 1715 2748 1631 1098 18245 5213 3961 0 493 983 10393 1369 12033 10139 1939 1687 2788 9557 2281 3368 0 5324 588 815 4604 7650 3136 10861 1432 2512 356 6382 566 959 3204 1413 5864 844 1146 833 889 882 1425 2258 381 168 3546 3717 1779 2461 1639 1770 0 609 97 410 728 1170 1444 410 0 93 34 241 74 2665 683 1203 125 678 2287 407 95 0 325 489 18 2004 891 178 2990 85 1331 207 1311 0 1326 75 231 1674 220 193 69 669 963 425 358 49 69 1470 340 321 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 0 0 4324 0 0 0 4380 2851 0 0 14396 12446 15835 11500 0 13153 13724 14330 0 0 13944 0 1000 12154 10644 13607 9522 9000 10490 11804 12909 9333 0 12353 5000 0 0 0 6825 0 0 9297 11494 0 14395 10447 9106 0 12450 9266 11192 17597 13874 10369 5208 0 12717 9333 6599 0 0 9213 8523 0 13159 9331 10750 0 13720 9757 11064 16204 13033 9768 5851 0 0 8086 6000 0 0 0 10862 16037 13595 10584 6081 6816 6253 5503 6395 5189 6540 5618 5918 6688 5643 6429 6728 1857 2317 2049 2136 2158 1747 2092 1989 2002 2288 1960 2033 2244 14000 12052 10166 16111 13826 10290 5987 2002 15484 13500 0 0 12692 14506 12951 0 0 11800 13345 0 12960 14487 12609 13438 12920 12687 0 13852 0 12258 13333 13120 0 12628 0 14390 12000 12273 12972 10000 13684 0 13205 12723 13896 0 12552 14333 12475 13500 13586 0 0 0 12675 12702 15028 14286 12106 12627 13667 7147 6556 4921 0 6165 6235 5697 4915 5189 6189 5856 0 5639 6210 5491 5956 5445 5609 5652 5933 5325 5226 5976 5569 0 5419 5038 6086 5826 5433 5534 6405 5861 5078 5719 5989 5980 5843 5493 7319 5740 6125 6543 5632 5083 5069 6261 6108 6413 6702 5861 5594 6408 2392 2195 1648 0 2063 2080 1891 1770 1763 2056 1916 0 1868 2066 1905 1940 1761 1869 1867 1933 1704 1845 1967 1883 0 1871 1647 1919 1921 1864 1858 2116 2123 1894 1905 1987 1592 1919 1895 2469 1838 2139 2191 1977 1791 1662 2090 1996 2153 2243 1882 2042 2180 13734 11833 8148 0 10693 11459 10058 0 8678 10710 10468 0 11313 13139 9891 11225 9939 9397 0 11640 8458 9124 11473 11118 0 10161 0 11980 10611 9280 10919 8000 11248 0 11776 10827 11795 10000 10111 12409 10227 12750 12152 0 8017 8245 10314 10441 14384 13680 10510 9666 12778 7337 6581 5396 0 7375 10562 9396 4924 6473 6352 9759 0 11012 11962 8232 10549 7542 7089 5653 10592 6465 6404 9703 10051 0 8701 5026 11358 6565 7198 10025 6406 10757 5075 11658 7005 11425 6018 8729 7842 7772 6303 7715 5628 5830 6523 9084 8957 11842 10200 7354 8130 6964 18476 16209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17641 0 16957 16544 0 0 0 0 0 17151 16684 0 0 16820 13984 13296 0 0 12571 14508 12924 0 0 11742 13336 0 12963 14480 12615 13435 12927 12731 0 13839 0 12264 13336 13117 0 12620 0 14377 11672 12296 12970 13689 13688 0 13201 12596 13889 0 12551 14020 12473 13487 12990 0 0 0 12711 12683 13607 13041 12110 12617 13324 9959 9911 8148 0 9369 10381 9591 0 8679 10369 9713 0 9375 10361 9168 9790 9005 9195 0 9870 8462 8550 9821 9433 0 9048 0 10236 10545 8852 9262 9778 9799 0 9416 10456 9951 10225 9115 10102 9438 9813 9672 0 7992 8220 9656 9505 9905 9898 9751 9069 10216 APPENDIX II Table A6 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ACCESSIBLE AREAS ADM REG NAME 197 101 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Chuvash Republic 12 Altai Kray 12 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 1678 29 115 200 0 29 86 85 263 1216 370 1181 1693 0 370 811 512 515 11538 860 1722 3816 0 860 862 2094 1203 6519 10843 18909 29931 0 10843 8066 11022 2255 2693 1 17 49 0 1 16 32 9 2634 18 153 321 0 18 135 168 16 16560 50 596 1677 0 50 546 1081 945 13938 595 5243 11529 0 595 4648 6286 2190 7290 121 453 1087 5 116 332 634 226 5978 1727 5140 9080 76 1651 3413 3940 468 2848 0 0 0 0 0 0 0 0 2847 0 0 0 0 0 0 0 0 9013 177 567 859 0 177 390 292 207 7945 2393 6096 7785 0 2393 3703 1689 431 9438 752 1522 2709 0 752 770 1187 941 5787 10222 17674 24234 0 10222 7452 6560 1745 6140 0 0 0 0 0 0 0 0 6140 0 0 0 0 0 0 0 0 1545 271 649 795 0 271 378 146 40 711 3810 7558 8409 0 3810 3748 851 74 17280 0 0 80 0 0 0 80 161 17039 0 0 547 0 0 0 547 396 1180 0 0 1 0 0 0 1 4 1175 0 0 7 0 0 0 7 10 3853 0 0 0 0 0 0 0 0 3852 0 0 0 0 0 0 0 0 5013 0 0 0 0 0 0 0 0 5012 0 0 0 0 0 0 0 0 5290 0 260 778 0 0 260 518 261 4251 0 2123 4875 0 0 2123 2752 557 8158 0 0 0 0 0 0 0 0 8155 0 0 0 0 0 0 0 0 5195 138 450 1206 0 138 312 756 596 3392 1698 4797 8786 0 1698 3099 3989 1009 9245 0 0 0 0 0 0 0 0 9245 0 0 0 0 0 0 0 0 9910 617 1513 3072 0 617 896 1559 779 6059 7440 16173 24115 0 7440 8733 7942 1542 8545 5 315 3600 0 5 310 3285 722 4223 61 3093 19196 0 61 3032 16103 1484 4795 0 4 14 0 0 4 10 27 4751 0 40 97 0 0 40 57 63 12618 589 2639 5730 0 589 2050 3091 799 6088 7144 25142 41494 0 7144 17998 16352 1453 663 0 0 3 0 0 0 3 18 642 0 0 12 0 0 0 12 34 7415 4 773 2288 0 4 769 1515 928 4199 42 6735 15575 0 42 6693 8840 2127 7043 59 450 2323 0 59 391 1873 810 3909 711 4426 14288 0 711 3715 9862 1834 6830 0 123 289 0 0 123 166 164 6377 0 998 1988 0 0 998 990 389 2680 0 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 0 6338 214 509 974 0 214 295 465 920 4443 2671 5412 7938 0 2671 2741 2526 1554 7850 0 0 61 0 0 0 61 139 7651 0 0 266 0 0 0 266 318 6650 0 0 23 0 0 0 23 86 6541 0 0 142 0 0 0 142 224 5043 0 0 11 0 0 0 11 12 5020 0 0 48 0 0 0 48 31 3093 8 98 247 0 8 90 149 160 2685 100 871 1707 0 100 771 836 297 46970 0 0 0 0 0 0 0 0 46970 0 0 0 0 0 0 0 0 244894 258722 503616 14622 3866 18488 45900 12660 58560 80716 31692 112408 80 5 85 14542 3861 18403 31278 8794 40072 34816 19032 53848 19843 10157 30000 144291 216858 361149 194255 49475 243730 488360 130583 618943 689833 232370 922203 1401 76 1477 192854 49399 242253 294105 81108 375213 201473 101787 303260 38119 20501 58620 1385 863 13455 8953 10518 10775 11258 14803 26983 370 5798 5938 9145 10700 9940 11740 8395 12815 15593 700 26720 8415 23453 56150 8803 15968 2450 32755 29875 21850 0 0 0 1 12 684 3059 1267 1641 3003 238 3395 765 3838 1599 3300 1759 61 254 328 0 1121 434 443 24 113 11 0 0 12 0 0 0 0 6 28 1169 4345 1741 2694 6319 344 4753 1177 5565 2224 4335 2682 163 447 728 0 2733 961 691 131 215 40 0 1 19 0 0 179 216 2164 530 3055 5574 2767 4813 9944 344 4958 1343 6044 2592 4461 3184 253 566 923 0 3557 995 828 1448 771 115 56 13 64 4 0 0 0 0 2 216 1051 394 405 131 134 1555 239 1366 770 1406 567 4 57 52 0 120 46 90 0 5 1 0 0 2 0 0 0 0 1 10 468 2008 873 1236 2872 104 1840 526 2472 829 1894 1192 57 197 276 0 1001 388 353 24 108 10 0 0 10 0 0 0 0 5 16 485 1286 474 1053 3316 106 1358 412 1727 625 1035 923 102 193 400 0 1612 527 248 107 102 29 0 1 7 0 0 179 216 2158 502 1886 1229 1026 2119 3625 0 205 166 479 368 126 502 90 119 195 0 824 34 137 1317 556 75 56 12 45 4 0 214 211 2266 822 1797 949 976 856 1111 0 60 36 45 172 10 77 31 26 69 0 131 0 152 2500 517 145 86 33 24 13 0 992 435 9023 7600 5665 4252 7514 9135 15927 25 776 4559 3057 7936 5469 8479 8111 12223 14600 700 23032 7420 22473 52202 7515 15707 2307 32709 29786 21833 0 1 0 20 169 10397 47796 18624 23219 42771 3953 54310 11719 60742 25805 52084 27105 849 3635 4717 0 16892 6677 6772 290 1625 142 1 1 174 0 0 4 0 69 323 15515 61276 23384 33710 76254 5041 68163 15856 78554 32102 62487 36431 1870 5533 8958 0 34325 12290 9309 1258 2652 424 3 13 240 0 0 1173 1430 14214 3665 28474 69389 30069 45466 96425 5043 69512 16860 81587 34306 63228 39420 2419 6244 10234 0 39799 12504 10215 7968 6465 881 351 78 458 19 0 0 0 1 34 3772 18941 6700 6518 2035 2457 28030 4310 25243 14068 25394 10195 75 991 896 0 2292 888 1654 0 82 12 0 0 40 0 0 1 0 19 135 6625 28855 11924 16701 40736 1496 26280 7409 35499 11737 26690 16910 774 2644 3821 0 14600 5789 5118 290 1543 130 1 1 134 0 0 3 0 49 154 5118 13480 4760 10491 33483 1088 13853 4137 17812 6297 10403 9326 1021 1898 4241 0 17433 5613 2537 968 1027 282 2 12 66 0 0 1169 1430 14145 3342 12959 8113 6685 11756 20171 2 1349 1004 3033 2204 741 2989 549 711 1276 0 5474 214 906 6710 3813 457 348 65 218 19 464 466 4967 1821 4138 2142 2114 1525 1952 0 145 76 104 329 20 149 67 58 153 0 291 0 349 4640 1185 289 172 62 43 27 0 416566 27362 43511 61761 8613 18749 16149 18250 13329 341462 420490 586044 697896 154628 265862 165554 111852 27748 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 12759 10270 8465 0 12903 9470 6019 1962 12608 10981 7844 0 12609 9354 5264 1875 18000 9000 6551 0 12446 8661 5319 1720 11900 8797 6875 0 11911 8514 5813 2318 14273 11347 8353 15996 14245 10294 6216 2072 0 0 0 0 0 0 0 0 13520 10751 9063 0 13550 9489 5791 2088 13593 11612 8946 0 13595 9676 5527 1853 0 0 0 0 0 0 0 0 14059 11646 10577 0 14069 9918 5839 1863 0 0 6838 0 0 0 6872 2462 0 0 7000 0 0 0 5788 2654 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8165 6266 0 0 8164 5314 2134 0 0 0 0 0 0 0 0 12304 10660 7285 0 12338 9926 5273 1692 0 0 0 0 0 0 0 0 12058 10689 7850 0 12054 9750 5093 1979 12200 9819 5332 0 11623 9767 4903 2056 0 10000 6929 0 0 9269 5518 2315 12129 9527 7242 0 12137 8778 5290 1819 0 0 4000 0 0 0 4279 1920 10500 8713 6807 0 11665 8701 5836 2292 12051 9836 6151 0 12006 9508 5264 2264 0 8114 6879 0 0 8128 5955 2376 0 0 0 0 0 0 0 0 12481 10633 8150 0 12470 9277 5432 1690 0 0 4361 0 0 0 4384 2295 0 0 6174 0 0 0 6118 2607 0 0 4364 0 0 0 4457 2639 12500 8888 6911 0 11995 8554 5609 1861 0 0 0 0 0 0 0 0 13285 10640 12797 10315 13183 10569 9403 9223 9363 5787 5348 5632 1921 2018 1954 9518 0 9531 9481 10554 10481 10043 9962 10096 10229 10203 10039 10317 10076 10053 10108 10010 9838 10603 0 10816 10648 10248 9078 10104 9618 9055 9167 9044 0 0 6513 6619 6553 6654 6873 6600 6518 5549 5565 6123 6569 6058 6334 5992 5881 5949 6109 5962 6536 0 6640 6286 6628 5094 6858 6057 6166 5445 4828 5170 0 2174 2205 2192 2215 2302 2258 2166 1782 1756 0 2394 2106 2290 1913 1943 1939 2192 2203 2207 0 2221 2137 2294 1856 2292 1988 1996 1880 1760 2052 0 15368 13469 11300 17953 14180 10252 6129 2082 1000 0 20000 14083 15200 15625 14699 14149 14243 16609 15997 15319 15826 16138 15783 15409 13918 14311 14381 0 15069 15385 15287 12083 14381 12909 1000 1000 14500 0 0 4000 0 11500 11536 13272 14103 13431 12513 12067 14654 14341 13472 14116 14434 14415 13584 11472 12378 12305 0 12559 12789 13472 9603 12335 10600 3000 13000 12632 0 0 8546 17513 13262 7332 15200 12794 8204 17376 13164 6553 6620 6568 6915 9320 12449 10867 9446 9697 14660 14020 12554 13499 13235 14174 12381 9561 11032 11088 0 11189 12567 12337 5503 8385 7661 6268 6000 7156 4750 0 16056 0 16051 16913 17455 18027 16983 16091 15575 18384 18024 18059 18483 18261 18056 17982 16694 17476 17117 0 19131 19433 18298 0 18214 16864 0 0 17862 0 0 13888 0 13203 13154 14152 14367 13651 13515 14185 14319 14283 14091 14360 14164 14094 14187 13589 13420 13866 0 14582 14932 14513 12065 14291 13390 12277 12150 13968 0 0 APPENDIX II Table A7 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ACCESSIBLE AREAS, EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 62805 0 0 33 0 0 0 33 97 62675 0 0 147 0 0 0 147 276 Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 0 0 4455 0 0 0 4380 2852 1448 4205 6503 1303 3013 134203 8128 1875 3013 93 3495 20363 5253 0 0 1589 199 12 3 0 192 876 14 0 0 816 0 0 4376 475 31 21 2 704 1719 15 2 0 2230 1 202 4974 690 55 1908 41 1356 2101 18 19 6 2665 0 0 0 0 9 0 0 0 0 10 0 0 76 0 0 1589 199 3 3 0 192 876 4 0 0 740 0 0 2787 276 19 18 2 512 843 1 2 0 1414 1 202 598 215 24 1887 39 652 382 3 17 6 435 12 273 147 89 29 2091 30 118 275 9 20 4 117 1434 3363 1382 524 2928 130204 8056 401 637 66 3455 20352 2470 0 0 22964 2462 206 42 0 2507 12012 204 0 0 11870 0 0 52317 5023 405 208 18 7293 20234 219 17 0 27156 9 1354 56092 6221 560 10020 271 10936 22488 239 110 40 29978 0 0 0 0 159 0 0 0 0 154 0 0 1219 0 0 22964 2462 47 42 0 2507 12012 50 0 0 10651 0 0 29353 2561 199 166 18 4786 8222 15 17 0 15286 9 1354 3775 1198 155 9812 253 3643 2254 20 93 40 2822 23 620 304 186 65 3677 61 232 547 20 40 9 255 192895 3701 9575 14036 95 3606 5874 4461 3214 175272 52267 112890 138318 1532 50735 60623 25428 6039 14122 11790 Krasnodar Kray 12 1820 Stavropol Kray 12 805 Arkhangelsk oblast 12 13708 Astrakhan oblast 12 2853 Belgorod oblast 12 73 Bryansk oblast 12 638 Vladimir oblast 12 1008 Volgograd oblast 12 1703 Vologda oblast 12 7900 Voronezh oblast 12 473 Nizhni Novgorod oblast12 3318 Nenets a.okr. 12 2583 Ivanovo oblast 12 848 Kaliningrad oblast 12 145 Tver oblast 12 2598 Kaluga oblast 12 1038 Kirov oblast 12 5758 Kostroma oblast 12 3273 Samara oblast 12 370 Kursk oblast 12 80 Komi-Permyak a.okr. 12 1838 Leningrad oblast 12 4743 Lipetsk oblast 12 80 Moscow oblast 12 2008 Murmansk oblast 12 3965 Novgorod oblast 12 3273 Orenburg oblast 12 1840 Oryel oblast 12 53 Penza oblast 12 575 Perm oblast 12 5435 Pskov oblast 12 2258 Rostov oblast 12 313 Ryazan oblast 12 1050 Saratov oblast 12 845 Smolensk oblast 12 563 Tambov oblast 12 255 Tula oblast 12 213 Ulyanovsk oblast 12 780 Yaroslavl oblast 12 850 Adigei Republic 12 225 Bashkortostan Republic12 3123 Daghestn Republic 12 3370 Kabardino-Balkarian Republic 12 555 Kalmyk-Khalm-Tangch 12 Republic3825 Karelia Republic 12 8518 Komi Republic 12 14183 Mari-El Republic 12 943 Mordovian SSR 12 593 North-Ossetian SSR 12 405 Karachai-Cherkess Republic 12 895 Tatarstan Republic 12 540 Udmurt Republic 12 1400 Checheno-Ingush Republic 12 1028 44 1 0 0 1 32 75 0 0 0 348 0 373 56 371 253 140 42 0 17 0 115 10 521 0 562 0 7 0 41 631 0 101 0 249 2 61 0 140 11 26 2 24 0 0 0 53 43 40 17 4 77 20 69 3 188 0 2 451 644 0 1689 0 2026 0 708 96 1357 655 968 857 0 39 202 705 19 1231 0 1800 0 27 12 485 1496 0 677 0 427 24 129 1 511 19 125 4 30 0 53 147 345 233 47 20 14 451 25 254 27 1213 0 10 558 770 7 4785 64 2450 0 747 120 2129 759 2481 2333 26 47 588 2302 26 1548 0 2638 1 34 90 1236 1862 21 760 9 446 86 136 42 718 25 287 104 36 0 205 321 527 308 67 22 85 749 104 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 0 16 5 0 0 6 32 1 0 0 1 32 75 0 0 0 348 0 373 56 371 253 140 42 0 17 0 115 10 521 0 562 0 7 0 41 631 0 101 0 249 2 61 0 140 9 26 2 20 0 0 0 53 43 24 12 4 77 14 25 2 188 0 1 419 569 0 1689 0 1678 0 335 40 986 402 828 815 0 22 202 590 9 710 0 1238 0 20 12 444 865 0 576 0 178 22 68 1 371 8 99 2 6 0 53 147 292 190 7 3 10 374 5 185 24 1025 0 8 107 126 7 3096 64 424 0 39 24 772 104 1513 1476 26 8 386 1597 7 317 0 838 1 7 78 751 366 21 83 9 19 62 7 41 207 6 162 100 6 0 152 174 182 75 20 2 71 298 79 113 28 1006 0 11 2 89 5 589 79 165 0 18 2 44 15 1258 305 68 1 388 1037 20 33 0 149 3 0 143 341 64 20 26 30 12 87 0 176 5 7 154 73 5 0 347 579 119 33 8 2 84 99 47 1452 750 11473 2852 52 78 148 1691 2526 329 703 2582 83 23 424 264 2020 635 275 33 861 1404 34 427 3965 485 1836 18 342 3858 332 271 263 807 105 82 77 561 127 193 2682 3185 515 3825 7963 13282 297 253 330 871 370 552 876 674 20 0 0 9 465 979 0 0 0 4632 0 4849 812 4699 3367 1796 531 0 236 0 1408 129 6827 0 7082 0 94 0 500 8154 0 1394 0 3262 23 821 0 1753 153 322 27 333 0 0 0 680 547 587 232 52 970 285 925 41 1534 0 19 4789 6438 0 14614 0 20969 0 8002 1222 13699 7290 9088 7987 0 453 1700 6442 218 13525 0 18271 0 300 131 4379 16115 0 7022 0 4924 243 1480 8 5117 237 1226 51 391 0 424 1212 3505 2299 657 265 147 4353 338 2236 190 6578 0 69 5450 7156 34 30655 403 23446 0 8222 1368 17925 7910 17213 16261 153 500 3744 14778 260 15284 0 22797 5 346 574 8462 18125 125 7508 50 5033 607 1523 246 6249 275 2141 653 428 0 1199 2094 4646 2731 786 279 551 6020 832 231 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 4 72 0 0 0 0 0 269 76 0 0 93 443 18 0 0 9 465 979 0 0 0 4632 0 4849 812 4699 3367 1796 531 0 236 0 1408 129 6827 0 7082 0 94 0 500 8154 0 1394 0 3262 23 821 0 1753 122 322 23 261 0 0 0 680 547 318 156 52 970 192 251 21 1534 0 10 4324 5459 0 14614 0 16337 0 3153 410 9000 3923 7292 7456 0 217 1700 5034 89 6698 0 11189 0 206 131 3879 7961 0 5628 0 1662 220 659 8 3364 84 904 24 58 0 424 1212 2825 1752 70 33 95 3383 53 1311 149 5044 0 50 661 718 34 16041 403 2477 0 220 146 4226 620 8125 8274 153 47 2044 8336 42 1759 0 4526 5 46 443 4083 2010 125 486 50 109 364 43 238 1132 38 915 602 37 0 775 882 1141 432 129 14 404 1667 494 273 63 1657 0 22 4 169 8 1029 164 313 0 33 4 82 29 2183 568 129 2 658 1911 39 62 0 275 5 0 273 634 117 37 56 58 22 171 0 337 8 17 275 157 10 0 615 963 260 65 17 4 158 200 102 15318 20000 0 0 9000 14531 13053 0 0 0 13310 0 13000 14500 12666 13308 12829 12643 0 13882 0 12243 12900 13104 0 12601 0 13429 0 12195 12922 0 13802 0 13100 11500 13459 0 12521 13909 12385 13500 13875 0 0 0 12830 12721 14675 13647 13000 12597 14250 FSU REPUBLICS Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 0 0 14452 12372 17167 14000 0 13057 13712 14571 0 0 14547 0 0 11955 10575 13065 9905 9000 10359 11771 14600 8500 0 12178 13406 13667 8160 0 9500 10619 9997 0 8652 0 10350 0 11302 12729 10095 11130 9388 9320 0 11615 8416 9138 11474 10987 0 10151 0 11111 10917 9029 10772 0 10372 0 11532 10125 11473 8000 10014 12474 9808 12750 13033 0 8000 8245 10159 9867 13979 13250 10500 9652 13520 9000 0 0 0 6703 0 0 8747 11277 0 14455 10533 9016 0 12366 9296 10182 17423 13725 10645 5252 0 12727 9351 6610 0 0 9297 8065 0 13065 9346 10703 0 13717 9756 13278 16161 13481 10511 5789 0 0 8105 6667 0 0 0 11249 15954 14403 10808 9855 16126 14070 10321 8803 7037 5423 0 6900 9767 9294 4857 6406 6297 9570 0 11007 11400 8419 10422 6938 6970 5885 10638 6367 6420 10000 9873 0 8642 5000 10176 6378 6846 9734 5952 9879 5556 11285 7058 11199 5857 8703 11000 7460 6279 11889 0 5849 6523 8816 8867 11731 12682 6482 8037 8000 18921 16209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17641 0 16957 16547 0 0 0 0 0 17022 16620 0 0 16820 13898 13342 0 0 12837 14519 13076 0 0 0 13328 0 13009 14509 12664 13297 12875 12712 0 14162 0 12274 13470 13106 0 12604 0 14491 0 12282 12933 0 13739 0 13095 12160 13547 0 12548 13932 12593 13487 13037 0 0 0 12956 12853 13459 13030 12225 12639 13331 9862 10450 8147 0 9348 10328 9596 0 8652 0 9737 0 9408 10314 9124 9768 8811 9144 0 10079 8420 8536 9927 9437 0 9036 0 10208 10807 8735 9204 0 9769 0 9360 10056 9752 10024 9067 10012 9178 9817 9940 0 7971 8220 9684 9237 9910 10018 9382 9057 10230 6168 6704 6308 5560 6487 5200 6474 5584 5899 6841 5383 6467 6489 1905 2273 2069 2091 2227 1759 2016 1970 1989 2288 1969 2064 2178 5700 1879 7091 6287 4920 0 6152 6199 5677 4790 5181 6249 5849 0 5645 6170 5473 5967 5371 5606 5773 5947 5292 5221 5774 5541 0 5403 5195 6082 5702 5435 5494 5841 5827 5853 5667 5844 6024 5765 5455 6161 5638 6050 6534 0 5096 5069 6266 5790 6408 6369 5720 5592 6226 2406 2248 1647 0 2050 2053 1888 1760 1748 2071 1892 0 1863 2063 1865 1933 1736 1866 1902 2069 1695 1842 1967 1899 0 1845 1717 0 1911 1859 1834 1840 2145 1965 1883 1969 1575 1909 1881 2439 1789 2132 2199 0 1776 1662 2174 1985 2146 2245 1870 2018 2172 APPENDIX II Table A7 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ACCESSIBLE AREAS, EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 197 101 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Chuvash Republic 12 Altai Kray 12 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 643 5 29 66 0 5 24 37 135 441 65 298 508 0 65 233 210 270 6125 339 761 1787 0 339 422 1026 712 3626 4278 8243 13705 0 4278 3965 5462 1366 2668 1 16 48 0 1 15 32 9 2610 18 152 320 0 18 134 168 16 13728 35 378 1016 0 35 343 638 657 12055 415 3336 7135 0 415 2921 3799 1537 6520 105 373 831 5 100 268 458 168 5521 1489 4228 7049 76 1413 2739 2821 346 2825 0 0 0 0 0 0 0 0 2825 0 0 0 0 0 0 0 0 8873 165 505 783 0 165 340 278 202 7885 2235 5460 7071 0 2235 3225 1611 421 8108 323 813 1823 0 323 490 1010 850 5435 4382 9088 14589 0 4382 4706 5501 1553 6128 0 0 0 0 0 0 0 0 6127 0 0 0 0 0 0 0 0 1450 233 575 712 0 233 342 137 40 698 3266 6646 7439 0 3266 3380 793 74 16035 0 0 64 0 0 0 64 134 15837 0 0 450 0 0 0 450 330 693 0 0 1 0 0 0 1 0 691 0 0 4 0 0 0 4 1 3853 0 0 0 0 0 0 0 0 3852 0 0 0 0 0 0 0 0 5010 0 0 0 0 0 0 0 0 5010 0 0 0 0 0 0 0 0 3498 0 204 545 0 0 204 341 177 2776 0 1663 3453 0 0 1663 1790 362 8158 0 0 0 0 0 0 0 0 8155 0 0 0 0 0 0 0 0 2403 20 76 442 0 20 56 366 296 1664 249 795 2653 0 249 546 1858 497 9245 0 0 0 0 0 0 0 0 9245 0 0 0 0 0 0 0 0 6220 156 692 1613 0 156 536 921 532 4075 1864 7328 12037 0 1864 5464 4709 1097 5035 5 286 1647 0 5 281 1361 501 2887 61 2810 9507 0 61 2749 6697 1072 4760 0 4 14 0 0 4 10 27 4716 0 40 97 0 0 40 57 63 10428 284 1929 4442 0 284 1645 2513 672 5313 3419 17731 30939 0 3419 14312 13208 1217 630 0 0 2 0 0 0 2 15 612 0 0 11 0 0 0 11 30 6968 2 696 2138 0 2 694 1442 838 3992 21 5978 14431 0 21 5957 8453 1910 4585 32 304 1675 0 32 272 1371 506 2403 388 2962 10132 0 388 2574 7170 1150 6780 0 116 275 0 0 116 159 161 6344 0 947 1898 0 0 947 951 383 2678 0 0 0 0 0 0 0 0 2677 0 0 0 0 0 0 0 0 2578 43 89 194 0 43 46 105 269 2115 534 951 1510 0 534 417 559 454 7260 0 0 56 0 0 0 56 116 7088 0 0 246 0 0 0 246 263 6045 0 0 11 0 0 0 11 62 5971 0 0 62 0 0 0 62 166 4778 0 0 9 0 0 0 9 10 4759 0 0 41 0 0 0 41 25 2370 1 34 119 0 1 33 85 91 2159 12 298 782 0 12 286 484 170 46870 0 0 0 0 0 0 0 0 46870 0 0 0 0 0 0 0 0 Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 13000 10276 7697 0 13090 9640 5602 2003 12619 10832 7669 0 12634 9394 5323 1917 18000 9500 6667 0 12446 8660 5319 1720 11857 8825 7023 0 11901 8518 5956 2341 14181 11335 8483 15996 14153 10227 6161 2057 0 0 0 0 0 0 0 0 13545 10812 9031 0 13562 9488 5788 2089 13567 11178 8003 0 13556 9612 5447 1828 0 0 0 0 0 0 0 0 14017 11558 10448 0 13993 9869 5812 1861 0 0 7031 0 0 0 6994 2466 0 0 4000 0 0 0 5640 2128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8152 6336 0 0 8157 5252 2047 0 0 0 0 0 0 0 0 12450 10461 6002 0 12196 9701 5082 1680 0 0 0 0 0 0 0 0 11949 10590 7462 0 11968 10195 5113 2062 12200 9825 5772 0 11623 9801 4920 2140 0 10000 6929 0 0 9269 5518 2315 12039 9192 6965 0 12034 8699 5257 1811 0 0 5500 0 0 0 4278 1990 10500 8589 6750 0 11680 8580 5861 2281 12125 9743 6049 0 11941 9449 5229 2273 0 8164 6902 0 0 8135 5973 2381 0 0 0 0 0 0 0 0 12419 10685 7784 0 12501 9065 5318 1690 0 0 4393 0 0 0 4391 2267 0 0 5636 0 0 0 5512 2659 0 0 4556 0 0 0 4453 2577 12000 8765 6571 0 11743 8616 5671 1862 0 0 0 0 0 0 0 0 122175 223305 345480 4515 1744 6259 19040 7851 26891 34229 20247 54476 45 5 50 4470 1739 6209 14525 6107 20632 15189 12396 27585 8024 7045 15069 79883 195993 275876 58769 22631 81400 192348 78656 271004 274628 145561 420189 778 76 854 57991 22555 80546 133579 56025 189604 82280 66905 149185 14508 14503 29011 705 70 5220 3418 1513 4635 3945 7378 15713 0 583 3165 4535 7530 7245 9118 6195 7700 11093 475 15890 5543 20278 48138 5088 11770 1600 28288 29138 20918 0 0 0 1 6 65 1596 226 434 1108 0 225 77 1549 796 2066 989 44 164 244 0 184 265 305 22 29 8 0 0 12 0 0 0 0 5 14 123 2211 273 855 2669 0 321 138 2348 1141 2769 1629 116 299 511 0 358 594 478 116 75 26 0 1 17 0 0 14 2 217 60 288 2585 380 1531 4317 0 346 180 2587 1328 2844 1976 178 386 635 0 399 611 569 923 159 58 49 11 50 2 0 0 0 0 1 20 517 57 94 51 0 84 16 539 353 845 263 3 27 41 0 13 29 59 0 3 1 0 0 2 0 0 0 0 1 5 45 1079 169 340 1057 0 141 61 1010 443 1221 726 41 137 203 0 171 236 246 22 26 7 0 0 10 0 0 0 0 4 8 58 615 47 421 1561 0 96 61 799 345 703 640 72 135 267 0 174 329 173 94 46 18 0 1 5 0 0 14 2 212 46 165 374 107 676 1648 0 25 42 239 187 75 347 62 87 124 0 41 17 91 807 84 32 49 10 33 2 0 30 2 333 115 209 214 191 281 464 0 8 6 32 87 2 51 19 17 44 0 18 0 115 1623 79 57 67 27 20 7 0 661 66 4670 3242 1015 1836 3374 5566 10932 0 228 2978 1917 6114 4399 7090 5998 7298 10414 475 15473 4931 19593 45592 4850 11656 1483 28249 29067 20909 0 1 0 18 87 972 24739 3212 6053 15605 0 3525 1149 24405 12722 32477 15019 617 2295 3508 0 2742 4070 4654 264 418 98 1 1 174 0 0 4 0 61 165 1602 31189 3668 10208 31068 0 4520 1768 32727 16209 39556 21511 1334 3610 6322 0 4588 7562 6414 1113 880 268 3 13 226 0 0 95 10 1377 466 2728 33653 4372 13830 40042 0 4688 2022 34284 17335 39998 23584 1711 4129 7133 0 4863 7670 7011 5247 1440 459 310 66 387 11 0 0 0 1 20 352 9273 978 1509 787 0 1507 284 9907 6448 15262 4740 57 471 710 0 241 564 1098 0 53 11 0 0 40 0 0 1 0 17 67 620 15466 2234 4544 14818 0 2018 865 14498 6274 17215 10279 560 1824 2798 0 2501 3506 3556 264 365 87 1 1 134 0 0 3 0 43 78 630 6450 456 4155 15463 0 995 619 8322 3487 7079 6492 717 1315 2814 0 1846 3492 1760 849 462 170 2 12 52 0 0 91 10 1316 301 1126 2464 704 3622 8974 0 168 254 1557 1126 442 2073 377 519 811 0 275 108 597 4134 560 191 307 53 161 11 0 66 5 697 255 482 489 413 468 785 0 19 13 76 169 5 100 42 38 97 0 40 0 264 3121 176 113 136 51 35 14 0 1000 0 18000 14500 14954 15501 14212 13947 14084 0 15667 14922 15755 15982 15720 15186 14023 13994 14377 0 14902 15358 15259 12000 14414 12250 1000 1000 14500 0 0 286887 10415 17087 22685 3018 7397 6672 5598 4118 260076 158826 226589 258921 54313 104513 67763 32332 8169 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 13016 10102 12976 10019 13005 10078 9196 9174 9190 5417 5397 5408 1808 2059 1925 9610 0 9511 9395 10889 10480 9718 9880 9905 0 10339 10078 10420 10109 10068 10140 10021 9773 10548 0 10597 10607 10192 9006 10035 9553 9055 9167 9417 0 0 6578 6674 6206 6535 6834 6594 6557 5359 5446 0 6629 6075 6527 6029 5893 5972 6110 5940 6532 0 6642 6292 6568 5122 6679 5948 6231 5354 4864 5196 0 2193 2224 2096 2216 2307 2281 2164 1664 1691 0 2302 2094 2389 1928 1946 1956 2195 2216 2200 0 2261 2137 2287 1923 2232 1988 2026 1879 1750 1953 0 15250 13261 11414 17996 14129 10156 5776 1984 4000 0 12200 11786 13024 14106 13436 11939 11640 0 14081 12812 13938 14206 14285 13205 11500 12074 12372 0 12816 12731 13418 9595 11733 10308 3000 13000 13294 0 0 8023 17289 12973 7189 15200 12970 7713 17080 12972 6786 5000 6346 7767 9472 13019 11505 9033 9275 0 13549 11233 13252 13053 14064 11935 9612 10697 11233 0 12188 12553 12322 5685 9057 7914 6327 6000 7740 5500 0 16056 0 16051 16856 17342 17935 17051 16073 15579 0 17933 17717 18369 18251 18060 17999 16613 17541 17175 0 18984 19375 18465 0 18129 17084 0 0 17862 0 0 13888 0 13171 13047 13748 14335 13219 13366 14020 0 14343 14067 14359 14160 14103 14165 13645 13361 13817 0 14597 14846 14465 12084 14169 13272 12277 12150 13968 0 0 APPENDIX II Table A8 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ACCESSIBLE AREAS CURRENTLY UNDER FOREST ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 1163 0 0 0 0 0 0 0 0 1162 0 0 0 0 0 0 0 0 Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 0 0 0 0 0 0 4228 1861 135 698 5098 975 1995 4208 2290 1748 1605 85 2640 1198 4743 0 0 1405 145 3 0 0 154 561 12 0 0 727 0 0 3487 324 7 1 0 631 945 13 2 0 1988 0 9 3940 507 15 48 2 1261 1113 15 18 1 2369 0 0 0 0 1 0 0 0 0 9 0 0 67 0 0 1405 145 2 0 0 154 561 3 0 0 660 0 0 2082 179 4 1 0 477 384 1 2 0 1261 0 9 453 183 8 47 2 630 168 2 16 1 381 0 11 126 68 8 114 4 109 157 8 19 3 98 135 578 1031 400 1971 4045 2284 377 335 62 2603 1194 2275 0 0 20235 1813 49 0 0 2003 7731 182 0 0 10645 0 0 42039 3477 90 13 0 6455 11491 190 17 0 24314 0 60 44883 4469 139 258 10 9970 12478 206 103 4 26781 0 0 0 0 21 0 0 0 0 142 0 0 1071 0 0 20235 1813 28 0 0 2003 7731 40 0 0 9574 0 0 21804 1664 41 13 0 4452 3760 8 17 0 13669 0 60 2844 992 49 245 10 3515 987 16 86 4 2467 0 27 260 136 18 200 7 215 311 17 37 6 211 27418 3007 7398 9298 77 2930 4391 1900 725 17290 42658 88086 99361 1234 41424 45428 11275 1445 14186 11907 10686 16026 14138 10346 5934 1993 Krasnodar Kray 12 1335 Stavropol Kray 12 20 Arkhangelsk oblast 12 11643 Astrakhan oblast 12 48 Belgorod oblast 12 73 Bryansk oblast 12 638 Vladimir oblast 12 995 Volgograd oblast 12 203 Vologda oblast 12 7190 Voronezh oblast 12 245 Nizhni Novgorod oblast12 3093 Nenets a.okr. 12 255 Ivanovo oblast 12 823 Kaliningrad oblast 12 115 Tver oblast 12 2510 Kaluga oblast 12 980 Kirov oblast 12 5580 Kostroma oblast 12 3073 Samara oblast 12 365 Kursk oblast 12 80 Komi-Permyak a.okr. 12 1720 Leningrad oblast 12 4215 Lipetsk oblast 12 80 Moscow oblast 12 1835 Murmansk oblast 12 2660 Novgorod oblast 12 3133 Orenburg oblast 12 53 Oryel oblast 12 53 Penza oblast 12 575 Perm oblast 12 5190 Pskov oblast 12 2053 Rostov oblast 12 18 Ryazan oblast 12 730 Saratov oblast 12 375 Smolensk oblast 12 563 Tambov oblast 12 255 Tula oblast 12 200 Ulyanovsk oblast 12 763 Yaroslavl oblast 12 783 Adigei Republic 12 153 Bashkortostan Republic12 2568 Daghestn Republic 12 240 Kabardino-Balkarian Republic 12 165 Kalmyk-Khalm-Tangch 12 Republic 3 Karelia Republic 12 6885 Komi Republic 12 10830 Mari-El Republic 12 878 Mordovian SSR 12 478 North-Ossetian SSR 12 135 Karachai-Cherkess Republic 12 473 Tatarstan Republic 12 533 Udmurt Republic 12 1400 Checheno-Ingush Republic 12 330 23 0 0 0 1 32 73 0 0 0 345 0 371 48 355 240 140 37 0 17 0 112 10 470 0 536 0 7 0 41 586 0 72 0 249 2 57 0 125 6 25 0 15 0 0 0 49 31 12 11 4 77 6 41 0 168 0 2 451 633 0 1585 0 1894 0 687 74 1310 625 961 810 0 39 192 636 19 1119 0 1691 0 27 12 466 1353 0 479 0 427 24 120 1 469 11 121 0 20 0 53 110 302 168 12 12 14 451 7 106 6 1161 0 10 558 758 7 4304 37 2290 0 723 90 2055 727 2432 2191 26 47 550 2004 26 1421 0 2508 1 34 90 1174 1684 2 539 8 446 86 127 42 664 15 273 6 24 0 195 255 469 234 23 13 84 749 14 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 3 3 0 0 1 15 0 0 0 1 32 73 0 0 0 345 0 371 48 355 240 140 37 0 17 0 112 10 470 0 536 0 7 0 41 586 0 72 0 249 2 57 0 125 5 25 0 12 0 0 0 49 31 9 8 4 77 5 18 0 168 0 1 419 560 0 1585 0 1549 0 316 26 955 385 821 773 0 22 192 524 9 649 0 1155 0 20 12 425 767 0 407 0 178 22 63 1 344 5 96 0 5 0 53 110 253 137 0 1 10 374 1 65 6 993 0 8 107 125 7 2719 37 396 0 36 16 745 102 1471 1381 26 8 358 1368 7 302 0 817 1 7 78 708 331 2 60 8 19 62 7 41 195 4 152 6 4 0 142 145 167 66 11 1 70 298 7 48 1 801 0 11 2 89 5 517 51 142 0 17 2 41 14 1202 286 68 1 345 897 20 29 0 141 3 0 143 293 54 4 20 27 12 87 0 175 4 6 126 7 4 0 322 508 119 32 3 0 83 99 10 1181 13 9673 47 52 78 148 191 2369 157 662 255 82 22 413 238 1947 596 271 33 824 1314 34 385 2660 483 49 18 342 3723 315 12 171 341 105 82 72 546 115 132 2168 228 138 2 6369 10068 289 210 109 459 365 552 307 361 0 0 0 9 465 959 0 0 0 4591 0 4826 702 4500 3190 1797 476 0 236 0 1369 129 6139 0 6750 0 94 0 505 7581 0 994 0 3262 23 774 0 1563 77 318 1 199 0 0 0 636 402 173 163 52 970 80 544 0 1369 0 19 4789 6336 0 13722 0 19674 0 7801 977 13211 6954 9031 7545 0 453 1619 5842 218 12246 0 17182 0 300 131 4234 14650 0 4966 0 4924 243 1393 8 4681 129 1201 1 250 0 419 909 3076 1669 174 176 146 4353 85 998 38 6252 0 69 5450 7044 34 27801 229 21989 0 8005 1078 17289 7566 16947 15278 153 500 3514 12996 260 13922 0 21596 5 346 574 8073 16471 12 5314 46 5033 607 1436 246 5747 156 2060 39 276 0 1144 1643 4129 2053 242 180 544 6020 133 151 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 44 0 0 0 0 0 52 54 0 0 19 210 0 0 0 9 465 959 0 0 0 4591 0 4826 702 4500 3190 1797 476 0 236 0 1369 129 6139 0 6750 0 94 0 505 7581 0 994 0 3262 23 774 0 1563 65 318 1 155 0 0 0 636 402 121 109 52 970 61 183 0 1369 0 10 4324 5377 0 13722 0 15083 0 2975 275 8711 3764 7234 7069 0 217 1619 4473 89 6107 0 10432 0 206 131 3729 7069 0 3972 0 1662 220 619 8 3118 52 883 0 51 0 419 909 2440 1267 1 13 94 3383 5 454 38 4883 0 50 661 708 34 14079 229 2315 0 204 101 4078 612 7916 7733 153 47 1895 7154 42 1676 0 4414 5 46 443 3839 1821 12 348 46 109 364 43 238 1066 27 859 38 26 0 725 734 1053 384 68 4 398 1667 48 117 2 1321 0 22 4 167 8 904 106 268 0 31 4 77 28 2090 533 129 2 583 1657 39 55 0 260 5 0 273 547 100 9 43 53 22 171 0 334 8 15 225 15 8 0 575 845 260 64 7 0 156 200 22 15696 0 0 0 9000 14531 13137 0 0 0 13307 0 13008 14625 12676 13292 12836 12865 0 13882 0 12223 12900 13062 0 12593 0 13429 0 12317 12937 0 13806 0 13100 11500 13579 0 12504 12833 12720 1000 13267 0 0 0 12980 12968 14417 14818 13000 12597 13333 7030 6390 4918 0 6152 6199 5676 4790 5178 6276 5851 0 5642 6201 5471 5969 5383 5601 5773 5947 5290 5228 5774 5546 0 5402 5195 6082 5702 5422 5504 6532 5815 6002 5667 5844 6024 5765 5459 6316 5637 6747 6604 0 5116 5073 6298 5795 6397 5860 5725 5592 6606 2431 2169 1648 0 2050 2053 1888 1760 1748 2062 1894 0 1861 2068 1866 1933 1739 1865 1904 2069 1689 1847 1967 1878 0 1846 1717 0 1911 1869 1834 2177 2161 2011 1883 1969 1575 1913 1884 2488 1794 2218 2207 0 1789 1664 2174 1978 2141 1870 1871 2018 2225 FSU REPUBLICS Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 0 0 14402 12503 16333 0 0 13006 13781 15167 0 0 14642 0 0 12056 10731 12857 13000 0 10230 12160 14615 8500 0 12230 13268 0 8149 0 9500 10619 10009 0 8657 0 10388 0 11355 13203 10085 11126 9398 9315 0 11615 8432 9186 11474 10944 0 10161 0 11111 10917 9086 10828 0 10367 0 11532 10125 11608 8000 9981 11727 9926 1000 12500 0 7906 8264 10185 9935 14500 14667 10429 9652 12143 0 0 0 0 6667 0 0 8717 11392 0 14397 10474 8815 0 12468 9283 9267 18057 13956 9797 5375 0 12906 8937 5000 0 0 0 7906 0 12992 9336 11211 0 13780 9781 13733 16123 12881 10077 5722 0 0 8105 4000 0 0 0 11305 15963 14504 10839 9415 6333 5385 0 6900 9767 9293 4857 6459 6189 9602 0 11072 11978 8413 10407 6968 6973 5885 10638 6389 6485 10000 9797 0 8611 5000 10176 6378 6876 9781 6000 9859 5750 11285 7058 11307 5857 8655 10400 7546 6500 11500 0 5867 6443 8804 8774 10522 13846 6476 8037 9500 19591 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17624 0 0 16608 0 0 0 0 0 17058 16622 0 0 17156 14259 0 0 0 12837 14519 13069 0 0 0 13322 0 13007 14541 12662 13290 12875 12726 0 14162 0 12277 13470 13064 0 12599 0 14491 0 12280 12945 0 13747 0 13095 12160 13558 0 12548 14030 12600 12360 13149 0 0 0 12895 12793 13204 12996 12225 12639 13399 9973 0 8138 0 9348 10328 9596 0 8657 0 9738 0 9401 10386 9121 9775 8815 9147 0 10079 8417 8540 9927 9414 0 9030 0 10208 10807 8765 9218 0 9752 0 9360 10056 9764 10024 9070 10081 9196 0 9863 0 7974 8268 9658 9224 10691 9979 9385 9057 10135 0 6968 6272 5425 6217 5222 5349 5577 5887 6886 5367 6075 6471 1914 2433 2057 2015 2139 1749 1898 1964 1981 2290 1978 2016 2159 APPENDIX II Table A8 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - ACCESSIBLE AREAS CURRENTLY UNDER FOREST ADM REG NAME 197 101 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Chuvash Republic 12 Altai Kray 12 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 643 5 29 66 0 5 24 37 135 441 65 298 508 0 65 233 210 270 2920 175 386 728 0 175 211 342 401 1791 2193 4198 6076 0 2193 2005 1878 790 1693 0 11 40 0 0 11 29 9 1645 0 91 243 0 0 91 152 15 12555 17 259 729 0 17 242 470 544 11282 197 2225 5034 0 197 2028 2809 1270 5300 48 191 434 5 43 143 243 116 4750 682 2152 3648 73 609 1470 1496 239 988 0 0 0 0 0 0 0 0 987 0 0 0 0 0 0 0 0 6658 109 290 456 0 109 181 166 132 6067 1473 3181 4131 0 1473 1708 950 267 6083 72 338 1041 0 72 266 703 628 4413 962 3471 7235 0 962 2509 3764 1126 5605 0 0 0 0 0 0 0 0 5605 0 0 0 0 0 0 0 0 750 99 213 266 0 99 114 53 25 459 1396 2531 2839 0 1396 1135 308 46 14285 0 0 56 0 0 0 56 120 14109 0 0 394 0 0 0 394 299 413 0 0 0 0 0 0 0 0 412 0 0 0 0 0 0 0 0 2035 0 0 0 0 0 0 0 0 2035 0 0 0 0 0 0 0 0 873 0 0 0 0 0 0 0 0 872 0 0 0 0 0 0 0 0 2875 0 192 523 0 0 192 331 172 2181 0 1562 3300 0 0 1562 1738 353 2220 0 0 0 0 0 0 0 0 2220 0 0 0 0 0 0 0 0 483 16 40 93 0 16 24 53 43 347 193 426 710 0 193 233 284 74 2635 0 0 0 0 0 0 0 0 2635 0 0 0 0 0 0 0 0 1660 59 252 572 0 59 193 320 202 886 712 2600 4287 0 712 1888 1687 434 1958 2 140 642 0 2 138 502 265 1051 24 1436 3935 0 24 1412 2499 545 4178 0 4 14 0 0 4 10 27 4134 0 40 96 0 0 40 56 62 9003 271 1620 3695 0 271 1349 2075 565 4743 3260 14931 25834 0 3260 11671 10903 1008 155 0 0 0 0 0 0 0 1 154 0 0 1 0 0 0 1 3 4765 1 467 1450 0 1 466 983 578 2737 14 3914 9692 0 14 3900 5778 1321 1593 20 83 529 0 20 63 446 214 850 237 848 3242 0 237 611 2394 480 4878 0 99 201 0 0 99 102 68 4608 0 805 1397 0 0 805 592 152 1173 0 0 0 0 0 0 0 0 1172 0 0 0 0 0 0 0 0 1520 8 37 115 0 8 29 78 53 1352 96 356 762 0 96 260 406 90 3128 0 0 4 0 0 0 4 18 3106 0 0 20 0 0 0 20 45 3718 0 0 4 0 0 0 4 20 3693 0 0 27 0 0 0 27 49 2858 0 0 8 0 0 0 8 8 2842 0 0 36 0 0 0 36 19 1603 0 5 16 0 0 5 11 12 1575 0 41 114 0 0 41 73 24 33823 0 0 0 0 0 0 0 0 33822 0 0 0 0 0 0 0 0 90232 144384 234616 4190 897 5087 17625 4627 22252 31354 11616 42970 19 5 24 4171 892 5063 13435 3730 17165 13729 6989 20718 7006 4221 11227 51856 128535 180391 54431 11439 65870 177948 44808 222756 252045 83053 335098 332 73 405 54099 11366 65465 123517 33369 156886 74097 38245 112342 12634 8711 21345 158 18 938 695 1170 4095 2870 5498 10550 0 395 2828 3683 4348 4985 6900 5803 6030 6103 260 4970 2490 12718 5360 1453 770 23 713 2808 248 0 0 0 0 0 43 1566 199 363 473 0 160 70 1502 298 1841 766 43 116 67 0 127 122 127 13 8 1 0 0 11 0 0 0 0 1 2 93 2160 240 729 1444 0 233 125 2261 479 2431 1265 112 210 167 0 255 261 197 63 23 4 0 0 15 0 0 5 0 40 11 232 2492 293 936 2114 0 255 160 2480 589 2496 1562 171 270 224 0 293 266 248 155 33 6 0 0 19 0 0 0 0 0 0 12 512 51 87 43 0 50 15 532 109 782 195 3 19 8 0 8 13 26 0 1 0 0 0 2 0 0 0 0 0 0 31 1054 148 276 430 0 110 55 970 189 1059 571 40 97 59 0 119 109 101 13 7 1 0 0 9 0 0 0 0 1 2 50 594 41 366 971 0 73 55 759 181 590 499 69 94 100 0 128 139 70 50 15 3 0 0 4 0 0 5 0 39 9 139 332 53 207 670 0 22 35 219 110 65 297 59 60 57 0 38 5 51 92 10 2 0 0 4 0 0 10 1 55 23 179 153 98 24 109 0 8 6 31 49 2 40 18 11 23 0 15 0 74 137 13 5 1 0 2 0 0 142 16 843 660 760 1450 2479 4537 8326 0 132 2662 1172 3710 2487 5298 5613 5748 5856 260 4662 2222 12396 5069 1407 759 22 711 2787 247 0 0 0 3 7 619 24306 2837 5100 6645 0 2475 1033 23687 4644 29030 11585 597 1638 968 0 1894 1860 1947 159 114 22 1 1 155 0 0 1 0 10 25 1163 30542 3232 8711 16225 0 3234 1583 31603 6471 34959 16645 1287 2557 2036 0 3256 3325 2649 592 262 50 2 5 196 0 0 35 3 271 85 2112 32733 3580 9953 20112 0 3381 1799 33044 7138 35344 18416 1649 2913 2405 0 3510 3361 2983 1081 322 60 4 7 220 0 0 0 0 0 1 202 9190 872 1404 676 0 899 263 9763 1974 14110 3507 56 339 135 0 154 255 482 0 13 3 0 0 33 0 0 0 0 3 6 417 15116 1965 3696 5969 0 1576 770 13924 2670 14920 8078 541 1299 833 0 1740 1605 1465 159 101 19 1 1 122 0 0 1 0 7 18 544 6236 395 3611 9580 0 759 550 7916 1827 5929 5060 690 919 1068 0 1362 1465 702 433 148 28 1 4 41 0 0 34 3 261 60 949 2191 348 1242 3887 0 147 216 1441 667 385 1771 362 356 369 0 254 36 334 489 60 10 2 2 24 0 0 23 2 123 51 412 352 215 43 199 0 19 12 75 96 4 79 40 25 50 0 34 0 168 257 29 10 1 0 4 0 0 98880 7916 12770 15350 2468 5448 4854 2580 1087 82433 121327 170621 186521 44331 76996 49294 15900 2323 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 13000 10276 7697 0 13090 9640 5602 2003 12531 10876 8346 0 12544 9508 5500 1968 0 8273 6075 0 12474 8581 5307 1718 11588 8591 6905 0 11923 8366 5978 2334 14208 11267 8406 16004 14177 10286 6151 2055 0 0 0 0 0 0 0 0 13514 10969 9059 0 13531 9459 5711 2022 13361 10269 6950 0 13320 9416 5352 1792 0 0 0 0 0 0 0 0 14101 11883 10673 0 14068 9974 5778 1844 0 0 7036 0 0 0 7045 2482 0 0 0 0 0 0 0 2698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8135 6310 0 0 8130 5257 2058 0 0 0 0 0 0 0 0 12063 10650 7634 0 12166 9694 5403 1734 0 0 0 0 0 0 0 0 12068 10317 7495 0 12092 9786 5272 2148 12000 10257 6129 0 11603 10213 4980 2057 0 10000 6857 0 0 9269 5512 2313 12030 9217 6992 0 12037 8651 5255 1785 0 0 1000 0 0 0 4296 2521 14000 8381 6684 0 11692 8364 5876 2286 11850 10217 6129 0 12054 9633 5371 2246 0 8131 6950 0 0 8130 5804 2215 0 0 0 0 0 0 0 0 12000 9622 6626 0 12411 8941 5229 1698 0 0 5000 0 0 0 5005 2537 0 0 6750 0 0 0 6038 2486 0 0 4500 0 0 0 4449 2508 0 8200 7125 0 0 8315 6351 2110 0 0 0 0 0 0 0 0 12991 10096 12753 9684 12949 10011 9194 8946 9140 5397 5472 5422 1803 2064 1901 9347 0 9677 9406 10931 10504 9685 9877 9869 0 10392 10087 10432 10104 10054 10132 10020 9743 10635 0 10678 10524 10069 8748 9923 9495 8717 9075 9792 0 0 6513 6639 6729 6390 6830 6590 6595 5986 5803 0 6620 6096 6573 6038 5883 5972 6111 5931 6433 0 6683 6493 6543 5335 6260 6092 6269 6252 6122 0 0 2175 2215 2236 2175 2311 2302 2195 1769 1825 0 2306 2106 2396 1963 1949 1965 2193 2232 2207 0 2267 2137 2282 1874 2228 2057 2118 1977 2160 2554 0 15327 13361 12151 17962 14133 10155 6163 2137 0 0 3000 7000 14395 15521 14256 14050 14049 0 15469 14757 15770 15584 15769 15124 13884 14121 14448 0 14913 15246 15331 12231 14250 22000 1000 1000 14091 0 0 1000 0 10000 12500 12505 14140 13467 11949 11236 0 13880 12664 13977 13509 14381 13158 11491 12176 12192 0 12769 12739 13447 9397 11391 12500 2000 5000 13067 0 0 8039 17474 12970 7150 14600 12742 7798 16875 12930 7000 3000 6775 7727 9103 13135 12218 10634 9514 0 13259 11244 13324 12119 14160 11790 9643 10789 10737 0 11980 12635 12028 6974 9758 10000 4000 7000 11579 0 0 16056 0 0 17484 17286 17935 17099 16076 15569 0 17906 17677 18366 18181 18044 17999 16607 17455 17976 0 19066 18997 18626 0 17258 17506 0 0 17776 0 0 13452 0 13069 13241 13555 14347 13258 13379 13874 0 14386 14040 14362 14123 14092 14153 13637 13403 14238 0 14564 14681 14539 12053 13839 13118 12204 12150 13933 0 0 APPENDIX II Table A9 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - EXCLUDING CULTIVATED AREAS, URBAN AREAS AND AREAS CURRENTLY UNDER FOREST ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 147800 0 0 53 0 0 0 53 190 147557 Average annual biomass increments (000tons) --------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 0 0 235 0 0 0 235 508 1788 4578 1680 370 1515 214330 12170 210 1463 10 2655 40375 640 0 0 209 58 12 5 0 60 336 2 0 0 109 0 0 1068 165 34 30 2 115 807 3 0 0 294 2 285 1244 207 58 2659 40 152 1027 5 2 8 375 0 0 0 0 10 0 0 0 0 1 0 0 11 0 0 209 58 2 5 0 60 336 1 0 0 98 0 0 859 107 22 25 2 55 471 1 0 0 185 2 285 176 42 24 2629 38 37 220 2 2 8 81 12 390 24 26 30 2798 28 17 124 2 5 2 26 1774 3595 412 137 1427 208873 12102 41 311 4 2648 40366 238 0 0 3124 701 207 60 0 805 4580 22 0 0 1521 0 0 12327 1701 449 298 18 1325 9169 29 0 0 3477 10 1957 13458 1959 611 13966 266 1540 10467 44 14 49 4019 0 0 0 0 179 0 0 0 0 12 0 0 181 0 0 3124 701 28 60 0 805 4580 10 0 0 1340 0 0 9203 1000 242 238 18 520 4589 7 0 0 1956 10 1957 1131 258 162 13668 248 215 1298 15 14 49 542 24 895 52 60 69 4897 57 34 248 4 9 4 60 281784 791 2518 6064 22 769 1727 3546 3484 271928 11020 28793 48360 372 10648 17773 19567 6413 Krasnodar Kray 12 625 Stavropol Kray 12 965 Arkhangelsk oblast 12 11818 Astrakhan oblast 12 4380 Belgorod oblast 12 0 Bryansk oblast 12 0 Vladimir oblast 12 13 Volgograd oblast 12 1890 Vologda oblast 12 1253 Voronezh oblast 12 258 Nizhni Novgorod oblast12 298 Nenets a.okr. 12 15018 Ivanovo oblast 12 25 Kaliningrad oblast 12 30 Tver oblast 12 118 Kaluga oblast 12 65 Kirov oblast 12 235 Kostroma oblast 12 253 Samara oblast 12 5 Kursk oblast 12 0 Komi-Permyak a.okr. 12 170 Leningrad oblast 12 800 Lipetsk oblast 12 0 Moscow oblast 12 193 Murmansk oblast 12 6555 Novgorod oblast 12 233 Orenburg oblast 12 2480 Oryel oblast 12 0 Penza oblast 12 0 Perm oblast 12 325 Pskov oblast 12 265 Rostov oblast 12 453 Ryazan oblast 12 405 Saratov oblast 12 615 Smolensk oblast 12 0 Tambov oblast 12 0 Tula oblast 12 13 Ulyanovsk oblast 12 18 Yaroslavl oblast 12 83 Adigei Republic 12 103 Bashkortostan Republic12 808 Daghestn Republic 12 4188 Kabardino-Balkarian Republic 12 663 Kalmyk-Khalm-Tangch Republic 12 6183 Karelia Republic 12 3005 Komi Republic 12 8200 Mari-El Republic 12 100 Mordovian SSR 12 125 North-Ossetian SSR 12 378 Karachai-Cherkess Republic 12 623 Tatarstan Republic 12 8 Udmurt Republic 12 3 Checheno-Ingush Republic 12 960 Chuvash Republic 12 0 Altai Kray 12 4503 24 2 0 0 0 0 2 0 0 0 3 0 2 8 19 14 0 6 0 0 0 8 0 55 0 47 0 0 0 0 58 0 35 0 0 0 4 0 18 6 1 2 10 0 0 0 5 11 28 5 0 0 16 0 238 33 4 33 0 0 0 11 0 157 0 179 0 21 21 61 32 11 60 0 0 15 99 0 122 0 186 0 0 0 23 195 0 259 0 0 0 8 0 50 9 4 5 11 0 1 50 61 69 35 8 0 0 21 0 574 174 25 89 0 0 0 13 0 842 32 217 0 24 28 97 33 65 182 0 0 63 466 0 144 0 216 0 0 0 87 234 27 290 1 0 0 8 0 64 11 18 105 13 0 14 89 83 78 44 10 1 1 108 0 1446 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 13 1 0 0 5 0 0 19 2 0 0 0 0 2 0 0 0 3 0 2 8 19 14 0 6 0 0 0 8 0 55 0 47 0 0 0 0 58 0 35 0 0 0 4 0 18 5 1 2 8 0 0 0 5 11 15 4 0 0 11 0 238 9 2 33 0 0 0 9 0 157 0 176 0 19 13 42 18 11 54 0 0 15 91 0 67 0 139 0 0 0 23 137 0 224 0 0 0 4 0 32 3 3 3 1 0 1 50 56 58 7 3 0 0 5 0 336 141 21 56 0 0 0 2 0 685 32 38 0 3 7 36 1 54 122 0 0 48 367 0 22 0 30 0 0 0 64 39 27 31 1 0 0 0 0 14 2 14 100 2 0 13 39 22 9 9 2 1 1 87 0 872 78 33 308 0 0 0 1 0 129 35 29 0 1 0 4 1 78 25 0 0 56 194 0 4 0 11 4 0 0 63 10 25 7 3 0 0 0 2 0 1 46 73 2 0 37 111 1 1 4 2 1 0 40 0 395 373 907 11407 4380 0 0 0 1890 282 191 51 14997 1 1 17 30 92 46 5 0 52 141 0 45 6555 4 2476 0 0 175 20 400 108 611 0 0 5 16 19 90 743 4001 647 6182 2947 7999 16 46 329 609 5 1 813 0 2661 347 25 0 0 0 0 20 0 0 0 48 0 24 110 244 194 0 76 0 0 0 92 0 737 0 602 0 0 0 0 747 0 475 0 0 0 47 0 223 85 12 29 138 0 0 0 70 145 419 81 0 0 221 0 3010 429 46 271 0 0 0 103 0 1351 0 1759 0 203 245 628 372 88 569 0 0 124 863 0 1387 0 1872 0 0 0 188 1995 0 2673 0 0 0 86 0 511 120 42 61 147 0 5 408 627 683 488 112 1 4 269 0 6124 1433 178 550 0 0 0 113 0 4915 193 1980 0 219 290 828 380 357 1259 0 0 377 2769 0 1506 0 2037 1 0 0 542 2206 150 2857 4 0 0 86 0 586 130 122 661 162 0 69 606 755 736 548 126 7 9 790 0 10692 86 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 4 29 0 0 0 0 0 219 24 0 0 77 0 0 261 22 0 0 0 0 20 0 0 0 48 0 24 110 244 194 0 76 0 0 0 92 0 737 0 602 0 0 0 0 747 0 475 0 0 0 47 0 223 64 12 25 109 0 0 0 70 145 200 57 0 0 144 0 3010 82 21 271 0 0 0 83 0 1351 0 1711 0 179 135 384 178 88 493 0 0 124 771 0 650 0 1270 0 0 0 188 1248 0 2198 0 0 0 39 0 288 35 30 32 9 0 5 408 557 538 69 31 1 4 48 0 3114 1004 132 279 0 0 0 10 0 3564 193 221 0 16 45 200 8 269 690 0 0 253 1906 0 119 0 165 1 0 0 354 211 150 184 4 0 0 0 0 75 10 80 600 15 0 64 198 128 53 60 14 6 5 521 0 4568 187 75 506 0 0 0 1 0 226 71 54 0 1 1 8 1 131 47 1 0 97 349 0 8 0 20 5 0 0 113 19 42 14 5 0 0 0 3 0 2 81 156 4 0 61 180 2 2 10 5 2 0 85 0 729 FSU REPUBLICS Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be assumed: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 0 0 4434 0 0 0 4390 2677 0 0 14947 12086 17250 12000 0 13417 13631 11000 0 0 13954 0 0 11542 10309 13206 9933 9000 11522 11362 9667 0 0 11827 13932 11435 14458 12500 0 0 0 0 10000 0 0 0 16000 0 12000 13750 12842 13857 0 12667 0 0 0 11500 0 13400 0 12809 0 0 0 0 12879 0 13571 0 0 0 11750 0 12389 14167 12000 14500 13800 0 0 0 14000 13182 14964 16200 0 0 13813 0 12647 13000 11500 8212 0 0 0 9364 0 8605 0 9827 0 9667 11667 10295 11625 8000 9483 0 0 8267 8717 0 11369 0 10065 0 0 0 8174 10231 0 10320 0 0 0 10750 0 10220 13333 10500 12200 13364 0 5000 8160 10279 9899 13943 14000 1000 4000 12810 0 10669 5000 0 0 0 6867 0 0 8791 10818 0 14920 10716 9464 0 12092 9324 10534 17143 13212 11173 5252 0 12659 9368 6650 0 0 9297 10132 0 13386 9495 10192 0 13620 9736 8800 16649 16650 11117 7000 0 0 0 6125 0 0 0 10717 15892 13619 10582 6180 6857 6428 6186 6769 5199 6536 5824 5912 6916 5590 6500 6730 7975 16909 13847 10291 5518 1841 7128 6324 4942 0 0 0 5752 0 5205 6083 5827 0 5689 6102 5545 5811 5001 5667 0 0 5278 5197 0 5445 0 5437 4024 0 0 5517 5397 5509 5863 4662 0 0 0 0 5387 5787 5810 5991 6351 0 4859 5012 5956 5717 6421 6531 5427 5168 5968 0 5236 2389 2255 1642 0 0 0 1917 0 1752 2045 1876 0 1901 2035 1959 1936 1677 1883 1532 0 1741 1801 0 2053 0 1826 1330 0 0 1796 1833 1705 2102 1560 0 0 0 1528 1821 2149 1771 2133 2174 0 1649 1623 2134 2314 2151 2218 1806 0 2136 0 1844 8236 7120 6180 0 0 0 8692 0 5837 6031 9124 0 9125 10357 8536 11515 5492 6918 0 0 5984 5942 0 10458 0 9431 1000 0 0 6230 9427 5556 9852 4000 0 0 10750 0 9156 11818 6778 6295 12462 0 4929 6809 9096 9436 12455 12600 7000 9000 7315 0 7394 17750 15904 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17733 0 16946 16449 0 0 0 0 0 17003 16574 0 0 16698 0 0 13564 13148 0 0 0 0 13421 0 0 0 13948 0 13284 14311 12716 13421 0 12615 0 0 0 12162 0 13493 0 12726 0 0 0 0 12797 0 13737 0 0 0 13373 0 12535 13864 12606 13562 12861 0 0 0 13938 13025 13603 13090 0 0 13242 0 12672 9561 10424 8188 0 0 0 9586 0 8618 0 9705 0 9521 10171 9235 9601 8426 9152 0 0 8446 8502 0 9669 0 9125 0 0 0 8118 9102 0 9809 0 0 0 9566 0 9008 9921 8636 9886 10393 0 7740 8098 9866 9255 9901 10028 9069 8615 10237 0 9262 1913 2297 2144 2303 2296 1750 2028 2061 2001 2290 1866 2161 2285 APPENDIX II Table A9 PRODUCTION POTENTIALS FOR BIOMASS PLANTATION FORESTRY SPECIES - EXCLUDING CULTIVATED AREAS, URBAN AREAS AND AREAS CURRENTLY UNDER FOREST ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 231 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 13 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Shanghai Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 4118 1 6 9 0 1 5 3 1 4107 5383 20 158 456 0 20 138 298 183 4744 1490 76 222 487 0 76 146 265 63 940 71523 0 0 0 0 0 0 0 0 71522 18580 147 1073 1543 0 147 926 470 582 16456 6033 322 680 1416 0 322 358 736 508 4109 9323 0 0 0 0 0 0 0 0 9322 1318 218 652 808 0 218 434 156 30 479 8388 0 0 21 0 0 0 21 24 8343 350 0 0 1 0 0 0 1 0 349 9120 0 0 0 0 0 0 0 0 9097 25808 0 0 0 0 0 0 0 0 25807 925 0 15 33 0 0 15 18 8 885 60873 0 0 0 0 0 0 0 0 60847 2543 9 46 444 0 9 37 398 319 1781 31205 0 0 0 0 0 0 0 0 31205 8383 171 749 2300 0 171 578 1551 648 5434 5148 6 215 1722 0 6 209 1507 372 3054 973 0 0 0 0 0 0 0 0 964 2898 25 616 1503 0 25 591 887 183 1212 1038 0 0 4 0 0 0 4 30 1004 10153 1 356 1717 0 1 355 1361 619 7816 7145 36 421 3027 0 36 385 2606 720 3398 20210 0 101 656 0 0 101 555 520 19034 41490 0 0 0 0 0 0 0 0 41482 1518 42 62 99 0 42 20 37 287 1132 11328 0 0 63 0 0 0 63 137 11127 10333 0 0 10 0 0 0 10 58 10264 5498 0 0 1 0 0 0 1 2 5494 1360 1 32 128 0 1 31 96 100 1131 107800 0 0 0 0 0 0 0 0 107782 Average annual biomass increments (000tons) --------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 18 61 78 0 18 43 17 2 240 1458 3220 0 240 1218 1762 429 1080 2565 4203 3 1077 1485 1638 130 0 0 0 0 0 0 0 0 1951 10791 13685 0 1951 8840 2894 1358 4350 7829 11841 0 4350 3479 4012 940 0 0 0 0 0 0 0 0 3039 7308 8229 0 3039 4269 921 62 0 0 127 0 0 0 127 53 0 0 4 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 216 0 0 127 89 14 0 0 0 0 0 0 0 0 108 461 2456 0 108 353 1995 531 0 0 0 0 0 0 0 0 2031 8084 15889 0 2031 6053 7805 1364 71 2047 9410 0 71 1976 7363 801 0 0 0 0 0 0 0 1 297 5407 10008 0 297 5110 4601 349 0 0 18 0 0 0 18 56 7 3255 10956 0 7 3248 7701 1420 423 4052 17419 0 423 3629 13367 1698 0 819 3789 0 0 819 2970 1289 0 0 0 0 0 0 0 0 524 707 912 0 524 183 205 484 0 0 274 0 0 0 274 307 0 0 53 0 0 0 53 160 0 0 5 0 0 0 5 6 12 286 815 0 12 274 529 183 0 0 0 0 0 0 0 0 Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 18000 10167 8667 0 12446 8831 5367 1807 12000 9228 7061 0 11896 8834 5910 2349 14175 11544 8627 15826 14091 10163 6187 2060 0 0 0 0 0 0 0 0 13272 10057 8869 0 13308 9551 6157 2333 13509 11513 8362 0 13530 9727 5455 1849 0 0 0 0 0 0 0 0 13940 11209 10184 0 13941 9832 5903 2043 0 0 6048 0 0 0 6100 2233 0 0 4000 0 0 0 5726 1932 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8467 6545 0 0 8583 5081 1683 0 0 0 0 0 0 0 0 12000 10022 5532 0 12346 9657 5017 1668 0 0 0 0 0 0 0 0 11877 10793 6908 0 11869 10469 5032 2106 11833 9521 5465 0 11643 9473 4884 2154 0 0 0 0 0 10655 7072 2488 11880 8778 6659 0 12078 8641 5187 1908 0 0 4500 0 0 0 4275 1864 7000 9143 6381 0 11656 9138 5659 2293 11750 9625 5755 0 11743 9415 5130 2359 0 8109 5776 0 0 8103 5347 2480 0 0 0 0 0 0 0 0 12476 11403 9212 0 12537 9231 5503 1687 0 0 4349 0 0 0 4353 2237 0 0 5300 0 0 0 5390 2739 0 0 5000 0 0 0 4480 2814 12000 8938 6367 0 11743 8694 5497 1819 0 0 0 0 0 0 0 0 75204 496758 571962 389 1313 1702 1854 5978 7832 3996 17894 21890 27 0 27 362 1313 1675 1465 4665 6130 2142 11916 14058 1420 5789 7209 69725 472982 542707 5211 17161 22372 18730 61381 80111 30537 124299 154836 463 3 466 4748 17158 21906 13519 44220 57739 11807 62918 74725 2575 12367 14942 673 78 6618 6105 515 1193 1468 2573 9320 0 275 500 1465 4710 5280 4623 540 2330 0 848 24765 6493 11850 90058 9673 31640 3505 153305 106460 69645 10 0 0 2 11 28 64 34 84 1190 0 103 10 79 684 357 349 2 62 335 0 127 273 239 40 34 9 0 0 1 0 0 0 0 8 25 38 106 44 150 2322 0 139 19 141 910 558 583 5 116 601 0 217 632 389 188 93 32 0 1 3 0 0 9 3 241 86 69 157 125 816 3871 0 142 26 168 1018 573 655 8 152 698 0 227 659 442 1269 218 84 116 20 37 2 0 0 0 0 2 10 13 8 7 8 0 56 2 15 336 95 98 0 11 84 0 24 27 42 0 3 1 0 0 0 0 0 0 0 2 9 18 51 26 77 1182 0 47 8 64 348 262 251 2 51 251 0 103 246 197 40 31 8 0 0 1 0 0 0 0 6 14 10 42 10 66 1132 0 36 9 62 226 201 234 3 54 266 0 90 359 150 148 59 23 0 1 2 0 0 9 3 233 61 31 51 81 666 1549 0 3 7 27 108 15 72 3 36 97 0 10 27 53 1081 125 52 116 19 34 2 0 21 3 369 165 36 74 116 344 547 0 0 1 1 51 2 15 1 8 29 0 5 0 56 2301 138 102 162 65 22 9 0 642 72 6008 5855 410 960 1226 1412 4902 0 132 473 1297 3641 4705 3953 531 2171 0 847 24533 5833 11351 86489 9316 31454 3227 153220 106401 69633 10 1 0 23 145 425 957 457 1140 16929 0 1669 144 1191 11085 5458 5340 26 869 4813 0 1937 4212 3629 483 505 115 0 0 23 0 0 5 0 81 272 528 1373 559 1797 28129 0 2037 230 1821 13372 7503 7727 59 1395 7598 0 2876 8025 5167 1835 1095 339 1 9 39 0 0 64 20 1500 669 740 1711 1094 5194 36328 0 2060 274 1983 14024 7595 8157 77 1609 8243 0 2938 8194 5514 7412 1933 645 706 104 198 13 0 0 0 1 31 175 241 127 115 126 0 1009 31 273 6149 1733 1769 1 190 1418 0 441 531 774 0 60 13 0 0 8 0 0 1 0 22 114 250 716 330 1025 16803 0 660 113 918 4936 3725 3571 25 679 3395 0 1496 3681 2855 483 445 102 0 0 15 0 0 4 0 58 127 103 416 102 657 11200 0 368 86 630 2287 2045 2387 33 526 2785 0 939 3813 1538 1352 590 224 1 9 16 0 0 59 20 1419 397 212 338 535 3397 8199 0 23 44 162 652 92 430 18 214 645 0 62 169 347 5577 838 306 705 95 159 13 0 46 6 764 366 82 166 249 568 913 0 1 2 1 96 3 29 2 17 64 0 11 0 128 4574 306 200 326 119 38 18 0 1000 0 11500 13182 15179 14953 13441 13571 14226 0 16204 14400 15076 16206 15289 15301 13000 14016 14367 0 15252 15429 15184 12075 14853 12778 0 0 23000 0 0 556518 4117 7320 11891 842 3275 3203 4571 4643 540704 61576 93872 118999 15216 46360 32296 25127 9095 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be assumed: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 13396 10102 13068 10267 13143 10228 9228 9479 9419 5512 5280 5315 1813 2136 2073 9652 0 9446 9406 10473 9868 9806 9900 9898 0 10114 10024 10181 10120 10178 10199 10098 9820 10455 0 10451 10620 10262 9160 10067 9543 8930 9291 8664 0 0 6611 6681 6095 6514 6841 6588 6563 5102 5292 0 6626 5973 6016 6024 5973 6002 6140 5958 6622 0 6310 6154 6536 5160 6687 5827 6093 5016 4746 5266 0 2202 2231 2072 2215 2281 2232 2146 1654 1669 0 2204 2004 1958 1884 1929 1901 2248 2184 2198 0 2219 1851 2291 1988 2216 1964 2007 1824 1742 1958 0 14957 12824 10007 18071 14156 10083 5497 1959 5000 0 10125 10880 13895 12953 12705 11980 12114 0 14655 12105 12915 14695 13446 13254 11800 12026 12642 0 13253 12698 13283 9761 11774 10594 1000 9000 13000 0 0 7642 17148 13116 6946 15826 13068 7073 17139 13078 7111 6667 6224 7779 10725 10898 8752 6365 9385 0 14507 10538 11804 13776 13255 12453 9625 10586 11809 0 12943 12434 12475 5841 8867 7679 6086 5200 5351 6500 0 0 0 15890 16865 17425 18015 16640 16022 15638 0 17987 18282 18504 18285 18224 18019 16920 17519 16901 0 18033 19585 18346 0 18348 16708 0 0 18432 0 0 13636 0 13178 13092 14062 13904 12919 13247 14220 0 14134 14278 14297 14195 14220 14234 14071 13243 13550 0 14566 14971 14456 12203 14223 13207 12375 0 14368 0 0 APPENDIX II Table A10 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - ALL AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 156198 96 650 5229 8 88 554 4579 5638 145330 Average annual biomass increments (000tons) -------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 1027 4619 23866 132 895 3592 19247 8173 2690 7868 20348 3938 6523 268445 19548 6313 6420 3000 9013 45390 57570 53 63 10413 1735 404 814 53 2226 2900 805 0 0 20665 191 187 18076 2274 692 5280 320 5111 5226 1982 32 0 37624 360 771 18656 2343 984 19957 1036 5488 5490 2476 343 22 44361 0 0 1799 21 187 92 3 243 214 112 0 0 4756 53 63 8614 1714 217 722 50 1983 2686 693 0 0 15909 138 124 7663 539 288 4466 267 2885 2326 1177 32 0 16959 169 584 580 69 292 14677 716 377 264 494 311 22 6737 117 1244 0 6 325 4837 565 5 0 199 403 61 6155 2213 5285 1692 1588 5213 243652 17947 821 929 325 8267 45307 7052 542 713 147391 21485 6869 8305 561 28869 41296 10947 0 0 300582 1455 1615 232047 26260 9720 44572 2480 55548 64719 21993 256 0 473885 2093 5413 235731 26553 11526 117061 6087 57707 66467 25154 1895 139 516445 0 6 25579 291 3844 1206 52 3440 3118 1816 0 0 82535 542 707 121812 21194 3025 7099 509 25429 38178 9131 0 0 218047 913 902 84656 4775 2851 36267 1919 26679 23423 11046 256 0 173303 638 3798 3684 293 1806 72489 3607 2159 1748 3161 1639 139 42560 165 2744 0 7 722 7856 952 7 1 429 789 124 13553 457066 40131 76995 102287 7427 32704 36864 25292 13917 340291 567560 934550 1072271 121887 445673 366990 137721 27349 Krasnodar Kray 12 7620 Stavropol Kray 12 6635 Arkhangelsk oblast 12 38190 Astrakhan oblast 12 4598 Belgorod oblast 12 2665 Bryansk oblast 12 3483 Vladimir oblast 12 2925 Volgograd oblast 12 11265 Vologda oblast 12 14628 Voronezh oblast 12 5195 Nizhni Novgorod oblast12 7515 Nenets a.okr. 12 16858 Ivanovo oblast 12 2270 Kaliningrad oblast 12 1240 Tver oblast 12 8395 Kaluga oblast 12 2963 Kirov oblast 12 11930 Kostroma oblast 12 6000 Samara oblast 12 5118 Kursk oblast 12 3020 Komi-Permyak a.okr. 12 3280 Leningrad oblast 12 7500 Lipetsk oblast 12 2410 Moscow oblast 12 4665 Murmansk oblast 12 13960 Novgorod oblast 12 5450 Orenburg oblast 12 12418 Oryel oblast 12 2458 Penza oblast 12 4320 Perm oblast 12 12715 Pskov oblast 12 5568 Rostov oblast 12 10133 Ryazan oblast 12 3935 Saratov oblast 12 10375 Smolensk oblast 12 4943 Tambov oblast 12 3435 Tula oblast 12 2553 Ulyanovsk oblast 12 3690 Yaroslavl oblast 12 3260 Adigei Republic 12 775 Bashkortostan Republic12 14435 Daghestn Republic 12 5033 Kabardino-Balkarian Republic 12 1238 Kalmyk-Khalm-Tangch Republic 12 7510 Karelia Republic 12 18253 Komi Republic 12 41370 Mari-El Republic 12 2365 Mordovian SSR 12 2590 North-Ossetian SSR 12 778 Karachai-Cherkess Republic 12 1468 Tatarstan Republic 12 6663 Udmurt Republic 12 4150 Checheno-Ingush Republic 12 1930 Chuvash Republic 12 1808 Altai Kray 12 16653 934 202 7175 0 385 2836 1352 0 9568 333 3760 0 1839 744 6947 2235 6322 4093 466 1724 2045 2520 1601 3615 11 3614 215 1882 2347 7867 3297 240 2814 58 4353 1627 2307 431 2943 233 4401 102 215 0 1768 4193 839 1652 261 179 1635 2583 231 383 4412 1885 745 19021 0 1488 3399 2812 0 11910 1221 7238 10 2248 914 7794 2896 11114 5719 746 2684 3040 6015 2230 4394 85 4758 497 2440 3057 9909 4650 486 3831 439 4656 2662 2530 1042 3064 445 7812 203 480 0 8553 15677 1867 2279 303 431 3546 3829 456 985 7984 4324 3186 24637 0 1644 3429 2871 568 12538 2091 7387 309 2261 989 7912 2934 11569 5849 2033 2714 3128 6306 2351 4537 484 4812 1212 2454 3983 10428 4722 4322 3934 1688 4692 2959 2553 2300 3066 480 9920 651 620 171 11568 24599 2157 2508 388 486 5061 3896 947 1321 10881 98 11 1263 0 80 1064 139 0 1942 61 436 0 78 48 841 129 1268 494 0 298 995 915 376 297 0 412 0 160 8 2446 84 1 561 0 33 340 147 0 129 18 395 19 48 0 449 1805 14 216 94 52 0 414 41 15 1051 836 191 5912 0 305 1772 1213 0 7626 272 3324 0 1761 696 6106 2106 5054 3599 466 1426 1050 1605 1225 3318 11 3202 215 1722 2339 5421 3213 239 2253 58 4320 1287 2160 431 2814 215 4006 83 167 0 1319 2388 825 1436 167 127 1635 2169 190 368 3361 951 543 11846 0 1103 563 1460 0 2342 888 3478 10 409 170 847 661 4792 1626 280 960 995 3495 629 779 74 1144 282 558 710 2042 1353 246 1017 381 303 1035 223 611 121 212 3411 101 265 0 6785 11484 1028 627 42 252 1911 1246 225 602 3572 2439 2441 5616 0 156 30 59 568 628 870 149 299 13 75 118 38 455 130 1287 30 88 291 121 143 399 54 715 14 926 519 72 3836 103 1249 36 297 23 1258 2 35 2108 448 140 171 3015 8922 290 229 85 55 1515 67 491 336 2897 1550 709 1890 0 387 0 0 900 40 2473 0 173 0 0 0 0 37 0 705 32 0 75 54 0 805 0 324 0 252 58 0 1728 0 1660 0 439 0 590 0 7 1073 275 5 61 1915 5049 20 49 2 12 569 0 67 383 502 1739 2740 11643 4597 634 54 54 9797 2049 629 128 16355 10 250 483 29 325 150 2379 275 151 1119 4 128 12671 638 10882 3 85 2229 845 4083 0 7027 251 36 0 801 194 288 3442 4099 612 7278 4763 11721 188 32 386 969 1033 253 917 105 5271 12945 2283 98316 0 4175 34211 17192 0 132326 3495 46264 0 26266 11404 98389 31306 85168 57413 4516 21668 30284 35762 20823 51370 118 50163 2119 25019 25840 111537 47016 2588 34653 551 66018 18130 32863 4170 41899 3219 51219 1305 3297 0 23597 60239 10066 19731 4463 2975 18124 33515 3345 4383 53289 21930 7210 199001 0 14854 40258 30069 0 154034 12161 77813 61 29936 13330 106416 37880 126860 73006 6317 32183 39245 67725 27074 58346 565 61026 4124 30504 31329 129833 59577 5042 43806 3658 69217 27424 35029 7956 43069 5574 78191 2285 6140 0 82619 156813 18350 25199 4956 5615 32830 44551 5722 9129 82472 1847 169 21817 0 1034 13995 1992 0 30871 773 5450 0 1111 616 11740 1705 20451 8702 0 3846 16667 15457 4698 4244 0 5914 0 2110 101 40468 1204 8 6825 0 488 3553 2407 0 1797 274 6271 289 901 0 7674 30796 171 2701 1754 1070 0 6786 722 178 15002 11098 2114 76499 0 3141 20216 15200 0 101455 2722 40814 0 25155 10788 86649 29601 64717 48711 4516 17822 13617 20305 16125 47126 118 44249 2119 22909 25739 71069 45812 2580 27828 551 65530 14577 30456 4170 40102 2945 44948 1016 2396 0 15923 29443 9895 17030 2709 1905 18124 26729 2623 4205 38287 8985 4927 100685 0 10679 6047 12877 0 21708 8666 31549 61 3670 1926 8027 6574 41692 15593 1801 10515 8961 31963 6251 6976 447 10863 2005 5485 5489 18296 12561 2454 9153 3107 3199 9294 2166 3786 1170 2355 26972 980 2843 0 59022 96574 8284 5468 493 2640 14706 11036 2377 4746 29183 16847 14857 25449 0 821 191 322 2767 2873 4785 913 1087 65 494 621 224 2281 623 6222 185 455 1330 659 714 1522 263 3130 103 5719 2689 452 23717 609 6267 260 1937 153 5336 12 230 9427 2872 871 939 14521 42198 1278 1278 518 336 6559 365 2983 1307 14177 3615 1436 2352 0 798 0 0 1608 42 5056 0 193 0 0 0 0 49 0 1229 57 0 79 105 0 1057 0 442 1 392 71 0 3671 0 3137 0 867 0 824 0 16 1522 572 9 123 3293 7623 32 46 4 24 837 0 127 635 812 FSU REPUBLICS 38777 22067 224450 0 15675 40449 30391 2767 156907 16946 78726 1148 30001 13824 107037 38104 129141 73629 12539 32368 39700 69055 27733 59060 2087 61289 7254 30607 37048 132522 60029 28759 44415 9925 69477 29361 35182 13292 43081 5804 87618 5157 7011 939 97140 199011 19628 26477 5474 5951 39389 44916 8705 10436 96649 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 10698 7106 4564 16073 10168 6483 4203 1450 10226 11317 14155 12383 17002 10203 10585 12969 14240 13599 0 0 14545 7618 8636 12837 11548 14046 8442 7750 10868 12384 11096 8000 0 12595 5814 7021 12636 11333 11713 5866 5875 10515 12107 10159 5525 6318 11642 0 13864 14216 13899 20564 13157 18465 14178 14549 16189 0 0 17353 10158 6595 11213 7292 14142 11048 12363 8862 13918 9901 9832 8120 10145 7187 12826 9249 14213 10070 13178 9386 0 8137 0 0 13706 10219 14143 12138 10483 16411 13627 13860 11302 13703 0 10844 12063 12716 0 13830 10495 12304 0 14283 15328 14163 14007 13472 14027 9691 12568 14809 14191 13006 14210 10727 13880 9856 13294 11010 14178 14260 10783 12314 9500 15166 11143 14245 9675 14237 13815 11638 12794 15335 0 13347 14367 11998 11944 17100 16620 11085 12975 14481 11444 12078 11634 9678 10462 0 9983 11844 10693 0 12933 9960 10751 6100 13317 14584 13654 13080 11414 12766 8468 11991 12910 11259 12141 13279 6647 12826 8298 12502 10248 13103 12812 10374 11435 8333 14866 10302 13845 7635 14056 12526 10009 11256 12792 0 9660 10003 9829 11057 16356 13028 9258 11635 12548 9268 10330 8968 6926 9110 0 9535 11796 10586 4871 12515 8104 10657 3715 13269 13978 13528 12987 11163 12588 6168 11926 12692 10951 11796 13017 4312 12737 5985 12472 9302 12708 12713 6654 11290 5880 14808 9923 13781 5779 14051 12092 8832 7922 11308 5491 8397 8090 9100 10557 14108 12245 7783 11529 9192 7900 8882 18938 14743 17276 0 12961 13151 14362 0 15893 12572 12509 0 14261 12793 13955 13258 16132 17598 0 12912 16749 16894 12483 14286 0 14343 0 13173 12538 16542 14257 13501 12155 0 14767 10439 16425 0 13936 14867 15873 15592 18724 0 17098 17060 12267 12517 18651 20409 0 16387 17703 12256 14275 13281 11064 12939 0 10307 11409 12528 0 13303 9992 12278 0 14288 15489 14190 14053 12806 13535 9697 12501 12964 12648 13162 14202 10599 13820 9875 13301 11002 13110 14260 10780 12352 9514 15170 11323 14103 9684 14251 13717 11220 12277 14330 0 12075 12329 11995 11856 16200 14964 11086 12323 13828 11438 11393 3783 6503 6346 4247 6189 4939 5041 5726 6626 6400 5274 6192 6317 1414 2207 1836 1132 2221 1624 1685 1567 1792 2153 1956 2046 2202 9955 5445 1965 9446 9072 8499 0 9684 10748 8821 0 9269 9754 9071 5979 8981 11301 9482 9942 8700 9589 6421 10948 9002 9146 9930 8958 6069 9499 7109 9838 7727 8961 9284 9976 8997 8148 10544 8975 9696 6199 9674 11119 7907 9681 10733 0 8698 8409 8058 8715 11627 10478 7696 8854 10574 7885 8170 6907 6086 4531 0 5256 6437 5416 4872 4578 5498 6110 3640 5133 6595 5260 5967 5012 4790 4835 6249 5191 4571 5442 5003 3813 4901 4374 7497 6178 5179 6246 6183 5894 5018 7280 6524 6657 4242 5141 6586 4473 6405 6205 5481 4816 4730 4403 5571 6076 6150 4329 5446 6081 3893 4894 2333 2026 1245 0 2060 732 0 1787 1065 2044 2035 1113 0 0 1738 0 1338 1071 1743 1790 1734 1049 1953 0 1314 1052 1366 1961 1559 1232 0 2124 918 1889 0 1976 0 1396 1701 2271 1418 2081 1875 2023 1720 1510 1608 927 2073 1979 1472 892 1894 1656 1619 APPENDIX II Table A10 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - ALL AREAS ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 9385 424 698 987 85 339 274 289 178 8221 71140 14263 26294 33801 1820 12443 12031 7507 5666 31673 16338 812 2489 4109 182 630 1677 1620 1411 10817 82285 0 0 0 0 0 0 0 0 82285 77545 3368 7526 13225 209 3159 4158 5699 5535 58777 36283 7656 11900 17451 1310 6346 4244 5551 3640 15192 75673 5 285 776 0 5 280 491 3116 71780 3700 1025 1512 1944 189 836 487 432 179 1576 76270 5183 11610 19239 52 5131 6427 7629 9058 47973 2178 163 478 817 4 159 315 339 89 1272 17045 14 655 2238 0 14 641 1583 688 14097 28903 0 106 375 0 0 106 269 1027 27501 9500 3251 4780 5728 609 2642 1529 948 763 3009 70770 0 0 0 0 0 0 0 0 70745 7110 1141 2746 3777 0 1141 1605 1031 548 2786 45830 0 14 788 0 0 14 774 971 44071 17673 4823 8223 10056 441 4382 3400 1833 759 6858 13980 2544 4996 8959 50 2494 2452 3963 716 4306 8095 401 1379 2553 0 401 978 1174 371 5079 19273 11247 13541 14567 2294 8953 2294 1026 164 4542 1970 1 47 551 0 1 46 504 364 1055 31145 12538 20290 23730 996 11542 7752 3440 255 7160 15860 6649 10125 11624 271 6378 3476 1499 547 3690 53163 7884 18557 28595 508 7376 10673 10038 2810 21758 66588 3 994 5413 0 3 991 4419 9713 51455 8763 1546 2866 4086 185 1361 1320 1220 1318 3359 41493 150 1338 6939 0 150 1188 5601 7183 27371 33533 192 1302 3348 7 185 1110 2046 4879 25305 17035 29 294 1275 0 29 265 981 1161 14599 6120 812 1646 2489 97 715 834 843 281 3350 303275 335 2595 9193 0 335 2260 6598 13944 280120 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 389947 1284574 1674521 113377 90871 204248 190495 167270 357765 233949 249514 483463 18734 10360 29094 94643 80511 175154 77118 76399 153517 43454 82244 125698 1640 1125 18480 15783 14798 16295 13863 19145 44848 413 9290 9250 13783 16663 18168 21050 11995 16385 23425 2840 56143 17725 37325 115468 20900 40580 5038 163355 119045 72183 40 124 1 1722 1175 2761 5242 5539 7179 23333 133 3088 2084 5761 6560 8153 6962 1040 3215 6783 254 8321 6669 10034 7666 2876 1766 53 202 934 71 0 559 189 5257 3347 5569 8039 8396 10848 31468 200 5622 3451 8565 8734 11074 9754 2823 5659 11806 809 15387 10450 12739 13495 5180 3363 169 537 1457 251 1 899 344 9629 6426 7154 9601 10318 13664 36390 267 5991 3895 8754 9466 11417 10374 3439 6265 12817 1288 17258 11170 14145 27397 6601 5288 1069 1437 1821 1166 2 2 0 221 166 60 921 1961 2401 7318 47 1081 362 1447 1739 1194 1081 24 680 1857 43 1341 1029 3808 1502 288 460 6 55 318 4 0 122 1 1501 1009 2701 4321 3578 4778 16015 86 2007 1722 4314 4821 6959 5881 1016 2535 4926 211 6980 5640 6226 6164 2588 1306 47 147 616 67 0 435 188 3535 2172 2808 2797 2857 3669 8135 67 2534 1367 2804 2174 2921 2792 1783 2444 5023 555 7066 3781 2705 5829 2304 1597 116 335 523 180 1 340 155 4372 3079 1585 1562 1922 2816 4922 67 369 444 189 732 343 620 616 606 1011 479 1871 720 1406 13902 1421 1925 900 900 364 915 1 25 163 1425 2666 434 459 1093 746 1729 0 10 46 18 173 0 151 125 112 291 288 220 1 1050 5345 812 686 210 557 178 513 0 717 618 7426 6689 7209 6236 2451 4734 6729 145 3167 5310 5011 7024 6751 10525 8432 10008 10316 1265 38665 6554 22130 82725 13488 34605 3759 161362 117047 70504 37 937041 129701 205198 255752 31416 98285 75497 50554 19526 661639 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL LC 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 24368 131553 77836 957053 102204 1088606 Average annual biomass increments (000tons) -------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 4647 6662 7923 1152 3495 2015 1261 251 166263 259863 297361 24729 141534 93600 37498 8804 9974 21550 29062 2609 7365 11576 7512 2510 0 0 0 0 0 0 0 0 37803 69378 94819 3045 34758 31575 25441 8093 83439 117977 143550 16471 66968 34538 25573 5382 55 2115 3889 0 55 2060 1774 4041 13043 16533 18760 2506 10537 3490 2227 316 60383 108574 141938 590 59793 48191 33364 13721 1618 3978 5328 45 1573 2360 1350 122 127 5615 13344 0 127 5488 7729 1066 0 733 1714 0 0 733 981 1144 37436 48782 52798 7897 29539 11346 4016 1231 0 0 0 0 0 0 0 0 12266 24786 29844 0 12266 12520 5058 881 0 103 3560 0 0 103 3457 1301 55212 82953 91906 5968 49244 27741 8953 1255 29662 50432 69202 667 28995 20770 18770 1213 4975 12631 18865 0 4975 7656 6234 630 143652 162081 166728 35838 107814 18429 4647 243 8 272 2200 0 8 264 1928 508 146757 210286 228180 13701 133056 63529 17894 374 71305 98059 105269 3687 67618 26754 7210 866 95007 182422 233572 7657 87350 87415 51150 5064 26 7228 30648 0 26 7202 23420 17735 17861 27843 32640 2760 15101 9982 4797 1996 1613 9826 33423 3 1610 8213 23597 10505 2104 10430 19325 99 2005 8326 8895 7382 310 2205 6304 0 310 1895 4099 1634 8596 14756 18386 1239 7357 6160 3630 384 3610 20620 49341 0 3610 17010 28721 19567 1527738 2205842 2428478 1061041 1661165 2046528 2588779 3867007 4475006 1819 10 19011 14291 43853 82960 82253 97235 290819 2100 50970 29721 90162 97979 124037 102385 14454 46169 108207 3106 124304 99243 180554 89769 42230 24728 588 2505 15090 614 3 6502 2230 52507 35644 78520 115959 113151 134484 364795 2780 76644 43525 118890 119869 154164 129897 31672 67977 155793 7461 198423 136772 207062 133185 65297 39865 1520 5031 19201 1947 17 8498 3287 78874 54265 89181 125507 123739 148854 391420 3191 79077 46163 120145 124315 156213 133440 35325 71191 161856 9619 210029 140715 214026 200931 74146 50368 6217 9822 20824 6311 22 1881169 2620784 2897571 291647 1236091 678104 145665 915376 600124 437312 2151467 1278228 27 0 2262 2264 1081 16796 31610 34280 99875 866 19627 6024 26329 31714 21526 19499 421 12473 37304 672 25037 19318 83284 23323 5255 8186 92 900 6434 33 0 222636 385363 607999 41944 119031 160975 1792 10 16749 12027 42772 66164 50643 62955 190944 1234 31343 23697 63833 66265 102511 82886 14033 33696 70903 2434 99267 79925 97270 66446 36975 16542 496 1605 8656 581 3 4683 2220 33496 21353 34667 32999 30898 37249 73976 680 25674 13804 28728 21890 30127 27512 17218 21808 47586 4355 74119 37529 26508 43416 23067 15137 932 2526 4111 1333 14 1996 1057 26367 18621 10661 9548 10588 14370 26625 411 2433 2638 1255 4446 2049 3543 3653 3214 6063 2158 11606 3943 6964 67746 8849 10503 4697 4791 1623 4364 5 42 345 3145 5849 918 1024 2288 1202 2927 0 25 89 47 317 0 275 244 191 584 413 445 2 1693 8813 1822 1243 348 947 280 847 1 536512 1344657 739615 276787 36366 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 10960 9544 8027 13600 10324 7356 4368 1411 11657 9883 8797 13588 11374 7780 4995 1554 12283 8658 7073 14322 11689 6903 4637 1779 0 0 0 0 0 0 0 0 11224 9218 7170 14574 11002 7594 4464 1462 10899 9914 8226 12578 10553 8137 4607 1479 11000 7421 5012 0 10912 7363 3611 1297 12725 10935 9650 13227 12606 7165 5154 1762 11650 9352 7378 11289 11654 7498 4373 1515 9926 8322 6521 10956 9924 7481 3988 1373 9071 8573 5962 0 9293 8564 4882 1550 0 6915 4571 0 0 6915 3652 1114 11515 10205 9218 12971 11182 7420 4237 1614 0 0 0 0 0 0 0 0 10750 9026 7902 0 10748 7802 4908 1610 0 7357 4518 0 0 7148 4468 1340 11448 10088 9139 13548 11238 8158 4885 1654 11660 10094 7724 13333 11627 8472 4736 1693 12406 9160 7389 0 12404 7828 5312 1698 12772 11970 11446 15625 12043 8032 4531 1477 8000 5787 3993 0 10828 5806 3822 1396 11705 10364 9616 13759 11528 8195 5202 1468 10724 9685 9056 13625 10602 7697 4810 1584 12051 9830 8168 15076 11843 8190 5096 1802 8667 7272 5662 0 10441 7269 5300 1826 11553 9715 7988 14956 11096 7564 3930 1514 10753 7344 4817 10191 10738 6916 4213 1463 10958 8011 5772 14585 10809 7501 4347 1513 10690 7500 4944 0 10737 7152 4178 1408 10586 8965 7387 12719 10285 7386 4308 1367 10776 7946 5367 0 10791 7526 4353 1403 13475 11580 10380 15568 13061 11676 9931 8202 14060 11370 12675 10809 9256 15031 12283 8793 7855 8326 5123 4686 4837 1721 1529 1575 14715 15571 11161 11918 15835 15313 14153 13175 11923 14271 15618 13758 14797 13745 14731 14094 13817 13295 14392 11531 14222 14171 15624 10779 14290 12666 10606 10940 14061 8612 14652 10772 11812 9477 9831 12347 11798 10816 10154 9093 10172 10132 10101 10245 10071 10313 9855 9658 8923 9474 7849 10490 9925 9798 7448 10012 9476 8053 7550 7864 7424 9684 5876 6827 6030 6047 6727 6113 5509 5104 5410 6156 6596 5939 6638 6077 5976 5717 5932 5299 5996 4505 6204 5477 4954 4873 6228 5456 5217 5322 4456 4770 5797 1654 2108 2207 2194 2114 2231 2093 1611 1693 0 2574 1950 2556 1833 1967 1819 1952 1701 2007 1435 2022 2158 1612 1649 2245 1812 1655 1700 1579 1650 1906 14504 12772 11330 17078 13681 9797 5475 1862 14669 10000 11040 12163 15883 15826 14850 13544 12464 15789 16506 14262 15650 14936 15214 14706 13898 14360 15953 12228 14939 14881 17994 11710 14684 14002 11094 12401 16156 8648 3000 11631 11799 9988 10650 14099 14425 13477 12397 11593 13900 13633 12612 13881 13724 13921 13317 11219 12012 13196 9222 12895 13088 16254 9869 12606 11854 8994 9369 13178 7757 17000 9453 9555 8191 8445 12466 13072 11993 10894 10756 11951 13199 11852 13725 13133 13682 12863 10272 11363 12628 7468 12170 12598 15131 7334 11233 9525 5816 6835 11435 5413 11000 15020 0 10219 13601 17892 18242 16115 14275 13649 18324 18150 16661 18199 18235 18033 18037 17596 18352 20085 15803 18674 18778 21870 15532 18239 17781 16261 16385 20240 9336 0 APPENDIX II Table A11 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - ACCESSIBLE AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 63130 9 180 1864 1 8 171 1684 2063 59202 107 1173 8360 19 88 1066 7187 3128 2025 6095 17955 3365 4763 165068 10428 5573 6018 2848 4775 22535 51955 47 49 9261 1543 351 495 43 1951 2719 778 0 0 18794 169 147 16011 2015 600 3439 243 4495 4901 1902 23 0 34066 317 583 16521 2071 832 13369 813 4830 5151 2358 252 17 40172 0 0 1539 17 161 50 1 210 205 109 0 0 4337 47 49 7722 1526 190 445 42 1741 2514 669 0 0 14457 122 98 6750 472 249 2944 200 2544 2182 1124 23 0 15272 148 436 510 56 232 9930 570 335 250 456 229 17 6106 100 970 0 4 249 3235 453 5 0 187 303 42 5619 1609 4049 1434 1289 3682 148464 9160 738 867 303 4220 22476 6163 475 553 131196 19312 5968 4993 457 25315 38698 10585 0 0 273206 1280 1268 205862 23507 8441 29070 1900 48821 60645 21155 188 0 429067 1829 4072 209099 23745 9879 78215 4840 50728 62304 24078 1406 103 467786 0 5 21880 236 3320 636 27 2982 2980 1758 0 0 75165 475 548 109316 19076 2648 4357 430 22333 35718 8827 0 0 198041 805 715 74666 4195 2473 24077 1443 23506 21947 10570 188 0 155861 549 2804 3237 238 1438 49145 2940 1907 1659 2923 1218 103 38719 141 2142 0 5 549 5315 776 7 1 402 595 86 12384 303403 36031 68011 87286 6629 29402 31980 19275 11167 204454 510758 831204 938084 108989 401769 320446 106880 22403 Krasnodar Kray 12 6715 Stavropol Kray 12 5428 Arkhangelsk oblast 12 14210 Astrakhan oblast 12 2923 Belgorod oblast 12 2248 Bryansk oblast 12 3095 Vladimir oblast 12 2510 Volgograd oblast 12 9108 Vologda oblast 12 9155 Voronezh oblast 12 4550 Nizhni Novgorod oblast12 6403 Nenets a.okr. 12 2583 Ivanovo oblast 12 1875 Kaliningrad oblast 12 1183 Tver oblast 12 6128 Kaluga oblast 12 2445 Kirov oblast 12 8750 Kostroma oblast 12 4263 Samara oblast 12 4408 Kursk oblast 12 2623 Komi-Permyak a.okr. 12 2220 Leningrad oblast 12 5678 Lipetsk oblast 12 2140 Moscow oblast 12 4130 Murmansk oblast 12 4110 Novgorod oblast 12 3935 Orenburg oblast 12 8305 Oryel oblast 12 2018 Penza oblast 12 3893 Perm oblast 12 8423 Pskov oblast 12 4508 Rostov oblast 12 8245 Ryazan oblast 12 3453 Saratov oblast 12 8433 Smolensk oblast 12 4113 Tambov oblast 12 2905 Tula oblast 12 2283 Ulyanovsk oblast 12 3218 Yaroslavl oblast 12 2350 Adigei Republic 12 605 Bashkortostan Republic12 8983 Daghestn Republic 12 3843 Kabardino-Balkarian Republic 12 898 Kalmyk-Khalm-Tangch 12 Republic4735 Karelia Republic 12 9165 Komi Republic 12 14183 Mari-El Republic 12 1575 Mordovian SSR 12 2315 North-Ossetian SSR 12 608 Karachai-Cherkess Republic 12 1085 Tatarstan Republic 12 5278 Udmurt Republic 12 3425 Checheno-Ingush Republic 12 1555 873 181 3950 0 332 2514 1149 0 6169 305 3229 0 1501 711 5096 1845 4594 2918 428 1509 1339 1808 1419 3233 1 2630 127 1542 2098 5515 2737 197 2472 53 3612 1354 2065 374 2123 214 2954 75 186 0 1091 1600 567 1483 239 146 1293 2094 197 1723 662 10047 0 1259 3024 2409 0 7648 1074 6185 2 1858 880 5704 2389 8139 4072 647 2339 2055 4526 1982 3897 7 3467 306 2003 2727 6988 3860 410 3362 381 3870 2237 2262 923 2224 414 5143 155 422 0 5218 6811 1253 2033 274 357 2794 3162 404 3898 2645 12066 0 1387 3051 2462 478 8044 1832 6307 33 1869 946 5789 2419 8489 4153 1785 2362 2117 4771 2091 4020 141 3506 813 2013 3588 7311 3916 3568 3452 1477 3901 2487 2283 2045 2226 445 6378 549 550 155 7010 9925 1434 2243 359 393 4027 3221 861 89 9 587 0 71 937 123 0 1275 59 379 0 65 46 596 113 919 356 0 267 614 592 323 282 0 293 0 130 7 1692 64 1 483 0 24 275 134 0 96 15 248 13 42 0 294 620 7 194 86 43 0 307 37 784 172 3363 0 261 1577 1026 0 4894 246 2850 0 1436 665 4500 1732 3675 2562 428 1242 725 1216 1096 2951 1 2337 127 1412 2091 3823 2673 196 1989 53 3588 1079 1931 374 2027 199 2706 62 144 0 797 980 560 1289 153 103 1293 1787 160 850 481 6097 0 927 510 1260 0 1479 769 2956 2 357 169 608 544 3545 1154 219 830 716 2718 563 664 6 837 179 461 629 1473 1123 213 890 328 258 883 197 549 101 200 2189 80 236 0 4127 5211 686 550 35 211 1501 1068 207 2175 1983 2019 0 128 27 53 478 396 758 122 31 11 66 85 30 350 81 1138 23 62 245 109 123 134 39 507 10 861 323 56 3158 90 1096 31 250 21 1122 2 31 1235 394 128 155 1792 3114 181 210 85 36 1233 59 457 1387 608 589 0 328 0 0 771 31 2173 0 12 0 0 0 0 27 0 620 25 0 68 47 0 379 0 221 0 226 23 0 1459 0 1426 0 387 0 541 0 6 595 230 3 57 800 1270 12 45 2 7 487 0 62 1425 2175 1540 2922 532 44 49 7859 1080 546 94 2537 6 238 338 25 234 110 2003 235 102 838 2 110 3590 428 7270 3 79 1089 591 3218 0 5529 211 32 0 631 124 154 2010 3056 345 4523 1352 2988 129 27 246 684 763 204 631 12113 2036 54082 0 3616 30279 14549 0 85733 3202 39791 0 21371 10900 72260 25748 61874 41020 4157 18964 19752 25466 18403 45852 12 36529 1253 20575 23061 78036 39161 2136 30508 509 54816 15045 29423 3618 30238 2947 34220 962 2853 0 14569 22676 6803 17731 4073 2517 14176 26845 2855 20082 6440 106385 0 12608 35769 25632 0 99495 10648 66602 11 24559 12803 78015 31138 92755 52096 5594 27994 26244 50460 23985 51813 52 44476 2552 25113 27892 91225 49604 4249 38530 3194 57538 23010 31334 7018 31220 5172 51629 1738 5401 0 50558 66715 12352 22527 4478 4731 25708 36284 5056 35099 18481 115643 0 13282 35941 25916 2338 101340 14831 67362 121 24615 13239 78463 31317 94514 52480 11184 28139 26574 51592 24581 52421 564 44669 4790 25189 33180 92930 49955 23869 39060 8695 57762 24634 31472 11760 31231 5377 57212 4270 6193 854 58946 82099 13150 23700 4992 4957 31062 36604 7854 1701 128 10172 0 926 12299 1766 0 20293 742 4739 0 927 583 8314 1500 14770 6353 0 3453 10296 9966 4021 4031 0 4226 0 1712 90 28085 917 8 5854 0 350 2850 2229 0 1335 225 3917 197 787 0 5053 10580 90 2424 1592 937 0 4979 650 10412 1908 43910 0 2690 17980 12783 0 65440 2460 35052 0 20444 10317 63946 24248 47104 34667 4157 15511 9456 15500 14382 41821 12 32303 1253 18863 22971 49951 38244 2128 24654 509 54466 12195 27194 3618 28903 2722 30303 765 2066 0 9516 12096 6713 15307 2481 1580 14176 21866 2205 7969 4404 52303 0 8992 5490 11083 0 13762 7446 26811 11 3188 1903 5755 5390 30881 11076 1437 9030 6492 24994 5582 5961 40 7947 1299 4538 4831 13189 10443 2113 8022 2685 2722 7965 1911 3400 982 2225 17409 776 2548 0 35989 44039 5549 4796 405 2214 11532 9439 2201 15017 12041 9258 0 674 172 284 2338 1845 4183 760 110 56 436 448 179 1759 384 5590 145 330 1132 596 608 512 193 2238 76 5288 1705 351 19620 530 5501 224 1624 138 4742 11 205 5583 2532 792 854 8388 15384 798 1173 514 226 5354 320 2798 3233 1230 729 0 677 0 0 1383 33 4441 0 12 0 0 0 0 37 0 1093 44 0 72 92 0 492 0 305 1 347 26 0 3115 0 2692 0 765 0 757 0 13 835 474 5 115 1387 2050 19 42 4 13 717 0 118 FSU REPUBLICS Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 11889 6517 4485 16456 10387 6245 4267 1516 10106 11286 14167 12516 17003 10087 10628 12975 14232 13605 0 0 14537 7574 8626 12858 11666 14068 8453 7819 10861 12374 11123 8174 0 12595 5770 6985 12657 11465 11874 5850 5953 10503 12096 10211 5579 6059 11645 0 13868 14221 13935 20598 12730 18657 14172 14566 16190 0 0 17329 10166 6614 11064 7319 14156 11062 12498 8883 13918 9942 9800 8180 10117 7228 12826 9240 14206 10059 13202 9400 0 8135 0 0 13698 10206 3718 6431 6348 4280 6209 4949 5153 5698 6646 6407 5323 6174 6341 1411 2209 1852 1080 2208 1643 1712 1567 1779 2154 1961 2040 2204 14176 12222 10747 16441 13665 10020 5545 2006 13875 11249 13692 0 10892 12044 12662 0 13897 10498 12323 0 14238 15331 14180 13956 13468 14058 9713 12567 14751 14085 12969 14182 12000 13889 9866 13343 10992 14150 14308 10843 12341 9604 15176 11112 14248 9674 14243 13771 11584 12827 15339 0 13354 14173 11998 11956 17042 17240 10964 12820 14492 6903 6071 4585 0 5254 6439 5397 4889 4658 5520 6211 3551 5181 6597 5279 5944 5032 4729 4913 6232 5322 4621 5460 4921 3810 4899 4412 7446 6145 5274 6222 6212 5883 5018 7225 6504 6670 4224 5147 6541 4520 6419 6208 5510 4680 4941 4399 5593 6073 6181 4343 5451 6119 2331 2022 1238 0 2061 732 0 1795 1073 2044 2035 1005 0 0 1644 0 1351 1459 1762 1752 1850 1057 1951 0 1298 1054 1379 1961 1539 1155 0 2134 927 1889 0 1977 0 1398 1626 2274 1403 2058 1878 2026 1733 1614 1548 922 2079 1941 1472 867 1909 11655 9728 10589 0 10014 11828 10640 0 13009 9914 10768 5500 13218 14549 13677 13034 11396 12794 8646 11968 12771 11149 12101 13296 7429 12828 8340 12538 10228 13055 12851 10363 11460 8383 14868 10286 13852 7603 14038 12493 10039 11213 12799 0 9689 9795 9858 11081 16343 13252 9201 11475 12515 9004 6987 9584 0 9576 11780 10526 4891 12598 8096 10681 3667 13170 13995 13554 12946 11134 12637 6266 11913 12553 10814 11756 13040 4000 12741 5892 12513 9247 12711 12757 6690 11315 5887 14807 9905 13785 5751 14030 12083 8970 7778 11260 5510 8409 8272 9170 10566 13905 12613 7713 11364 9122 19114 14848 17317 0 12970 13123 14367 0 15913 12567 12488 0 14262 12795 13955 13250 16079 17846 0 12922 16767 16823 12464 14295 0 14402 0 13138 12529 16603 14257 13501 12129 0 14689 10375 16588 0 13948 14893 15819 15682 18653 0 17178 17061 12246 12519 18476 21572 0 16203 17465 13281 11115 13056 0 10314 11401 12463 0 13372 9988 12300 0 14238 15521 14209 14001 12816 13533 9705 12487 13034 12749 13128 14172 10588 13821 9883 13359 10987 13066 14308 10866 12393 9510 15179 11304 14087 9666 14261 13670 11198 12404 14334 0 11944 12344 11997 11872 16187 15274 10961 12236 13772 9379 9161 8579 0 9703 10756 8799 0 9303 9688 9069 5941 8918 11289 9462 9901 8711 9600 6577 10879 9068 9195 9913 8981 6544 9493 7241 9838 7680 8956 9301 9932 9009 8180 10536 9021 9706 6198 9678 11139 7953 9680 10781 0 8719 8451 8088 8724 11531 10485 7682 8838 10613 APPENDIX II Table A11 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - ACCESSIBLE AREAS ADM REG NAME 197 101 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Chuvash Republic 12 Altai Kray 12 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 1678 355 915 1223 13 342 560 308 357 96 4074 8498 9700 163 3911 4424 1202 592 11538 2831 5421 7500 570 2261 2590 2079 357 3680 34068 55250 65483 8126 25942 21182 10233 583 2693 236 375 540 54 182 139 165 96 2056 2643 3674 4403 747 1896 1031 729 136 16560 5408 9155 10887 1015 4393 3747 1732 882 4790 60780 89313 97874 13365 47415 28533 8561 1399 7290 614 1776 2493 144 470 1162 717 684 4112 7535 15690 19077 2060 5475 8155 3387 1287 2848 0 0 0 0 0 0 0 0 2847 0 0 0 0 0 0 0 0 9013 677 1633 2497 31 646 956 864 701 5812 7830 15131 19062 386 7444 7301 3931 1019 9438 2722 4256 6030 698 2024 1534 1774 564 2844 31122 43841 52429 8771 22351 12719 8588 883 6140 1 9 34 0 1 8 25 197 5909 7 65 173 0 7 58 108 256 1545 532 738 922 110 422 206 184 41 582 6712 8176 9142 1419 5293 1464 966 72 17280 2742 5472 7404 42 2700 2730 1932 1480 8394 31465 51898 60525 482 30983 20433 8627 2267 1180 89 303 520 2 87 214 217 64 597 857 2455 3305 26 831 1598 850 90 3853 6 329 1056 0 6 323 727 260 2537 52 2844 6391 0 52 2792 3547 402 5013 0 36 129 0 0 36 93 279 4604 0 249 617 0 0 249 368 318 5290 1822 2608 3206 374 1448 786 598 571 1514 21065 26892 29423 4852 16213 5827 2531 933 8158 0 0 0 0 0 0 0 0 8155 0 0 0 0 0 0 0 0 5195 913 2087 2816 0 913 1174 729 390 1988 9828 18978 22540 0 9828 9150 3562 628 9245 0 6 179 0 0 6 173 322 8744 0 42 935 0 0 42 893 429 9910 2322 4333 5490 298 2024 2011 1157 529 3892 26954 43470 49122 4073 22881 16516 5652 875 8545 995 2399 5242 30 965 1404 2843 531 2772 11691 23485 37016 408 11283 11794 13531 909 4795 329 979 1712 0 329 650 733 246 2834 4080 9144 12984 0 4080 5064 3840 424 12618 7921 9631 10296 1723 6198 1710 665 42 2279 102482 116218 119262 27102 75380 13736 3044 67 663 0 14 160 0 0 14 146 120 382 0 81 633 0 0 81 552 167 7415 3301 4949 5733 367 2934 1648 784 119 1563 38493 52054 56089 4943 33550 13561 4035 207 7043 1981 3911 4682 88 1893 1930 771 381 1979 20355 35373 39121 1243 19112 15018 3748 608 6830 1188 2357 3360 62 1126 1169 1003 258 3212 14546 24261 29417 915 13631 9715 5156 459 2680 0 38 166 0 0 38 128 335 2179 0 274 946 0 0 274 672 594 6338 1184 2132 2994 141 1043 948 862 953 2390 13641 20824 24222 2086 11555 7183 3398 1446 7850 52 590 1618 0 52 538 1028 1045 5187 526 4155 8540 2 524 3629 4385 1476 6650 93 574 1346 1 92 481 772 1048 4256 1015 4585 7951 14 1001 3570 3366 1589 5043 10 152 717 0 10 142 565 552 3774 104 1125 3508 0 104 1021 2383 792 3093 591 1185 1691 81 510 594 506 151 1251 6242 10630 12829 1030 5212 4388 2199 208 46970 69 737 2524 0 69 668 1787 2560 41886 727 5637 13103 0 727 4910 7466 3439 244894 258722 503616 84497 38629 123126 136903 68185 205088 164514 93944 258458 12820 5831 18651 71677 32798 104475 52406 29556 81962 27611 25759 53370 15281 15758 31039 65047 149001 214048 1385 863 13455 8953 10518 10775 11258 14803 26983 370 5798 5938 9145 10700 9940 11740 8395 12815 15593 700 26720 8415 23453 56150 8803 15968 2450 32755 29875 21850 0 99 1 1087 510 2049 3461 4462 5980 13741 119 1986 1457 3820 4523 4956 4279 735 2542 4539 37 4349 3276 6516 3113 1328 948 30 116 239 49 0 478 149 3641 1635 4099 5456 6773 8835 18609 176 3603 2363 5757 5900 6527 5731 2022 4481 8335 172 8264 5106 8229 5754 2523 1886 70 246 418 154 0 785 270 7075 3609 5227 6656 8391 10920 21713 238 3885 2678 5889 6352 6691 6032 2503 4986 9089 310 9420 5484 9237 13545 3253 2807 446 544 574 872 0 1 0 125 73 39 616 1547 1993 4562 41 672 284 1045 1260 719 687 23 529 1105 6 585 527 2605 607 155 205 5 34 77 2 0 98 1 962 437 2010 2845 2915 3987 9179 78 1314 1173 2775 3263 4237 3592 712 2013 3434 31 3764 2749 3911 2506 1173 743 25 82 162 47 0 379 148 2554 1125 2050 1995 2311 2855 4868 57 1617 906 1937 1377 1571 1452 1287 1939 3796 135 3915 1830 1713 2641 1195 938 40 130 179 105 0 307 121 3434 1974 1128 1200 1618 2085 3104 62 282 315 132 452 164 301 481 505 754 138 1156 378 1008 7791 730 921 376 298 156 718 0 24 122 1082 1819 280 323 931 525 1191 0 8 34 16 134 0 110 100 101 227 94 155 1 815 2863 553 315 95 212 100 415 0 576 470 5298 3525 5011 3795 1935 3357 4078 131 1902 3225 3240 4214 3249 5598 5792 7729 6276 296 17145 2930 13400 39742 4996 12845 1909 32000 29201 20564 0 416566 80347 127392 159481 20129 60218 47045 32089 12645 244429 1133389 1598982 1746203 454820 685814 806122 1588209 2284796 2552325 1445 10 11781 6251 32490 54631 66413 81215 170363 1869 32825 20915 59783 67783 75292 62859 10204 36314 70262 460 64296 48924 119886 34229 19682 12903 345 1458 3503 419 0 5508 1764 35651 17327 57817 78384 91667 110323 214584 2447 49281 30128 79585 81693 91492 77187 22601 53442 105870 1535 105383 67036 136939 52826 31673 21953 642 2455 4687 1179 0 196230 937159 82050 372770 278280 1309929 465593 230994 696587 147221 120308 267529 27960 23962 51922 7313 2597 56228 29071 65346 85686 100575 120916 231244 2831 51144 32008 80466 84425 92503 78927 25439 56074 110349 2163 112603 69095 141928 90709 36437 27032 2592 4047 5352 4569 0 20 0 1244 1017 697 11230 24994 28542 61174 749 12211 4782 19038 23002 12943 12393 402 9699 21497 90 10836 9775 57607 9068 2847 3485 79 551 1448 18 0 1425 10 10537 5234 31793 43401 41419 52673 109189 1120 20614 16133 40745 44781 62349 50466 9802 26615 48765 370 53460 39149 62279 25161 16835 9418 266 907 2055 401 0 4063 1754 23870 11076 25327 23753 25254 29108 44221 578 16456 9213 19802 13910 16200 14328 12397 17128 35608 1075 41087 18112 17053 18597 11991 9050 297 997 1184 760 0 1805 833 20577 11744 7529 7302 8908 10593 16660 384 1863 1880 881 2732 1011 1740 2838 2632 4479 628 7220 2059 4989 37883 4764 5079 1950 1592 665 3390 39 266 2384 4015 592 724 1949 855 2008 0 20 68 41 244 0 198 195 171 450 137 319 2 1317 4663 1251 572 156 367 148 696 0 1168810 1633059 1809669 341438 827372 464249 176610 23847 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 11476 9287 7931 12237 11423 7896 3903 1657 12034 10192 8731 14245 11474 8180 4922 1632 11199 9797 8154 13800 10424 7425 4416 1410 11239 9756 8990 13174 10793 7615 4941 1586 12272 8834 7652 14292 11640 7016 4722 1881 0 0 0 0 0 0 0 0 11566 9266 7634 12611 11515 7639 4549 1454 11434 10301 8695 12571 11045 8290 4840 1567 7000 7222 5088 0 10908 6966 4282 1298 12617 11079 9915 12944 12550 7096 5251 1748 11475 9484 8175 11387 11474 7483 4465 1532 9629 8102 6356 11122 9602 7477 3914 1418 8667 8644 6052 0 9412 8652 4876 1545 0 6917 4783 0 0 6904 3936 1142 11561 10311 9177 12985 11199 7415 4232 1634 0 0 0 0 0 0 0 0 10765 9093 8004 0 10764 7793 4883 1607 0 7000 5223 0 0 7186 5151 1329 11608 10032 8948 13681 11303 8214 4886 1655 11750 9789 7061 13578 11697 8401 4759 1711 12401 9340 7584 0 12406 7786 5238 1722 12938 12067 11583 15733 12161 8031 4577 1581 0 5786 3956 0 0 5885 3770 1387 11661 10518 9784 13483 11436 8228 5144 1737 10275 9044 8356 14119 10097 7779 4863 1596 12244 10293 8755 14786 12104 8311 5141 1782 0 7211 5699 0 0 7288 5245 1774 11521 9767 8090 14762 11078 7577 3942 1517 10115 7042 5278 9946 10105 6742 4266 1412 10914 7988 5907 15405 10901 7425 4358 1515 10400 7401 4893 0 10396 7194 4221 1436 10562 8970 7587 12712 10221 7393 4344 1383 10536 7649 5191 0 10548 7353 4177 1343 13413 11680 10614 15307 13075 11774 10058 8581 14071 11366 12899 11141 9875 14920 12538 8884 7815 8499 5332 4671 5013 1830 1521 1673 14609 15571 10957 11986 15821 15254 14211 13210 11895 14279 15693 13757 14684 13725 14715 14050 13770 13224 14201 11749 14204 14242 15923 10041 14353 12670 10725 11081 12725 8602 0 10716 11842 9346 9849 12354 11904 10927 10196 9085 10176 10174 10164 10223 10101 10312 9869 9633 8835 9380 7959 10494 9897 9956 7041 10034 9645 7344 7690 6610 7232 0 5885 6855 5992 5950 6676 6085 5505 5080 5367 6155 6611 5977 6695 6040 6161 5781 5898 5215 5937 4566 6243 5443 4948 4863 6529 5514 5191 5341 4272 4725 0 1650 2182 2203 2207 2112 2241 2093 1627 1685 0 2579 1962 2548 1826 1945 1812 1949 1703 1981 1460 2061 2158 1615 1629 2263 1819 1637 1731 1482 1680 0 14547 12819 11347 16962 13740 9868 5504 1886 14596 10000 10838 12257 15857 15785 14884 13581 12398 15706 16528 14355 15650 14986 15192 14690 13883 14286 15480 12432 14784 14934 18399 10996 14821 13611 11500 12569 14657 8551 0 11523 11839 9792 10598 14105 14367 13534 12487 11531 13903 13678 12750 13824 13846 14017 13468 11178 11926 12702 8924 12752 13129 16641 9181 12554 11640 9171 9980 11213 7656 0 9316 9619 7947 8055 12502 12873 11986 11073 10650 11895 13164 11952 13664 13291 13825 13085 10163 11246 12141 6977 11954 12599 15365 6697 11201 9630 5812 7439 9324 5240 0 15139 0 9986 13842 17860 18219 16152 14323 13409 18332 18163 16823 18212 18250 18010 18027 17476 18322 19462 16065 18527 18562 22115 14938 18309 16981 16179 16315 18741 9331 0 APPENDIX II Table A12 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - ACCESSIBLE AREAS, EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 62805 9 180 1857 1 8 171 1677 2042 58906 107 1173 8329 19 88 1066 7156 3102 Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 11889 6517 4485 16456 10387 6245 4267 1519 1448 4205 6503 1303 3013 134203 8128 1875 3013 93 3495 20363 5253 39 45 3017 574 91 385 28 609 1479 26 0 0 1827 113 115 5716 772 197 1917 125 1558 2573 55 18 0 3454 202 358 5878 805 321 6245 343 1700 2698 75 154 14 3943 0 0 537 7 19 41 1 59 121 3 0 0 434 39 45 2480 567 72 344 27 550 1358 23 0 0 1393 74 70 2699 198 106 1532 97 949 1094 29 18 0 1627 89 243 162 33 124 4328 218 142 125 20 136 14 489 60 532 0 4 132 1765 229 2 0 9 154 37 62 1185 2948 624 493 2560 126193 7555 172 314 8 3188 20312 1248 402 506 41984 6992 1281 3910 302 7619 21255 364 0 0 27236 901 989 71280 8717 2288 16332 971 16358 32242 630 144 0 45309 1243 2489 72260 8854 3043 37567 1935 17151 33082 761 853 87 47875 0 3 7503 95 348 529 27 840 1766 53 0 0 7357 402 503 34481 6897 933 3381 275 6779 19489 311 0 0 19879 499 483 29296 1725 1007 12422 669 8739 10987 266 144 0 18073 342 1500 980 137 755 21235 964 793 840 131 709 87 2566 84 1151 0 4 295 2811 350 3 0 19 302 76 133 192895 8120 16613 22736 1222 6898 8493 6123 2986 166800 111851 196161 227200 18521 93330 84310 31039 5228 13775 11808 Krasnodar Kray 12 1820 Stavropol Kray 12 805 Arkhangelsk oblast 12 13708 Astrakhan oblast 12 2853 Belgorod oblast 12 73 Bryansk oblast 12 638 Vladimir oblast 12 1008 Volgograd oblast 12 1703 Vologda oblast 12 7900 Voronezh oblast 12 473 Nizhni Novgorod oblast12 3318 Nenets a.okr. 12 2583 Ivanovo oblast 12 848 Kaliningrad oblast 12 145 Tver oblast 12 2598 Kaluga oblast 12 1038 Kirov oblast 12 5758 Kostroma oblast 12 3273 Samara oblast 12 370 Kursk oblast 12 80 Komi-Permyak a.okr. 12 1838 Leningrad oblast 12 4743 Lipetsk oblast 12 80 Moscow oblast 12 2008 Murmansk oblast 12 3965 Novgorod oblast 12 3273 Orenburg oblast 12 1840 Oryel oblast 12 53 Penza oblast 12 575 Perm oblast 12 5435 Pskov oblast 12 2258 Rostov oblast 12 313 Ryazan oblast 12 1050 Saratov oblast 12 845 Smolensk oblast 12 563 Tambov oblast 12 255 Tula oblast 12 213 Ulyanovsk oblast 12 780 Yaroslavl oblast 12 850 Adigei Republic 12 225 Bashkortostan Republic12 3123 Daghestn Republic 12 3370 Kabardino-Balkarian Republic 12 555 Kalmyk-Khalm-Tangch 12 Republic3825 Karelia Republic 12 8518 Komi Republic 12 14183 Mari-El Republic 12 943 Mordovian SSR 12 593 North-Ossetian SSR 12 405 Karachai-Cherkess Republic 12 895 Tatarstan Republic 12 540 Udmurt Republic 12 1400 Checheno-Ingush Republic 12 1028 354 51 3706 0 7 573 428 0 5368 3 1525 0 683 75 2184 807 2811 2202 81 48 1003 1587 33 1553 1 2236 2 41 243 3331 1392 0 575 0 509 132 188 86 799 69 467 71 137 0 994 1600 373 346 109 111 145 880 176 567 164 9635 0 40 632 953 0 6699 50 3175 2 840 93 2423 1019 5375 3174 105 70 1703 3914 58 1891 7 2910 6 51 384 4332 2054 0 995 18 535 227 208 232 811 105 972 147 199 0 4961 6811 794 522 131 199 292 1300 300 738 224 11603 0 46 635 980 10 7061 147 3243 33 847 106 2451 1031 5578 3234 174 71 1764 4103 79 1955 134 2941 18 52 521 4587 2071 52 1050 50 538 246 212 540 811 119 1548 445 212 0 6703 9925 865 575 167 223 433 1318 455 63 7 571 0 1 223 44 0 1124 0 86 0 26 4 304 45 693 326 0 5 461 540 8 145 0 252 0 7 6 1064 42 0 171 0 1 28 14 0 19 3 80 13 40 0 275 620 3 85 32 33 0 137 37 291 44 3135 0 6 350 384 0 4244 3 1439 0 657 71 1880 762 2118 1876 81 43 542 1047 25 1408 1 1984 2 34 237 2267 1350 0 404 0 508 104 174 86 780 66 387 58 97 0 719 980 370 261 77 78 145 743 139 213 113 5929 0 33 59 525 0 1331 47 1650 2 157 18 239 212 2564 972 24 22 700 2327 25 338 6 674 4 10 141 1001 662 0 420 18 26 95 20 146 12 36 505 76 62 0 3967 5211 421 176 22 88 147 420 124 171 60 1968 0 6 3 27 10 362 97 68 31 7 13 28 12 203 60 69 1 61 189 21 64 127 31 12 1 137 255 17 52 55 32 3 19 4 308 0 14 576 298 13 0 1742 3114 71 53 36 24 141 18 155 58 13 585 0 7 0 0 9 29 255 0 12 0 0 0 0 11 0 65 1 0 37 1 0 366 0 6 0 35 21 0 13 0 66 0 8 0 115 0 4 369 180 2 0 790 1270 5 12 1 7 51 0 21 1024 568 1505 2852 19 3 28 1684 810 70 74 2537 1 38 146 6 167 39 130 7 75 602 0 53 3465 331 1817 0 19 826 187 247 0 729 24 0 0 125 38 101 1206 2738 341 3825 1022 2988 72 6 238 665 55 82 551 5663 660 50772 0 79 6561 5318 0 74799 29 19088 0 9737 1139 30942 11246 38912 31032 795 619 14702 22479 430 22118 12 31018 16 497 2651 47580 19810 0 6428 0 7695 1496 2819 848 11434 1089 5565 916 2215 0 13328 22676 4490 4071 1895 1907 1553 11245 2623 7945 1738 101574 0 416 7136 9965 0 87177 525 33794 11 11148 1348 33226 13341 61237 40338 954 846 21043 43980 648 25131 52 37372 43 590 3653 56599 25855 0 10133 154 7969 2306 3015 1686 11555 1479 9262 1652 2876 0 47919 66715 7917 5537 2143 2862 2637 14962 3980 9140 2100 110598 0 450 7153 10111 46 88871 1066 34189 121 11183 1436 33372 13415 62348 40611 1254 856 21364 44864 767 25464 536 37526 97 595 4354 57944 25955 286 10455 323 7996 2424 3037 2967 11556 1584 11687 3553 2952 0 56085 82099 8231 5810 2364 3002 3245 15061 4921 1296 106 9878 0 16 2849 634 0 17980 0 1094 0 372 57 4240 575 11554 5914 0 73 7716 9112 93 2072 0 3634 0 98 73 17671 594 0 2152 0 20 310 260 0 270 72 1237 196 759 0 4714 10580 41 1062 634 704 0 2186 650 4367 554 40894 0 63 3712 4684 0 56819 29 17994 0 9365 1082 26702 10671 27358 25118 795 546 6986 13367 337 20046 12 27384 16 399 2578 29909 19216 0 4276 0 7675 1186 2559 848 11164 1017 4328 720 1456 0 8614 12096 4449 3009 1261 1203 1553 9059 1973 2282 1078 50802 0 337 575 4647 0 12378 496 14706 11 1411 209 2284 2095 22325 9306 159 227 6341 21501 218 3013 40 6354 27 93 1002 9019 6045 0 3705 154 274 810 196 838 121 390 3697 736 661 0 34591 44039 3427 1466 248 955 1084 3717 1357 1195 362 9024 0 34 17 146 46 1694 541 395 110 35 88 146 74 1111 273 300 10 321 884 119 333 484 154 54 5 701 1345 100 286 322 169 27 118 22 1281 1 105 2425 1901 76 0 8166 15384 314 273 221 140 608 99 941 131 24 725 0 15 0 0 16 31 515 0 12 0 0 0 0 14 0 112 2 0 39 1 0 476 0 8 0 46 25 0 26 0 126 0 15 0 148 0 10 529 372 4 0 1373 2050 7 11 1 13 79 0 40 15997 12941 13700 0 11286 11450 12425 0 13934 9667 12517 0 14256 15187 14168 13936 13843 14093 9815 12896 14658 14164 13030 14242 12000 13872 8000 12122 10909 14284 14231 0 11179 0 15118 11333 14995 9860 14310 15783 11916 12901 16168 0 13408 14173 12038 11766 17385 17180 10710 12778 14903 FSU REPUBLICS Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 10308 11244 13916 12181 14077 10156 10786 12511 14371 14000 0 0 14907 7973 8600 12470 11291 11614 8520 7768 10499 12531 11455 8000 0 13118 14012 10598 10542 0 10400 11291 10456 0 13013 10500 10644 5500 13271 14495 13713 13092 11393 12709 9086 12086 12356 11237 11172 13290 7429 12843 7167 11569 9513 13065 12588 0 10184 8556 14895 10159 14495 7267 14248 14086 9529 11238 14452 0 9659 9795 9971 10607 16359 14382 9031 11509 13267 6153 6953 12293 10999 9480 6016 5641 10089 12262 10147 5539 6214 12142 0 13888 13960 13609 18585 12752 18657 14135 14621 16076 0 0 16951 10225 6714 11123 6945 13904 10853 12154 8705 12881 9498 9832 8110 10036 6918 12321 9207 14348 10042 13744 9238 0 8149 0 0 14273 11108 9993 15156 13530 12385 9375 9532 0 9783 11265 10317 4600 12586 7252 10542 3667 13203 13547 13616 13012 11177 12558 7207 12056 12111 10934 9709 13025 4000 12760 5389 11442 8357 12632 12533 5500 9957 6460 14862 9854 14325 5494 14249 13311 7550 7984 13925 0 8367 8272 9516 10104 14156 13462 7494 11427 10815 20605 15368 17305 0 13074 12761 14441 0 16004 0 12648 0 14288 12727 13946 12663 16663 18152 0 14068 16744 16863 12358 14260 0 14449 0 13029 12523 16604 14200 0 12592 0 15190 11084 18108 0 13933 21025 15553 15690 18902 0 17151 17061 12240 12520 19764 21122 0 15996 17465 15031 12455 13046 0 10785 10610 12189 0 13387 9473 12506 0 14263 15231 14201 13999 12914 13391 9790 12624 12900 12768 13213 14241 10591 13803 9663 11726 10885 13194 14236 0 10573 0 15100 11368 14691 9878 14314 15319 11172 12510 14966 0 11975 12344 12025 11540 16384 15422 10717 12197 14202 3849 6176 6059 4124 6113 4906 4417 5577 6714 6417 5225 6251 5249 1389 2164 2026 1081 2234 1593 1527 1392 1885 2107 1963 2051 2135 9927 5069 1751 10694 9551 8569 0 10339 9803 8854 0 9301 10452 8910 5941 8962 11496 9555 9892 8707 9570 6588 10105 9065 9242 8582 8909 6544 9426 7315 9359 7125 9006 9125 0 8828 8723 10557 8496 9582 5738 9743 10853 7322 9670 10662 0 8721 8451 8133 8321 11525 10830 7357 8844 10955 6989 6027 4586 0 5296 6539 5467 4790 4672 5550 5827 3551 5244 6580 5197 5982 5469 4571 4329 7116 5298 4673 5685 5228 3820 4909 4673 6865 5107 5281 5906 5451 5867 5222 8468 6100 6131 4157 5035 7518 4209 6376 6042 0 4688 4941 4429 5155 6113 5787 4299 5371 6058 2245 1883 1238 0 2051 0 0 1731 1076 2022 0 1005 0 0 2446 0 1245 1522 1716 1906 1850 1042 2073 0 1298 1057 1295 0 1319 1165 0 2030 920 1918 0 1925 0 1285 2447 2467 1435 2067 1878 0 1739 1614 1468 865 2003 1941 1551 924 1906 APPENDIX II Table A12 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - ACCESSIBLE AREAS, EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 197 101 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Chuvash Republic 12 Altai Kray 12 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Average annual biomass increments (000tons) --------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS VS+S VS...MS VS...mS VS S MS mS vmS 643 176 441 523 7 169 265 82 95 25 2085 4188 4498 83 2002 2103 310 159 6125 1475 3067 4025 304 1171 1592 958 253 1847 17474 30268 34952 4392 13082 12794 4684 414 2668 235 373 532 54 181 138 159 87 2048 2629 3656 4360 742 1887 1027 704 120 13728 3865 6961 8522 447 3418 3096 1561 858 4348 43831 67418 75109 6079 37752 23587 7691 1361 6520 486 1367 1963 122 364 881 596 668 3889 6085 12534 15432 1763 4322 6449 2898 1256 2825 0 0 0 0 0 0 0 0 2825 0 0 0 0 0 0 0 0 8873 644 1549 2401 30 614 905 852 699 5770 7422 14341 18214 375 7047 6919 3873 1017 8108 2085 3449 5036 398 1687 1364 1587 559 2512 23064 34371 41954 4970 18094 11307 7583 875 6128 1 9 34 0 1 8 25 197 5896 7 65 173 0 7 58 108 256 1450 459 663 839 88 371 204 176 41 570 5787 7235 8152 1143 4644 1448 917 71 16035 2472 4800 6642 37 2435 2328 1842 1454 7939 28680 46091 54319 425 28255 17411 8228 2227 693 41 117 252 1 40 76 135 43 398 412 993 1514 16 396 581 521 59 3853 6 329 1056 0 6 323 727 260 2537 52 2844 6391 0 52 2792 3547 402 5010 0 36 129 0 0 36 93 279 4602 0 249 617 0 0 249 368 318 3498 1405 2060 2445 257 1148 655 385 214 839 16440 21277 22954 3343 13097 4837 1677 338 8158 0 0 0 0 0 0 0 0 8155 0 0 0 0 0 0 0 0 2403 219 823 1211 0 219 604 388 233 959 2323 6993 8874 0 2323 4670 1881 370 9245 0 6 179 0 0 6 173 322 8744 0 42 935 0 0 42 893 429 6220 1179 2676 3282 161 1018 1497 606 165 2773 13378 25647 28599 2167 11211 12269 2952 268 5035 864 2029 2949 27 837 1165 920 197 1889 10256 20066 24382 369 9887 9810 4316 340 4760 324 966 1695 0 324 642 729 246 2815 4028 9031 12854 0 4028 5003 3823 424 10428 6302 7597 8185 1379 4923 1295 588 42 2201 82205 92474 95140 21857 60348 10269 2666 67 630 0 13 149 0 0 13 136 115 366 0 76 588 0 0 76 512 160 6968 3104 4652 5405 320 2784 1548 753 93 1469 36118 48858 52709 4298 31820 12740 3851 161 4585 1500 2724 3177 70 1430 1224 453 227 1181 15426 24968 27178 995 14431 9542 2210 359 6780 1170 2330 3329 60 1110 1160 999 257 3194 14323 23966 29102 895 13428 9643 5136 459 2678 0 38 166 0 0 38 128 335 2177 0 274 946 0 0 274 672 594 2578 314 624 1020 53 261 310 396 392 1164 3844 5986 7516 851 2993 2142 1530 601 7260 51 519 1457 0 51 468 938 983 4819 517 3694 7707 2 515 3177 4013 1385 6045 66 489 1132 1 65 423 643 959 3955 716 3876 6666 14 702 3160 2790 1454 4778 10 137 628 0 10 127 491 492 3658 104 1016 3078 0 104 912 2062 702 2370 350 711 1142 35 315 361 431 136 1092 3738 6410 8248 438 3300 2672 1838 185 46870 69 737 2521 0 69 668 1784 2556 41793 727 5636 13096 0 727 4909 7460 3434 122175 223305 345480 40271 28696 68967 72526 51851 124377 83447 71503 154950 7645 3844 11489 32626 24852 57478 32255 23155 55410 10921 19652 30573 4520 13362 17882 34161 138424 172585 555082 838632 891922 339586 520355 611759 894668 1358987 1503681 705 70 5220 3418 1513 4635 3945 7378 15713 0 583 3165 4535 7530 7245 9118 6195 7700 11093 475 15890 5543 20278 48138 5088 11770 1600 28288 29138 20918 0 78 1 877 304 223 1908 1768 2649 7444 0 222 535 1762 2941 3471 3055 554 1580 3349 29 1247 2116 5329 2820 874 606 19 101 225 33 0 250 7 2252 827 484 2490 2496 4172 10527 0 325 1007 2792 3975 4674 4200 1464 2677 5761 107 2021 3336 6730 5108 1381 1124 43 227 386 113 0 361 11 3359 1339 645 2874 2953 5250 12558 0 360 1120 2880 4236 4814 4424 1793 2942 6288 212 2224 3594 7581 10913 1650 1623 301 510 520 678 0 1 0 104 46 5 229 724 1091 2469 0 20 73 554 755 447 439 9 349 900 5 296 360 2101 593 113 144 5 23 74 2 0 77 1 773 258 218 1679 1044 1558 4975 0 202 462 1208 2186 3024 2616 545 1231 2449 24 951 1756 3228 2227 761 462 14 78 151 31 0 172 6 1375 523 261 582 728 1523 3083 0 103 472 1030 1034 1203 1145 910 1097 2412 78 774 1220 1401 2288 507 518 24 126 161 80 0 111 4 1107 512 161 384 457 1078 2031 0 35 113 88 261 140 224 329 265 527 105 203 258 851 5805 269 499 258 283 134 565 0 17 2 192 567 30 100 244 194 515 0 1 18 16 73 0 71 63 42 143 71 27 0 684 2090 81 170 61 208 89 334 0 326 57 1668 1511 837 1661 747 1933 2639 0 222 2026 1639 3221 2430 4622 4339 4716 4663 193 13638 1949 12011 35134 3357 9978 1238 27569 28529 19906 0 1155 10 9673 3771 3489 29716 25908 35312 92500 0 3460 7453 27481 43680 52628 44663 7681 22846 52660 356 19457 31853 98036 31895 12999 8653 236 1239 3391 283 0 2846 69 21624 9006 7085 36356 33293 51043 121196 0 4540 12119 37988 54191 65104 55963 16473 32739 75455 965 27434 43987 111800 48267 18042 13565 409 2206 4469 863 0 286887 46120 70956 88013 11931 34189 24836 17057 6103 192759 672484 909097 123631 55134 178765 431451 284452 715903 283550 180769 464319 53290 91404 144694 7155 20106 27261 3471 90 28078 12124 7977 38888 35774 56763 132115 0 4773 12771 38586 55773 65965 57202 18420 34217 78617 1435 28618 45393 115925 76609 19610 16289 1752 3716 5042 3467 0 20 0 1058 629 86 4158 11528 15223 33390 0 369 1134 9950 13772 8039 7923 167 6463 17690 74 5711 6742 46683 8941 2079 2558 79 376 1416 18 0 1135 10 8615 3142 3403 25558 14380 20089 59110 0 3091 6319 17531 29908 44589 36740 7514 16383 34970 282 13746 25111 51353 22954 10920 6095 157 863 1975 265 0 1691 59 11951 5235 3596 6640 7385 15731 28696 0 1080 4666 10507 10511 12476 11300 8792 9893 22795 609 7977 12134 13764 16372 5043 4912 173 967 1078 580 0 625 21 6454 3118 892 2532 2481 5720 10919 0 233 652 598 1582 861 1239 1947 1478 3162 470 1184 1406 4125 28342 1568 2724 1343 1510 573 2604 0 28 4 393 1247 71 214 474 315 855 0 1 34 41 132 0 131 122 73 283 102 43 1 1082 3411 180 305 101 360 135 534 0 999460 206276 466208 236613 90363 10672 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS S MS mS vmS VS+SVS...MSVS...mS 11847 9497 8600 12444 11876 7931 3763 1680 11847 9869 8684 14440 11169 8039 4891 1635 11187 9802 8195 13798 10423 7423 4413 1384 11340 9685 8814 13592 11046 7619 4928 1587 12521 9169 7861 14467 11877 7316 4861 1880 0 0 0 0 0 0 0 0 11525 9258 7586 12570 11469 7649 4545 1454 11062 9965 8331 12472 10728 8288 4777 1566 7000 7222 5088 0 10908 6966 4282 1298 12608 10913 9716 12918 12529 7088 5213 1744 11602 9602 8178 11485 11606 7478 4468 1531 10049 8487 6008 11026 9955 7683 3851 1396 8667 8644 6052 0 9412 8652 4876 1545 0 6917 4783 0 0 6904 3938 1142 11701 10329 9388 12991 11410 7388 4361 1581 0 0 0 0 0 0 0 0 10607 8497 7328 0 10612 7734 4844 1592 0 7000 5223 0 0 7186 5151 1329 11347 9584 8714 13429 11007 8196 4873 1630 11870 9890 8268 13574 11814 8419 4691 1725 12432 9349 7583 0 12416 7791 5242 1722 13044 12172 11624 15850 12259 7929 4536 1582 0 5846 3946 0 0 5970 3752 1392 11636 10503 9752 13442 11428 8228 5114 1727 10284 9166 8555 14218 10093 7793 4877 1584 12242 10286 8742 14842 12100 8312 5144 1782 0 7211 5699 0 0 7288 5245 1774 12242 9593 7369 16014 11445 6904 3859 1532 10137 7118 5290 9946 10135 6786 4276 1409 10848 7926 5889 15405 10882 7468 4342 1516 10400 7416 4901 0 10458 7186 4202 1427 10680 9015 7222 12641 10479 7397 4263 1361 10536 7647 5195 0 10548 7353 4181 1343 13784 11563 10688 16171 13224 11834 10036 8556 14343 11446 12972 10926 9704 15560 12455 8791 7807 8380 4880 4651 4733 1583 1505 1524 14710 15571 11138 12170 15585 15222 13777 12897 11882 0 15319 13672 14515 13682 14745 14045 13775 13312 14279 11712 14447 14303 15908 10306 14349 13183 11537 11028 13116 8590 0 9812 9706 8692 10005 13760 11416 10143 10329 9308 0 10501 9879 10204 10161 10368 9866 9666 9016 9452 7847 10302 9946 9822 7156 9940 9491 7225 7651 6693 7244 0 5630 5706 5828 6088 5551 6588 5427 5304 5376 0 6570 5754 6767 6068 6146 5524 5923 5572 6001 4472 5848 5456 4847 4882 5837 5463 5196 5342 4267 4610 0 1670 2032 2052 2199 2392 2142 1943 1622 1659 0 2387 1888 2548 1809 1949 1831 1942 1762 1985 1447 1588 2196 1580 1632 2211 1796 1658 1732 1510 1599 0 14581 12812 11356 17289 13636 9527 5298 1749 14808 10000 11030 12405 15646 15574 14654 13330 12426 0 15586 13931 15596 14852 15162 14620 13865 14459 15724 12276 15603 15053 18397 11310 14873 14279 12421 12267 15071 8576 0 11384 9857 9602 10890 14638 14601 13339 12235 11513 0 13969 12035 13606 13633 13929 13325 11252 12230 13098 9019 13574 13186 16612 9449 13064 12069 9512 9718 11578 7637 0 9615 8182 8359 9055 12367 13531 12114 10812 10520 0 13258 11403 13398 13166 13703 12930 10273 11631 12503 6769 12868 12630 15292 7020 11885 10036 5821 7286 9696 5114 0 15139 0 10148 13816 17718 18131 15914 13946 13525 0 18182 15477 17968 18239 17972 18054 18152 18508 19659 15944 19262 18708 22214 15069 18460 17822 16179 16052 19215 9331 0 APPENDIX II Table A13 PRODUCTION POTENTIALS FOR TRADITIOONAL PRODUCTION FORESTRY SPECIES - ACCESSIBLE AREAS CURRENTLY UNDER FOREST ADM REG NAME 2 11 12 13 14 15 16 17 18 19 20 21 22 23 LC 4 Mongolia 12 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 1163 0 9 50 0 0 9 41 99 1013 Average annual biomass increments (000tons) ---------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 0 61 241 0 0 61 180 132 135 698 5098 975 1995 4208 2290 1748 1605 85 2640 1198 4743 7 19 2527 417 42 56 0 553 820 25 0 0 1605 13 41 4565 592 82 306 15 1450 1369 51 18 0 3085 20 78 4664 621 151 594 60 1585 1438 71 151 8 3530 0 0 432 7 11 3 0 49 30 3 0 0 382 7 19 2095 410 31 53 0 504 790 22 0 0 1223 6 22 2038 175 40 250 15 897 549 26 18 0 1480 7 37 99 29 69 288 45 135 69 20 133 8 445 8 58 0 4 56 183 82 2 0 6 151 37 51 108 462 433 350 1789 3431 2148 161 167 8 2338 1153 1161 69 228 35440 5304 621 492 3 6850 12095 342 0 0 24070 103 366 57723 6820 1068 2406 111 15078 17793 585 144 0 40563 132 571 58344 6945 1519 3714 290 15829 18241 712 839 48 42850 0 3 6038 94 193 28 0 684 431 41 0 0 6528 69 225 29402 5210 428 464 3 6166 11664 301 0 0 17542 34 138 22283 1516 447 1914 108 8228 5698 243 144 0 16493 29 205 621 125 451 1308 179 751 448 127 695 48 2287 12 124 0 4 124 295 127 3 0 13 297 76 106 27418 6071 11587 12971 917 5154 5516 1384 638 13709 85514 142760 150034 14040 71474 57246 7274 103 2 Krasnodar Kray 12 1335 242 392 452 31 211 150 60 107 2 Stavropol Kray 12 20 0 2 11 0 0 2 9 111 2 Arkhangelsk oblast 12 11643 3413 8289 9915 533 2880 4876 1626 112 2 Astrakhan oblast 12 48 0 0 0 0 0 0 0 114 2 Belgorod oblast 12 73 7 40 46 1 6 33 6 115 2 Bryansk oblast 12 638 573 632 635 223 350 59 3 117 2 Vladimir oblast 12 995 425 942 969 43 382 517 27 118 2 Volgograd oblast 12 203 0 0 10 0 0 0 10 119 2 Vologda oblast 12 7190 4952 6130 6480 1043 3909 1178 350 120 2 Voronezh oblast 12 245 0 37 102 0 0 37 65 3093 1446 2967 3025 84 1362 1521 58 122 2 Nizhni Novgorod oblast12 123 2 Nenets a.okr. 12 255 0 2 25 0 0 2 23 124 2 Ivanovo oblast 12 823 670 815 822 25 645 145 7 127 2 Kaliningrad oblast 12 115 67 77 86 4 63 10 9 128 2 Tver oblast 12 2510 2116 2344 2371 291 1825 228 27 129 2 Kaluga oblast 12 980 759 963 974 45 714 204 11 133 2 Kirov oblast 12 5580 2718 5214 5404 662 2056 2496 190 134 2 Kostroma oblast 12 3073 2072 2980 3035 265 1807 908 55 136 2 Samara oblast 12 365 81 105 173 0 81 24 68 138 2 Kursk oblast 12 80 48 70 71 5 43 22 1 1720 950 1595 1651 444 506 645 56 139 2 Komi-Permyak a.okr. 12 141 2 Leningrad oblast 12 4215 1421 3471 3635 494 927 2050 164 142 2 Lipetsk oblast 12 80 33 58 79 8 25 25 21 146 2 Moscow oblast 12 1835 1426 1727 1782 114 1312 301 55 147 2 Murmansk oblast 12 2660 1 7 108 0 1 6 101 149 2 Novgorod oblast 12 3133 2157 2805 2836 243 1914 648 31 153 2 Orenburg oblast 12 53 2 6 18 0 2 4 12 154 2 Oryel oblast 12 53 41 51 52 7 34 10 1 156 2 Penza oblast 12 575 243 384 521 6 237 141 137 157 2 Perm oblast 12 5190 3226 4123 4364 1007 2219 897 241 158 2 Pskov oblast 12 2053 1290 1874 1885 33 1257 584 11 160 2 Rostov oblast 12 18 0 0 10 0 0 0 10 161 2 Ryazan oblast 12 730 420 689 730 120 300 269 41 163 2 Saratov oblast 12 375 0 18 42 0 0 18 24 166 2 Smolensk oblast 12 563 509 535 538 1 508 26 3 168 2 Tambov oblast 12 255 132 227 246 28 104 95 19 170 2 Tula oblast 12 200 177 197 200 14 163 20 3 173 2 Ulyanovsk oblast 12 763 86 232 537 0 86 146 305 178 2 Yaroslavl oblast 12 783 740 752 752 15 725 12 0 179 2 Adigei Republic 12 153 35 59 70 1 34 24 11 2568 435 894 1417 73 362 459 523 180 2 Bashkortostan Republic12 182 2 Daghestn Republic 12 240 7 18 43 1 6 11 25 183 2 Kabardino-Balkarian Republic 12 165 77 109 112 17 60 32 3 12 3 0 0 0 0 0 0 0 185 2 Kalmyk-Khalm-Tangch Republic 186 2 Karelia Republic 12 6885 840 3854 5299 267 573 3014 1445 187 2 Komi Republic 12 10830 1310 5528 8273 496 814 4218 2745 188 2 Mari-El Republic 12 878 346 739 809 3 343 393 70 189 2 Mordovian SSR 12 478 265 408 459 64 201 143 51 190 2 North-Ossetian SSR 12 135 54 67 82 14 40 13 15 12 473 58 107 117 20 38 49 10 191 2 Karachai-Cherkess Republic 192 2 Tatarstan Republic 12 533 141 287 428 0 141 146 141 194 2 Udmurt Republic 12 1400 880 1300 1318 137 743 420 18 12 330 77 127 135 14 63 50 8 196 2 Checheno-Ingush Republic 197 2 Chuvash Republic 12 643 176 441 523 7 169 265 82 101 3 Altai Kray 12 2920 811 1677 1992 146 665 866 315 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 24 0 477 0 7 0 0 9 29 127 0 11 0 0 0 0 11 0 64 1 0 36 1 0 320 0 6 0 35 20 0 1 0 62 0 8 0 110 0 3 286 27 0 0 731 1054 5 12 0 4 51 0 4 95 139 858 9 1244 47 19 3 26 184 681 16 67 220 1 28 138 6 164 37 128 7 70 545 0 51 2231 296 30 0 19 806 167 7 0 272 24 0 0 116 30 79 864 172 53 2 856 1504 64 6 53 351 54 82 190 25 790 3689 0 46953 0 79 6561 5283 0 69578 0 18154 0 9582 1036 29986 10527 37622 29037 795 619 14016 20223 430 20449 11 30041 16 497 2651 46046 18434 0 4708 0 7695 1496 2643 848 10593 544 5325 77 1250 0 11452 18515 4156 3115 989 1064 1513 11245 1186 2085 9379 5272 19 88831 0 416 7136 9857 0 80488 409 31736 10 10891 1145 32159 12538 59336 37687 954 846 19856 39238 648 23126 51 36164 43 590 3653 54121 23804 0 7050 154 7969 2306 2831 1686 10708 808 8693 182 1598 0 37880 54049 7346 4310 1144 1616 2584 14962 1752 4188 16272 5686 71 96296 0 450 7153 10003 46 82128 768 32078 91 10926 1206 32301 12603 60377 37937 1251 856 20149 40001 767 23411 441 36317 97 595 4354 55381 23874 66 7291 285 7996 2424 2852 2955 10709 895 10899 348 1615 0 44486 67594 7655 4570 1231 1675 3188 15061 1803 4498 17761 624 0 9229 0 16 2849 618 0 16742 0 1066 0 355 57 4065 575 11063 4765 0 73 7457 8338 93 1639 0 3503 0 98 73 16711 467 0 1519 0 20 310 260 0 209 29 1184 10 333 0 4588 8438 41 804 311 445 0 2186 255 83 2068 3065 0 37724 0 63 3712 4665 0 52836 0 17088 0 9227 979 25921 9952 26559 24272 795 546 6559 11885 337 18810 11 26538 16 399 2578 29335 17967 0 3189 0 7675 1186 2383 848 10384 515 4141 67 917 0 6864 10077 4115 2311 678 619 1513 9059 931 2002 7311 1583 19 41878 0 337 575 4574 0 10910 409 13582 10 1309 109 2173 2011 21714 8650 159 227 5840 19015 218 2677 40 6123 27 93 1002 8075 5370 0 2342 154 274 810 188 838 115 264 3368 105 348 0 26428 35534 3190 1195 155 552 1071 3717 566 2103 6893 414 52 7465 0 34 17 146 46 1640 359 342 81 35 61 142 65 1041 250 297 10 293 763 119 285 390 153 54 5 701 1260 70 66 241 131 27 118 21 1269 1 87 2206 166 17 0 6606 13545 309 260 87 59 604 99 51 310 1489 FSU REPUBLICS Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 0 6778 4820 0 0 6871 4370 1337 9857 12000 14025 12719 14786 8786 3000 12387 14750 13680 0 0 14997 7923 8927 12645 11520 13024 7863 7400 10399 12997 11471 8000 0 13148 6221 6243 10935 8660 11126 7657 7021 9172 10375 9236 8149 0 11142 3910 5603 6272 4274 6575 4548 4011 5556 6525 6400 5218 6066 5134 1585 2141 2026 1082 2200 1612 1550 1392 1401 2047 1965 2051 2096 1181 14086 12321 11567 15311 13868 10378 5256 1851 51 1 599 0 15 0 0 16 31 260 0 11 0 0 0 0 14 0 110 2 0 37 1 0 420 0 8 0 46 24 0 1 0 121 0 15 0 141 0 9 426 58 0 0 1274 1693 7 11 1 8 79 0 10 159 224 15244 0 13757 0 11286 11450 12431 0 14050 0 12555 0 14301 15463 14171 13870 13842 14014 9815 12896 14754 14232 13030 14340 11000 13927 8000 12122 10909 14273 14290 0 11210 0 15118 11333 14932 9860 14315 15543 12241 11000 16234 0 13633 14134 12012 11755 18315 18345 10730 12778 15403 11847 11565 6912 6147 4591 0 5296 6539 5467 4790 4684 5550 5876 3565 5244 6663 5202 6005 5482 4535 4342 7116 5266 4659 5685 5134 3860 4908 4673 6865 5107 5230 6314 6509 5868 5554 8468 6100 6154 4166 5035 7717 4216 6595 5651 0 4572 4934 4413 5134 5968 5821 4292 5371 6385 3763 4719 2104 2080 1257 0 2051 0 0 1731 1076 2044 0 1024 0 0 2448 0 1245 1327 1724 1906 1851 1044 2073 0 1310 1057 1298 0 1319 1174 0 1837 912 1951 0 1925 0 1282 2457 2516 1487 2187 1923 0 1744 1607 1468 865 2109 1944 1551 924 2201 1680 1619 13449 9500 10717 0 10400 11291 10464 0 13130 11054 10696 5000 13363 14870 13720 13020 11380 12647 9086 12086 12449 11305 11172 13391 7286 12893 7167 11569 9513 13127 12702 0 10232 8556 14895 10159 14371 7267 14239 13695 9724 10111 14661 0 9829 9777 9940 10564 17075 15103 9003 11509 13795 9497 9703 6600 7321 12509 11184 10060 6253 4833 9987 12685 10028 5556 6000 12139 12580 6455 9712 0 9783 11265 10323 4600 12674 7529 10604 3640 13292 14023 13623 12939 11173 12500 7231 12056 12204 11004 9709 13137 4083 12806 5389 11442 8357 12690 12665 6600 9988 6786 14862 9854 14260 5503 14241 12786 7692 8093 14420 0 8395 8170 9462 9956 15012 14316 7449 11427 13356 8600 8916 0 13925 13971 13610 18070 8726 0 14084 14552 15923 0 0 17100 20138 0 17320 0 13074 12761 14437 0 16046 0 12653 0 14296 12727 13945 12663 16711 17963 0 14068 16796 16884 12358 14333 0 14421 0 13029 12523 16598 14186 0 12619 0 15190 11084 18108 0 13960 20912 16271 16674 19758 0 17159 17025 12240 12534 22653 22430 0 15996 18555 12444 14147 10689 12082 14033 12706 13971 8804 8795 12245 14762 13665 0 0 14341 14493 0 13099 0 10785 10610 12196 0 13517 0 12542 0 14308 15499 14204 13931 12915 13431 9790 12624 12975 12825 13213 14332 10592 13864 9663 11726 10885 13222 14290 0 10627 0 15100 11368 14649 9878 14316 15234 11431 11996 15299 0 11984 12380 12012 11473 16906 16284 10701 12197 14715 11876 11000 10559 7849 8588 0 10339 9803 8850 0 9261 10938 8930 5945 9002 11196 9526 9870 8699 9531 6588 10105 9051 9277 8582 8886 6544 9450 7315 9359 7125 8999 9193 0 8721 8723 10557 8496 9561 5738 9771 11104 7343 9909 10802 0 8769 8425 8125 8336 12130 11194 7347 8844 11312 7931 7964 APPENDIX II Table A13 PRODUCTION POTENTIALS FOR TRADITIOONAL PRODUCTION FORESTRY SPECIES - ACCESSIBLE AREAS CURRENTLY UNDER FOREST ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) -------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 1693 202 322 455 43 159 120 133 53 1185 12555 3368 6188 7646 324 3044 2820 1458 852 4057 5300 378 930 1360 113 265 552 430 604 3337 988 0 0 0 0 0 0 0 0 987 6658 471 1069 1777 17 454 598 708 529 4348 6083 1370 2420 3629 183 1187 1050 1209 470 1983 5605 1 9 34 0 1 8 25 195 5376 750 211 293 378 42 169 82 85 34 339 14285 2361 4557 6235 35 2326 2196 1678 1335 6716 413 38 96 168 1 37 58 72 12 232 2035 6 219 731 0 6 213 512 198 1106 873 0 1 24 0 0 1 23 26 823 2875 1342 1972 2241 242 1100 630 269 94 540 2220 0 0 0 0 0 0 0 0 2220 483 65 300 366 0 65 235 66 9 107 2635 0 2 66 0 0 2 64 151 2418 1660 548 1118 1252 56 492 570 134 17 390 1958 455 1056 1372 4 451 601 316 5 581 4178 273 824 1502 0 273 551 678 240 2433 9003 5272 6409 6956 1146 4126 1137 547 41 2006 155 0 5 22 0 0 5 17 32 102 4765 2145 3287 3726 212 1933 1142 439 76 963 1593 500 1081 1240 42 458 581 159 48 304 4878 727 1614 2284 40 687 887 670 148 2445 1173 0 33 133 0 0 33 100 266 774 1520 233 463 731 52 181 230 268 101 687 3128 24 169 601 0 24 145 432 474 2052 3718 39 312 730 1 38 273 418 580 2407 2858 5 89 446 0 5 84 357 347 2064 1603 115 243 568 19 96 128 325 112 922 33823 50 629 2075 0 50 579 1446 2007 29741 Average annual biomass increments (000tons) ---------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 2237 3135 3738 590 1647 898 603 76 38238 59651 66783 4445 33793 21413 7132 1352 4703 8973 11128 1627 3076 4270 2155 1133 0 0 0 0 0 0 0 0 5302 9880 13121 207 5095 4578 3241 745 14604 23233 28897 2231 12373 8629 5664 727 7 65 173 0 7 58 108 253 2655 3260 3691 551 2104 605 431 59 27351 43739 51287 405 26946 16388 7548 2043 386 832 1131 16 370 446 299 15 52 1868 4394 0 52 1816 2526 297 0 8 101 0 0 8 93 30 15747 20409 21577 3138 12609 4662 1168 148 0 0 0 0 0 0 0 0 713 2442 2785 0 713 1729 343 15 0 16 354 0 0 16 338 195 6219 10727 11387 755 5464 4508 660 30 5330 10572 11974 49 5281 5242 1402 8 3425 7720 11266 0 3425 4295 3546 414 69231 78230 80695 18011 51220 8999 2465 65 0 30 85 0 0 30 55 44 24979 34378 36604 2814 22165 9399 2226 132 5505 10025 10831 623 4882 4520 806 71 8921 16312 19796 585 8336 7391 3484 253 0 237 765 0 0 237 528 469 2875 4394 5498 839 2036 1519 1104 163 273 1316 3194 2 271 1043 1878 687 426 2472 4296 14 412 2046 1824 867 53 658 2179 0 53 605 1521 504 1230 2135 3486 241 989 905 1351 148 530 4743 10847 0 530 4213 6104 2711 90232 144384 234616 37144 21010 58154 64690 37387 102077 73677 50740 124417 6903 2718 9621 30241 18292 48533 27546 16377 43923 8987 13353 22340 3631 9195 12826 12902 84435 97337 158 18 938 695 1170 4095 2870 5498 10550 0 395 2828 3683 4348 4985 6900 5803 6030 6103 260 4970 2490 12718 5360 1453 770 23 713 2808 248 0 18 1 169 75 161 1788 1476 2393 5322 0 161 485 1483 1457 2595 2350 526 1248 1472 18 790 895 3016 1582 325 131 6 8 151 0 0 60 5 396 212 384 2268 1984 3775 7741 0 238 914 2336 2060 3445 3193 1385 2083 2743 62 1307 1462 3852 2535 497 223 7 17 192 2 0 90 8 536 306 531 2589 2223 4302 8715 0 270 1009 2422 2219 3528 3347 1688 2275 3068 116 1441 1584 4422 3272 541 268 11 31 230 10 0 1 0 29 10 1 214 620 1027 1896 0 8 68 532 329 365 331 9 293 341 3 174 152 1219 407 39 25 3 3 56 0 0 17 1 140 65 160 1574 856 1366 3426 0 153 417 951 1128 2230 2019 517 955 1131 15 616 743 1797 1175 286 106 3 5 95 0 0 42 4 227 137 223 480 508 1382 2419 0 77 429 853 603 850 843 859 835 1271 44 517 567 836 953 172 92 1 9 41 2 0 30 3 140 94 147 321 239 527 974 0 32 95 86 159 83 154 303 192 325 54 134 122 570 737 44 45 4 14 38 8 0 4 1 37 101 10 68 116 21 98 0 0 15 16 29 0 49 55 32 95 35 18 0 436 487 21 6 2 8 14 2 0 63 9 365 288 628 1438 531 1174 1738 0 124 1803 1244 2099 1457 3504 4059 3723 2940 108 3511 905 7860 1601 891 496 8 674 2563 235 0 273 9 1832 979 2532 27870 21655 31962 65988 0 2496 6747 23532 21576 39429 34288 7287 18099 21917 234 12244 13480 54933 19308 4797 1991 88 100 2605 0 0 716 46 3828 2306 5683 33301 26808 46279 89019 0 3311 10992 32276 27739 48203 42681 15609 25588 33603 580 17580 19171 62815 26542 6460 2809 99 170 2967 18 0 98880 30102 45378 51052 8155 21947 15276 5674 1776 46039 438251 587199 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 512814 754840 797710 250371 377732 439824 763185 1132572 1237534 111501 39211 150712 401313 211160 612473 242026 127361 369387 42870 62092 104962 5659 13878 19537 901 61 4674 2848 6478 35396 28098 49437 94657 0 3521 11538 32857 28715 48738 43540 17411 26649 35550 830 18386 19837 65565 30179 6704 3054 122 247 3161 61 0 15 0 306 142 27 3880 9881 14347 25667 0 139 1052 9654 5988 6558 5970 158 5449 6489 55 3372 2802 26803 6317 736 483 50 36 1165 0 0 258 9 1526 837 2505 23990 11774 17615 40321 0 2357 5695 13878 15588 32871 28318 7129 12650 15428 179 8872 10678 28130 12991 4061 1508 38 64 1440 0 0 443 37 1996 1327 3151 5431 5153 14317 23031 0 815 4245 8744 6163 8774 8393 8322 7489 11686 346 5336 5691 7882 7234 1663 818 11 70 362 18 0 185 15 846 542 795 2095 1290 3158 5638 0 210 546 581 976 535 859 1802 1061 1947 250 806 666 2750 3637 244 245 23 77 194 43 0 6 2 78 225 24 144 225 38 169 0 1 29 41 52 0 88 107 57 187 52 29 1 686 840 47 13 4 13 24 3 0 619215 137541 300710 148948 32016 3185 Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 11074 9736 8215 13641 10384 7459 4545 1446 11353 9640 8734 13706 11101 7592 4893 1587 12442 9648 8182 14449 11622 7739 5008 1877 0 0 0 0 0 0 0 0 11257 9242 7384 11976 11234 7650 4576 1407 10660 9600 7963 12183 10427 8218 4684 1546 7000 7222 5088 0 10908 6958 4282 1299 12583 11126 9765 13006 12465 7395 5093 1738 11584 9598 8226 11523 11586 7463 4498 1530 10158 8667 6732 11026 9915 7722 4150 1277 8667 8530 6011 0 9405 8512 4933 1502 0 8000 4208 0 0 6754 4078 1185 11734 10349 9628 12973 11460 7401 4344 1573 0 0 0 0 0 0 0 0 10969 8140 7609 0 11040 7348 5174 1618 0 8000 5364 0 0 7216 5276 1297 11349 9595 9095 13414 11115 7904 4929 1688 11714 10011 8727 12120 11703 8722 4439 1724 12546 9369 7501 0 12528 7800 5229 1725 13132 12206 11601 15718 12414 7917 4506 1584 0 6000 3864 0 0 6010 3300 1378 11645 10459 9824 13258 11469 8231 5074 1737 11010 9274 8735 14911 10652 7775 5083 1461 12271 10107 8667 14804 12141 8329 5197 1704 0 7182 5752 0 0 7304 5288 1762 12339 9490 7521 16047 11253 6605 4120 1612 11375 7787 5314 9946 11065 7184 4348 1451 10923 7923 5885 15405 10844 7482 4360 1494 10600 7393 4886 0 10615 7183 4262 1450 10696 8786 6137 12546 10278 7085 4152 1323 10600 7541 5227 0 10594 7282 4221 1351 13806 11669 10827 16153 13270 11917 10103 8668 14426 11544 13124 11095 9947 15665 12620 8786 7777 8410 4770 4650 4698 1559 1509 1523 14873 15586 10887 12880 15611 15244 13763 12897 11768 0 15373 13670 14590 13822 14740 14023 13780 13245 13643 11686 14411 14369 15656 11058 14198 14164 11384 11808 15152 0 0 10449 9386 8807 9697 14115 11309 10137 10361 9523 0 10605 9889 10248 10214 10322 9958 9686 8971 9193 7887 10313 10037 9432 7592 9654 8909 8483 8008 8868 7688 0 6112 5616 6038 5776 5392 6526 5408 5987 5790 0 6501 5761 6796 6133 6416 5568 5944 5540 5987 4594 5996 5454 4820 4934 5579 5476 5329 5334 5127 5105 0 1704 1766 2130 2228 2502 2128 1946 1804 1731 0 2386 1881 2548 1802 1947 1804 1955 1768 1968 1491 1568 2196 1573 1727 2264 2146 1792 1664 1682 1479 0 14559 12940 12129 16866 13702 9750 5643 1793 15167 9000 10840 13053 15727 15587 14671 13356 12399 0 15503 13911 15868 14809 15194 14591 13854 14502 14889 13000 15499 15061 18214 12205 14760 15198 14667 12500 17252 0 0 11933 9200 9667 10877 14799 14683 13512 12259 11500 0 13912 12026 13817 13466 13992 13367 11270 12284 12250 9355 13451 13113 16307 10470 12998 12596 14143 10000 15453 9000 0 10011 7625 8720 9307 12200 13672 12640 11492 10861 0 13041 11435 13566 12941 13815 13009 10315 11714 11587 7155 12759 12523 14827 9223 12392 11396 11091 7968 13743 6100 0 15430 0 10511 13921 18377 18137 15925 13969 13541 0 18056 15407 18133 18202 17992 18060 18040 18587 19046 16032 19435 18378 21992 15513 18941 19395 16686 14129 20635 0 0 APPENDIX II Table A14 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - EXCLUDING CULTIVATED AREAS, URBAN AREAS AND AREAS CURRENTLY UNDER FOREST ADM REG NAME 2 LC 4 Mongolia 12 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 147800 81 569 4858 5 76 488 4289 4901 138043 Average annual biomass increments (000tons) --------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 829 3936 21943 77 752 3107 18007 7189 Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 10235 6917 4517 16415 9925 6372 4199 1467 1788 4578 1680 370 1515 214330 12170 210 1463 10 2655 40375 640 37 32 584 177 59 558 31 90 690 2 0 0 267 117 89 1356 204 139 2478 143 180 1254 4 0 0 445 212 387 1435 209 209 8337 377 191 1312 6 7 8 510 0 0 131 0 8 72 3 17 93 1 0 0 66 37 32 453 177 51 486 28 73 597 1 0 0 201 80 57 772 27 80 1920 112 90 564 2 0 0 178 95 298 79 5 70 5859 234 11 58 2 7 8 65 64 638 0 0 104 2385 199 0 0 2 7 0 14 1512 3244 244 160 1201 203608 11594 19 151 2 2641 40367 115 375 335 7712 1894 777 5880 340 1206 9600 22 0 0 3867 913 735 15883 2139 1453 21477 1109 2101 15083 45 0 0 5793 1283 2666 16342 2156 1841 50198 2124 2164 15488 59 38 53 6220 0 1 1801 2 160 982 52 239 1357 12 0 0 1065 375 334 5911 1892 617 4898 288 967 8243 10 0 0 2802 538 400 8171 245 676 15597 769 895 5483 23 0 0 1926 370 1931 459 17 388 28721 1015 63 405 14 38 53 427 88 1389 0 0 236 3760 295 0 0 6 14 0 33 10135 10469 13205 10701 13169 10538 10968 13400 13913 11000 0 0 14483 281784 2527 6409 13200 391 2136 3882 6791 3413 264858 32008 66731 100632 5671 26337 34723 33901 5821 12666 10412 Krasnodar Kray 12 625 Stavropol Kray 12 965 Arkhangelsk oblast 12 11818 Astrakhan oblast 12 4380 Belgorod oblast 12 0 Bryansk oblast 12 0 Vladimir oblast 12 13 Volgograd oblast 12 1890 Vologda oblast 12 1253 Voronezh oblast 12 258 Nizhni Novgorod oblast12 298 Nenets a.okr. 12 15018 Ivanovo oblast 12 25 Kaliningrad oblast 12 30 Tver oblast 12 118 Kaluga oblast 12 65 Kirov oblast 12 235 Kostroma oblast 12 253 Samara oblast 12 5 Kursk oblast 12 0 Komi-Permyak a.okr. 12 170 Leningrad oblast 12 800 Lipetsk oblast 12 0 Moscow oblast 12 193 Murmansk oblast 12 6555 Novgorod oblast 12 233 Orenburg oblast 12 2480 Oryel oblast 12 0 Penza oblast 12 0 Perm oblast 12 325 Pskov oblast 12 265 Rostov oblast 12 453 Ryazan oblast 12 405 Saratov oblast 12 615 Smolensk oblast 12 0 Tambov oblast 12 0 Tula oblast 12 13 Ulyanovsk oblast 12 18 Yaroslavl oblast 12 83 Adigei Republic 12 103 Bashkortostan Republic12 808 Daghestn Republic 12 4188 Kabardino-Balkarian Republic 12 663 Kalmyk-Khalm-Tangch Republic 12 6183 Karelia Republic 12 3005 Komi Republic 12 8200 Mari-El Republic 12 100 Mordovian SSR 12 125 North-Ossetian SSR 12 378 Karachai-Cherkess Republic 12 623 Tatarstan Republic 12 8 Udmurt Republic 12 3 Checheno-Ingush Republic 12 960 Chuvash Republic 12 0 Altai Kray 12 4503 126 62 545 0 0 0 3 0 700 4 109 0 13 8 87 54 116 155 0 0 82 294 0 135 0 128 0 0 0 137 139 0 207 0 0 0 11 0 68 38 42 86 69 0 277 433 40 87 61 70 4 2 109 0 1043 203 197 2210 0 0 0 11 0 974 15 277 2 25 16 101 63 214 240 0 0 153 671 0 180 38 176 0 0 0 276 231 0 390 0 0 0 12 0 69 51 112 168 106 0 1885 1962 84 123 70 126 6 2 190 0 2026 336 264 3052 0 0 0 11 0 1000 58 289 95 25 20 103 65 231 247 1 0 160 701 0 190 166 176 2 0 0 295 237 64 406 9 0 0 12 4 69 54 191 489 121 0 2496 2891 87 125 92 149 7 2 360 0 2899 36 9 71 0 0 0 1 0 117 0 5 0 1 0 17 0 38 67 0 0 24 73 0 33 0 12 0 0 0 68 13 0 70 0 0 0 0 0 4 2 10 17 24 0 16 168 0 24 21 20 0 1 24 0 312 90 53 474 0 0 0 2 0 583 4 104 0 12 8 70 54 78 88 0 0 58 221 0 102 0 116 0 0 0 69 126 0 137 0 0 0 11 0 64 36 32 69 45 0 261 265 40 63 40 50 4 1 85 0 731 77 135 1665 0 0 0 8 0 274 11 168 2 12 8 14 9 98 85 0 0 71 377 0 45 38 48 0 0 0 139 92 0 183 0 0 0 1 0 1 13 70 82 37 0 1608 1529 44 36 9 56 2 0 81 0 983 133 67 842 0 0 0 0 0 26 43 12 93 0 4 2 2 17 7 1 0 7 30 0 10 128 0 2 0 0 19 6 64 16 9 0 0 0 4 0 3 79 321 15 0 611 929 3 2 22 23 1 0 170 0 873 37 15 272 0 0 0 0 0 0 139 0 38 0 0 0 0 0 0 1 0 0 2 0 0 140 0 7 0 0 2 0 14 0 4 0 0 0 5 0 1 121 192 3 0 175 558 0 0 0 5 0 0 21 0 156 252 686 8481 4380 0 0 2 1890 252 60 9 14865 0 10 14 0 4 6 3 0 10 97 0 2 6249 55 2471 0 0 29 28 374 0 602 0 0 0 9 13 47 496 3499 538 6182 327 4751 13 0 285 468 2 0 578 0 1447 2226 787 7094 0 0 0 34 0 8762 38 1286 0 156 103 1220 812 1583 2368 0 0 1046 3926 0 1779 0 1646 0 0 0 1947 1848 0 2300 0 0 0 175 0 978 613 319 1118 1076 0 3386 6102 490 1031 995 1066 40 35 1580 0 12887 3082 2053 21147 0 0 0 107 0 11358 131 2757 14 258 203 1363 907 2465 3217 0 0 1701 7279 0 2187 224 2080 0 0 0 3209 2637 0 3944 0 0 0 183 0 985 757 819 1905 1453 0 17177 18889 852 1326 1091 1652 53 35 2441 0 20882 4016 2453 24865 0 0 0 107 0 11465 368 2823 346 258 229 1374 917 2556 3251 3 0 1742 7421 0 2247 685 2082 7 0 0 3321 2667 327 4036 37 0 0 184 12 985 775 1142 3945 1544 0 20446 23315 866 1339 1226 1788 57 35 3449 0 25192 746 137 1205 0 0 0 15 0 1815 0 58 0 18 0 240 0 595 1271 0 0 362 1229 0 461 0 186 0 0 0 1129 188 0 878 0 0 0 0 0 61 54 77 267 443 0 269 2899 0 301 365 348 0 16 403 0 4596 1480 650 5889 0 0 0 19 0 6947 38 1228 0 138 103 980 812 988 1097 0 0 684 2697 0 1318 0 1460 0 0 0 818 1660 0 1422 0 0 0 175 0 917 559 242 851 633 0 3117 3203 490 730 630 718 40 19 1177 0 8291 856 1266 14053 0 0 0 73 0 2596 93 1471 14 102 100 143 95 882 849 0 0 655 3353 0 408 224 434 0 0 0 1262 789 0 1644 0 0 0 8 0 7 144 500 787 377 0 13791 12787 362 295 96 586 13 0 861 0 7995 934 400 3718 0 0 0 0 0 107 237 66 332 0 26 11 10 91 34 3 0 41 142 0 60 461 2 7 0 0 112 30 327 92 37 0 0 1 12 0 18 323 2040 91 0 3269 4426 14 13 135 136 4 0 1008 0 4310 88 27 315 0 0 0 0 0 0 277 0 41 0 0 0 0 0 0 2 0 0 2 0 0 169 0 9 0 0 2 0 28 0 6 0 0 0 7 0 2 150 398 6 0 292 875 0 0 1 11 0 0 37 0 257 FSU REPUBLICS Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. 17667 12694 13017 0 0 0 11333 0 12517 9500 11798 0 12000 12875 14023 15037 13647 15277 0 0 12756 13354 0 13178 0 12859 0 0 0 14212 13295 0 11111 0 0 0 15909 0 14382 16132 7595 13000 15594 0 12224 14092 12250 11851 16311 15229 10000 17500 14495 0 12356 7803 8258 11713 10485 10453 8667 7755 11672 12028 11250 0 0 13018 15182 10421 9569 0 0 0 9727 0 11661 8733 9953 7000 10320 12688 13495 14397 11519 13404 0 0 11118 10848 0 12150 5895 11818 0 0 0 11627 11416 0 10113 0 0 0 15250 0 14275 14843 7313 11339 13708 0 9112 9627 10143 10780 15586 13111 8833 17500 12847 0 10307 6052 6889 11388 10316 8809 6021 5634 11330 11805 9833 5429 6625 12196 0 13782 13732 13463 19101 13568 18465 14365 14640 16649 0 0 16055 10094 6742 10439 7068 13047 10579 10702 8957 12117 8460 10071 8122 10138 6872 13163 9971 13815 9723 16650 9254 0 0 0 0 13935 10815 7624 14504 12330 11952 9292 8147 0 0 0 9727 0 11465 6345 9768 3642 10320 11450 13340 14108 11065 13162 3000 0 10888 10586 0 11826 4127 11830 3500 0 0 11258 11253 5109 9941 4111 0 0 15333 3000 14275 14352 5979 8067 12760 0 8192 8065 9954 10712 13326 12000 8143 17500 9581 0 8690 20913 15287 17050 0 0 0 14635 0 15467 0 12575 0 14130 0 13988 0 15670 18912 0 0 15360 16731 0 13996 0 15179 0 0 0 16634 14262 0 12531 0 0 0 0 0 13841 21824 7808 15533 18152 0 16820 17234 0 12474 17485 17789 0 18036 16827 0 14754 16466 12250 12418 0 0 0 10635 0 11918 9470 11836 0 11781 13078 14097 15019 12681 12460 0 0 11713 12216 0 12949 10485 12551 0 0 0 11920 13190 0 10398 0 0 0 15282 0 14290 15712 7516 12364 14084 0 11952 12077 12223 11654 15665 14345 11375 13928 13767 0 11335 3903 6471 5782 3295 5504 4902 4339 5946 6925 7059 5589 6484 6543 1374 2175 0 1587 2270 1577 1482 0 2143 2263 1859 0 2325 8945 4992 1706 11089 9349 8442 0 0 0 9102 0 9463 8479 8732 6006 8479 11843 10030 10404 8983 10005 0 0 9229 8905 0 9037 5905 9010 0 0 0 9093 8564 0 9008 0 0 0 10121 0 9238 10655 7096 9611 10286 0 8578 8363 8187 8221 10657 10407 8249 0 10622 0 8129 7023 5978 4416 0 0 0 0 0 4173 5442 5505 3584 0 6398 5016 5809 5263 4888 3373 0 5548 4680 0 5830 3595 4961 3041 0 0 6015 5148 5070 5874 4316 0 0 5773 3366 0 6632 4095 6346 6009 0 5354 4765 4973 5615 6208 5886 5651 1652 5920 0 4937 2348 1852 1156 0 0 0 0 0 941 1992 0 1087 0 0 2433 0 0 1337 1353 0 1833 981 0 0 1207 0 1262 0 0 963 0 1954 923 1418 0 0 0 1357 2427 2253 1240 2076 1859 0 1669 1567 1425 0 1858 2074 0 0 1787 0 1644 APPENDIX II Table A14 PRODUCTION POTENTIALS FOR TRADITIONAL PRODUCTION FORESTRY SPECIES - EXCLUDING CULTIVATED AREAS, URBAN AREAS AND AREAS CURRENTLY UNDER FOREST ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 231 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 13 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Shanghai Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 4118 43 67 107 12 31 24 40 52 3958 5383 1015 1889 2213 192 823 874 324 108 3061 1490 138 535 737 10 128 397 202 78 674 71523 0 0 0 0 0 0 0 0 71522 18580 1370 3011 4270 78 1292 1641 1259 797 13513 6033 1923 2635 3401 344 1579 712 766 427 2204 9323 0 13 21 0 0 13 8 78 9223 1318 398 656 822 70 328 258 166 16 481 8388 196 402 700 2 194 206 298 439 7249 350 3 22 101 0 3 19 79 35 214 9120 1 202 570 0 1 201 368 146 8381 25808 0 103 309 0 0 103 206 935 24564 925 109 153 307 21 88 44 154 150 468 60873 0 0 0 0 0 0 0 0 60847 2543 171 650 1096 0 171 479 446 285 1162 31205 0 8 507 0 0 8 499 426 30272 8383 1697 3292 4116 193 1504 1595 824 216 4051 5148 1099 2010 2860 37 1062 911 850 250 2038 973 60 211 282 0 60 151 71 21 661 2898 2048 2311 2383 354 1694 263 72 3 512 1038 0 20 300 0 0 20 280 184 554 10153 3887 6214 7499 249 3638 2327 1285 47 2607 7145 3328 4547 5145 118 3210 1219 598 272 1728 20210 3552 7511 11604 125 3427 3959 4093 1268 7338 41490 0 324 2155 0 0 324 1831 2722 36605 1518 96 230 405 1 95 134 175 406 706 11328 37 526 1690 0 37 489 1164 1397 8241 10333 46 361 798 0 46 315 437 951 8584 5498 9 77 288 0 9 68 211 241 4968 1360 323 650 802 16 307 327 152 37 521 107800 57 297 1222 0 57 240 925 2483 104078 Average annual biomass increments (000tons) --------------------------------------------VS+S VS...MS VS...mS VS S MS mS vmS 497 671 824 173 324 174 153 69 11700 18715 20426 2607 9093 7015 1711 159 1765 4354 5254 149 1616 2589 900 148 0 0 0 0 0 0 0 0 15421 27738 33171 1133 14288 12317 5433 1196 21207 27162 30901 4405 16802 5955 3739 631 3 103 135 0 3 100 32 98 5059 6834 7714 902 4157 1775 880 29 2411 4016 5212 20 2391 1605 1196 618 29 175 457 0 29 146 282 49 10 1813 3551 0 10 1803 1738 224 0 712 1455 0 0 712 743 1039 1173 1486 2161 276 897 313 675 237 0 0 0 0 0 0 0 0 1779 5597 7754 0 1779 3818 2157 453 0 57 2208 0 0 57 2151 591 18985 32228 36232 2546 16439 13243 4004 350 12845 20282 24337 510 12335 7437 4055 425 713 1899 2285 0 713 1186 386 26 24987 27116 27498 5695 19292 2129 382 3 0 114 1168 0 0 114 1054 255 45259 64153 70776 3410 41849 18894 6623 64 34691 44087 46836 1516 33175 9396 2749 439 42116 74285 94421 1877 40239 32169 20136 2345 2 2282 12157 0 2 2280 9875 4904 1123 2190 2781 12 1111 1067 591 610 358 3596 8450 0 358 3238 4854 1972 508 2902 4806 0 508 2394 1904 1452 97 586 1437 0 97 489 851 329 3468 5932 6625 205 3263 2464 693 56 615 2426 6430 0 615 1811 4004 3275 75204 496758 571962 4501 22649 27150 11629 40953 52582 15352 59609 74961 986 2134 3120 3515 20515 24030 7128 18304 25432 3723 18656 22379 1752 14626 16378 58039 422432 480471 59965 259708 319673 121941 404393 526334 140711 492654 633365 16036 30032 46068 43929 229676 273605 61976 144685 206661 18770 88261 107031 2745 22303 25048 673 78 6618 6105 515 1193 1468 2573 9320 0 275 500 1465 4710 5280 4623 540 2330 0 848 24765 6493 11850 90058 9673 31640 3505 153305 106460 69645 10 76 0 1154 620 94 336 393 309 4243 0 85 71 478 2077 1833 1293 39 469 2878 74 1102 2527 3392 2530 1152 904 26 160 129 53 0 228 6 2858 1530 144 527 710 482 5510 0 129 135 766 2720 2647 1938 107 829 4448 232 1685 3870 4276 5055 1928 1656 76 468 312 190 0 315 8 4219 2412 161 615 995 1244 7186 0 132 159 772 2865 2795 2111 140 922 4712 389 1814 4129 4670 13926 2539 2741 711 1294 459 894 0 0 0 141 91 8 39 133 71 1113 0 24 8 36 574 188 165 0 91 906 14 293 424 1221 392 114 264 2 27 32 4 0 76 0 1013 529 86 297 260 238 3130 0 61 63 442 1503 1645 1128 39 378 1972 60 809 2103 2171 2138 1038 640 24 133 97 49 0 152 6 1704 910 50 191 317 173 1267 0 44 64 288 643 814 645 68 360 1570 158 583 1343 884 2525 776 752 50 308 183 137 0 87 2 1361 882 17 88 285 762 1676 0 3 24 6 145 148 173 33 93 264 157 129 259 394 8871 611 1085 635 826 147 704 0 14 2 219 806 24 35 172 262 630 0 0 3 0 56 0 37 9 10 66 102 13 0 320 3039 161 425 139 515 98 409 0 343 67 2178 2888 330 543 300 1067 1504 0 143 338 693 1789 2485 2474 390 1398 0 355 22937 2363 6860 73093 6972 28474 2655 151495 105903 68343 9 1130 0 12949 7519 1477 5231 5709 4024 53039 0 1349 999 6905 30814 27755 18979 544 6793 47970 939 17433 37950 61786 27205 16998 12831 297 1888 1660 452 0 2612 60 28039 16591 2058 7439 8892 5743 63983 0 1795 1633 9796 37241 36237 25217 1186 10133 63429 2176 23478 51276 70756 45203 24842 19855 669 4208 2842 1457 3 3088 73 36034 22095 2192 8029 10466 9287 72506 0 1819 1769 9830 38109 37083 26140 1372 10670 65032 2868 24201 52698 72686 88316 28429 25718 3946 8617 3437 4733 4 5 0 1441 1240 146 713 2105 969 15201 0 430 129 530 10473 3417 2989 9 1643 18493 228 5551 8114 27280 5788 2047 4755 28 445 530 33 0 1125 0 11508 6279 1331 4518 3604 3055 37838 0 919 870 6375 20341 24338 15990 535 5150 29477 711 11882 29836 34506 21417 14951 8076 269 1443 1130 419 0 1482 60 15090 9072 581 2208 3183 1719 10944 0 446 634 2891 6427 8482 6238 642 3340 15459 1237 6045 13326 8970 17998 7844 7024 372 2320 1182 1005 3 476 13 7995 5504 134 590 1574 3544 8523 0 24 136 34 868 846 923 186 537 1603 692 723 1422 1930 43113 3587 5863 3277 4409 595 3276 1 23 5 450 1757 54 76 340 417 1036 0 0 6 0 103 0 67 17 18 136 143 22 0 508 4906 351 760 227 880 150 645 0 556518 28497 45462 65329 6375 22122 16965 19867 7566 488389 412625 568849 671247 114732 297893 156224 102398 13097 Note: Annual biomass increments and annual biomass yields refer to total biomass. The following partitioning may be used: VS conditions: stem+branchwood/twigs+leaves/roots, 60/20/20; S and MS: 50/20/30; mS and VmS: 40/20/40. Average annual biomass yield (kg/ha) ------------------------------VS+SVS...MSVS...mS VS S MS mS vmS 11558 10015 7701 14257 10488 7170 3850 1322 11527 9907 9230 13558 11052 8026 5286 1470 12790 8138 7129 14731 12642 6520 4449 1891 0 0 0 0 0 0 0 0 11256 9212 7768 14558 11057 7505 4315 1500 11028 10308 9086 12796 10641 8360 4879 1478 3000 7923 6429 0 10843 7614 3734 1258 12711 10418 9384 12911 12673 6878 5316 1836 12301 9990 7446 10768 12318 7782 4018 1409 9667 7955 4525 0 10655 7680 3560 1406 10000 8975 6230 0 9315 8958 4729 1528 0 6913 4709 0 0 6937 3612 1111 10761 9712 7039 13251 10168 7122 4379 1581 0 0 0 0 0 0 0 0 10404 8611 7075 0 10393 7968 4838 1591 0 7125 4355 0 0 7061 4309 1389 11187 9790 8803 13209 10933 8302 4861 1621 11688 10091 8509 13620 11615 8166 4771 1701 11883 9000 8103 0 11812 7839 5427 1204 12201 11733 11539 16104 11388 8096 5269 1263 0 5700 3893 0 0 5731 3764 1387 11644 10324 9438 13709 11502 8121 5153 1373 10424 9696 9103 12884 10335 7708 4601 1610 11857 9890 8137 14973 11742 8124 4920 1850 2000 7043 5641 0 10502 7032 5393 1802 11698 9522 6867 14062 11729 7941 3367 1502 9676 6837 5000 0 9765 6621 4169 1412 11043 8039 6023 0 11022 7607 4356 1528 10778 7610 4990 0 10625 7191 4031 1362 10737 9126 8261 12745 10611 7546 4561 1515 10789 8168 5262 0 10775 7560 4329 1319 13323 10486 11467 9875 11774 10010 8695 7905 8126 5042 4731 4783 1567 1525 1529 14787 14859 11360 11881 15500 15218 13868 12841 12088 0 15034 13754 14408 13534 14799 14173 13740 13624 14951 11809 14681 14188 15891 10018 14405 12622 11228 10871 11660 8587 14737 9742 9866 8854 9974 11588 11551 10041 9954 8639 0 10132 9888 10046 9998 10422 9668 9382 9276 9849 7820 10366 9922 10152 7129 10112 9346 7399 7538 6444 7363 9654 5487 6197 5872 6243 7653 6739 5514 4650 5086 0 7231 5679 5975 5974 5702 5337 5699 5766 6074 4397 5604 5489 4905 4860 5867 5403 5162 5335 4039 4651 5802 1663 2229 2053 2181 2300 2182 1978 1590 1645 0 2391 1915 2106 1819 1999 1810 1864 1721 2053 1398 1646 2088 1590 1614 2179 1789 1636 1708 1533 1578 1917 14480 12513 10275 17997 13466 9209 5154 1731 14868 0 11221 12127 15713 15568 14527 13023 12500 0 15871 14070 14446 14836 15142 14678 13949 14484 16668 12689 15819 15018 18215 10753 14755 14194 11423 11800 12868 8528 0 11456 10000 9811 10844 14292 14116 12524 11915 11612 0 13915 12096 12789 13692 13690 13012 11084 12223 14260 9379 13934 13250 16547 8942 12885 11990 8803 8991 9109 7668 3000 9166 16264 12498 8265 14073 11196 8449 14765 11386 9803 9125 8541 9160 13615 13055 10519 7465 10090 0 13780 11126 12733 13302 13268 12383 9800 11573 13801 7373 13341 12763 15564 6342 11197 9383 5550 6659 7488 5294 4000 14313 0 10203 13579 17753 18190 15807 13594 13652 0 18142 15711 14675 18258 18142 18085 20342 18147 20406 15938 18953 19129 22338 14750 17960 17979 15353 16235 16636 9336 0 APPENDIX II Table A15 SUITABLE AREAS FOR CONSERVATION FORESTRY - ALL AREAS ADM REG NAME 2 11 12 13 14 15 16 17 18 19 20 21 22 23 4 Mongolia 12 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 156198 200 2622 8843 18 182 2422 6221 6549 140806 2690 7868 20348 3938 6523 268445 19548 6313 6420 3000 9013 45390 57570 169 217 15798 1929 738 3853 171 2826 3505 1566 0 0 29877 472 704 18694 2393 1485 9596 1010 5508 5653 2398 86 0 41613 688 1495 19061 2742 2067 22058 2191 5708 5853 2596 762 31 45761 0 14 5742 440 374 559 30 773 1572 414 0 0 11343 169 203 10056 1489 364 3294 141 2053 1933 1152 0 0 18534 303 487 2896 464 747 5743 839 2682 2148 832 86 0 11736 216 791 367 349 582 12462 1181 200 200 198 676 31 4148 155 1646 13 120 593 4951 710 85 31 224 512 127 6864 1847 4159 1273 1075 3863 241435 16645 519 536 180 7738 45231 4942 457066 60649 89612 111013 21261 39388 28963 21401 16031 329443 Krasnodar Kray 12 7620 Stavropol Kray 12 6635 Arkhangelsk oblast 12 38190 Astrakhan oblast 12 4598 Belgorod oblast 12 2665 Bryansk oblast 12 3483 Vladimir oblast 12 2925 Volgograd oblast 12 11265 Vologda oblast 12 14628 Voronezh oblast 12 5195 Nizhni Novgorod oblast12 7515 Nenets a.okr. 12 16858 Ivanovo oblast 12 2270 Kaliningrad oblast 12 1240 Tver oblast 12 8395 Kaluga oblast 12 2963 Kirov oblast 12 11930 Kostroma oblast 12 6000 Samara oblast 12 5118 Kursk oblast 12 3020 Komi-Permyak a.okr. 12 3280 Leningrad oblast 12 7500 Lipetsk oblast 12 2410 Moscow oblast 12 4665 Murmansk oblast 12 13960 Novgorod oblast 12 5450 Orenburg oblast 12 12418 Oryel oblast 12 2458 Penza oblast 12 4320 Perm oblast 12 12715 Pskov oblast 12 5568 Rostov oblast 12 10133 Ryazan oblast 12 3935 Saratov oblast 12 10375 Smolensk oblast 12 4943 Tambov oblast 12 3435 Tula oblast 12 2553 Ulyanovsk oblast 12 3690 Yaroslavl oblast 12 3260 Adigei Republic 12 775 Bashkortostan Republic12 14435 Daghestn Republic 12 5033 Kabardino-Balkarian Republic 12 1238 Kalmyk-Khalm-Tangch 12 Republic7510 Karelia Republic 12 18253 Komi Republic 12 41370 Mari-El Republic 12 2365 Mordovian SSR 12 2590 North-Ossetian SSR 12 778 Karachai-Cherkess Republic 12 1468 Tatarstan Republic 12 6663 Udmurt Republic 12 4150 Checheno-Ingush Republic 12 1930 Chuvash Republic 12 1808 Altai Kray 12 16653 1362 480 7692 0 977 3315 1555 0 9938 676 4852 0 1862 765 7253 2525 7552 4324 539 2683 2061 3043 1989 4005 13 4098 310 2418 2749 8602 3419 361 3261 177 4368 2084 2534 495 2990 386 6688 196 424 0 2147 4784 1136 1891 317 388 2707 3375 441 644 6373 2408 1475 19696 0 1565 3429 2866 0 12127 1341 7356 15 2251 954 7933 2935 11211 5759 860 2691 3046 6125 2257 4445 89 5076 655 2454 3725 10284 4791 847 3886 529 4734 2788 2552 1593 3090 482 9372 411 628 0 9008 16384 1909 2469 383 524 4226 3890 671 1079 9812 4667 3330 24917 0 1715 3431 2908 583 12928 2157 7430 309 2260 1036 8173 2940 11601 5851 2164 2740 3157 6598 2354 4571 486 5228 1323 2454 4024 10613 4886 4499 3936 1720 4769 2963 2552 2445 3198 530 10807 1112 676 172 11853 25093 2191 2528 464 588 5195 3897 1164 1349 11393 379 105 1909 0 269 1336 288 0 3618 264 1596 0 779 366 3247 832 3172 1621 0 1331 1310 1321 1562 1703 0 1491 21 1435 1591 5326 1338 81 1704 0 2129 1304 1748 104 1440 154 2926 73 162 0 613 2135 260 1373 241 159 1287 1392 185 183 3428 983 375 5783 0 708 1979 1267 0 6320 412 3256 0 1083 399 4006 1693 4380 2703 539 1352 751 1722 427 2302 13 2607 289 983 1158 3276 2081 280 1557 177 2239 780 786 391 1550 232 3762 123 262 0 1534 2649 876 518 76 229 1420 1983 256 461 2945 1046 995 12004 0 588 114 1311 0 2189 665 2504 15 389 189 680 410 3659 1435 321 8 985 3082 268 440 76 978 345 36 976 1682 1372 486 625 352 366 704 18 1098 100 96 2684 215 204 0 6861 11600 773 578 66 136 1519 515 230 435 3439 2259 1855 5221 0 150 2 42 583 801 816 74 294 9 82 240 5 390 92 1304 49 111 473 97 126 397 152 668 0 299 329 95 3652 50 1191 35 175 0 852 108 48 1435 701 48 172 2845 8709 282 59 81 64 969 7 493 270 1581 1770 647 1742 0 481 0 0 945 248 2751 6 177 0 0 53 0 66 13 736 12 0 373 52 1 942 115 332 0 230 85 43 1719 0 1679 0 438 0 542 21 13 1087 558 41 61 1816 5070 36 42 31 72 553 13 120 415 492 1176 2658 11511 4597 470 51 17 9737 1452 288 79 16352 10 204 170 22 262 137 2216 267 123 528 4 94 12532 107 10763 3 66 2016 638 3915 0 6977 174 34 0 704 40 232 2540 3356 519 7277 4575 11207 138 20 283 807 915 240 647 44 4768 FSU REPUBLICS 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 LC APPENDIX II Table A15 SUITABLE AREAS FOR CONSERVATION FORESTRY - ALL AREAS ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 11 11 11 11 11 11 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 9385 805 2050 2229 108 697 1245 179 236 6920 71140 17169 29443 35569 4760 12409 12274 6126 6085 29485 16338 1118 3038 5214 334 784 1920 2176 2277 8847 82285 0 0 0 0 0 0 0 0 82285 77545 4712 8733 16880 898 3814 4021 8147 7809 52849 36283 9068 13302 20282 2440 6628 4234 6980 4631 11370 75673 5 372 888 0 5 367 516 3533 71251 3700 1189 1842 2211 607 582 653 369 436 1052 76270 7218 14469 22248 1324 5894 7251 7779 12324 41698 2178 234 660 867 40 194 426 207 55 1254 17045 100 1122 2880 0 100 1022 1758 676 13467 28903 0 112 399 0 0 112 287 1105 27399 9500 4386 5429 6377 1043 3343 1043 948 639 2483 70770 0 0 0 0 0 0 0 0 70745 7110 1600 2907 3780 521 1079 1307 873 564 2767 45830 0 24 934 0 0 24 910 1154 43742 17673 5423 8632 10062 2708 2715 3209 1430 880 6730 13980 3302 5265 8964 518 2784 1963 3699 721 4295 8095 743 1680 2758 5 738 937 1078 327 4918 19273 11885 13969 14649 5498 6387 2084 680 212 4412 1970 2 85 754 0 2 83 669 308 907 31145 14606 21195 23760 3644 10962 6589 2565 228 7157 15860 7486 10408 11635 1972 5514 2922 1227 578 3647 53163 10264 18913 28719 1271 8993 8649 9806 2870 21573 66588 20 1389 5425 0 20 1369 4036 9761 51393 8763 2130 3321 4408 741 1389 1191 1087 1226 3129 41493 316 2685 12052 1 315 2369 9367 9019 20420 33533 393 3753 6916 17 376 3360 3163 7630 18987 17035 107 1519 2836 0 107 1412 1317 1547 12652 6120 1427 2358 3143 223 1204 931 785 194 2782 303275 519 3407 10022 0 519 2888 6615 17029 276207 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 389947 1284574 1674521 132851 112600 245451 201274 191894 393168 240535 278254 518789 57863 32101 89964 74988 80499 155487 68423 79294 147717 39261 86360 125621 1640 1125 18480 15783 14798 16295 13863 19145 44848 413 9290 9250 13783 16663 18168 21050 11995 16385 23425 2840 56143 17725 37325 115468 20900 40580 5038 163355 119045 72183 40 567 32 5492 4060 4302 8121 7924 10224 29796 268 5967 8052 10363 12081 14944 16592 8176 8946 14365 406 22192 15884 21569 12288 8512 5170 151 688 4931 428 0 1007 236 9646 6841 6028 10241 10430 13564 36616 386 7879 9024 12888 13834 16366 18304 9844 10638 18651 1104 29588 16567 24627 21631 11152 7637 558 1616 5841 963 1 1250 349 12346 9082 7478 11638 11834 15507 39425 386 8100 9130 13168 14250 16377 18457 10204 11148 19531 1621 31081 16568 27781 33223 11750 9258 1388 3018 6944 2290 2 132 0 1505 1284 1367 2841 4073 4915 15520 134 2763 1412 3236 5343 4587 3249 319 2116 4051 57 5293 2298 8730 4364 1872 2006 45 216 1647 41 0 435 32 3987 2776 2935 5280 3851 5309 14276 134 3204 6640 7127 6738 10357 13343 7857 6830 10314 349 16899 13586 12839 7924 6640 3164 106 472 3284 387 0 440 204 4154 2781 1726 2120 2506 3340 6820 118 1912 972 2525 1753 1422 1712 1668 1692 4286 698 7396 683 3058 9343 2640 2467 407 928 910 535 1 243 113 2700 2241 1450 1397 1404 1943 2809 0 221 106 280 416 11 153 360 510 880 517 1493 1 3154 11592 598 1621 830 1402 1103 1327 1 1 241 2009 3488 1055 508 1070 729 1485 0 8 34 16 185 0 162 133 191 393 272 656 0 3940 4104 942 487 33 900 545 416 0 389 534 4125 3212 6266 4150 958 2909 3938 27 1059 85 600 2227 1792 2430 1658 5047 3502 947 24405 1157 5603 78141 8208 30835 3615 159437 111557 69476 37 937041 262491 333708 374584 85416 177075 71217 40876 24003 538326 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL LC 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 26147 123194 94546 911591 120693 1034785 APPENDIX II Table A16 SUITABLE AREAS FOR CONSERVATION FORESTRY - EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 2 11 12 13 14 15 16 17 18 19 20 21 22 23 4 Mongolia 12 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 154858 200 2610 8774 18 182 2410 6164 6481 139602 1965 5588 7628 1508 4480 220903 16238 2220 3205 105 7423 42520 6305 138 199 5734 699 249 2468 84 981 1788 51 0 0 3667 353 608 6878 936 815 5543 747 1966 2915 80 62 0 4590 499 1110 7014 1069 1191 10982 1330 2056 2986 89 511 26 4907 0 13 1862 146 66 500 20 225 768 13 0 0 1343 138 186 3872 553 183 1968 64 756 1020 38 0 0 2324 215 409 1144 237 566 3075 663 985 1127 29 62 0 923 146 502 136 133 376 5439 583 90 71 9 449 26 317 110 998 11 68 387 2837 538 29 12 12 355 118 112 1356 3062 603 370 2902 207083 14370 135 208 3 6556 42376 1285 320088 16058 25493 33770 4956 11102 9435 8277 5587 280309 Krasnodar Kray 12 2158 Stavropol Kray 12 988 Arkhangelsk oblast 12 37453 Astrakhan oblast 12 4453 Belgorod oblast 12 80 Bryansk oblast 12 718 Vladimir oblast 12 1175 Volgograd oblast 12 2173 Vologda oblast 12 12483 Voronezh oblast 12 548 Nizhni Novgorod oblast12 4018 Nenets a.okr. 12 16818 Ivanovo oblast 12 1063 Kaliningrad oblast 12 160 Tver oblast 12 3450 Kaluga oblast 12 1240 Kirov oblast 12 7908 Kostroma oblast 12 4593 Samara oblast 12 445 Kursk oblast 12 90 Komi-Permyak a.okr. 12 2813 Leningrad oblast 12 6358 Lipetsk oblast 12 98 Moscow oblast 12 2270 Murmansk oblast 12 13535 Novgorod oblast 12 4568 Orenburg oblast 12 2623 Oryel oblast 12 63 Penza oblast 12 625 Perm oblast 12 8853 Pskov oblast 12 2750 Rostov oblast 12 475 Ryazan oblast 12 1253 Saratov oblast 12 1033 Smolensk oblast 12 748 Tambov oblast 12 328 Tula oblast 12 238 Ulyanovsk oblast 12 848 Yaroslavl oblast 12 1320 Adigei Republic 12 380 Bashkortostan Republic12 5880 Daghestn Republic 12 4543 Kabardino-Balkarian Republic 12 873 Kalmyk-Khalm-Tangch 12 Republic6185 Karelia Republic 12 14833 Komi Republic 12 41370 Mari-El Republic 12 1410 Mordovian SSR 12 673 North-Ossetian SSR 12 570 Karachai-Cherkess Republic 12 1255 Tatarstan Republic 12 678 Udmurt Republic 12 1678 Checheno-Ingush Republic 12 1383 Chuvash Republic 12 688 Altai Kray 12 9045 595 147 7292 0 31 680 602 0 8748 31 2130 0 864 91 3008 1051 4440 3269 102 80 1648 2695 45 1917 8 3515 7 61 310 5586 1735 0 844 12 679 190 234 114 1244 133 1450 187 248 0 1994 4784 695 434 167 243 271 1270 360 261 3500 854 255 19055 0 47 713 1141 0 10714 70 3886 15 1054 116 3271 1235 7469 4452 137 80 2617 5372 72 2164 84 4288 30 62 504 6803 2557 6 1219 26 721 299 238 404 1262 162 2600 374 286 0 8553 16384 1210 646 214 323 455 1576 526 494 5553 1055 293 24231 0 54 713 1166 23 11416 187 3946 308 1060 135 3369 1236 7673 4531 209 82 2718 5687 96 2232 452 4406 64 62 577 7057 2616 81 1252 55 726 317 238 631 1308 191 3637 987 316 0 11325 25093 1308 659 264 385 562 1580 715 565 6364 216 59 1858 0 13 271 101 0 3150 6 489 0 359 40 1311 375 1883 1224 0 35 1047 1221 33 835 0 1290 0 20 139 3610 659 0 263 0 332 100 105 32 615 49 416 70 101 0 571 2135 122 255 111 112 108 547 175 33 1593 379 88 5434 0 18 409 501 0 5598 25 1641 0 505 51 1697 676 2557 2045 102 45 601 1474 12 1082 8 2225 7 41 171 1976 1076 0 581 12 347 90 129 82 629 84 1034 117 147 0 1423 2649 573 179 56 131 163 723 185 228 1907 259 108 11763 0 16 33 539 0 1966 39 1756 15 190 25 263 184 3029 1183 35 0 969 2677 27 247 76 773 23 1 194 1217 822 6 375 14 42 109 4 290 18 29 1150 187 38 0 6559 11600 515 212 47 80 184 306 166 233 2053 201 38 5176 0 7 0 25 23 702 117 60 293 6 19 98 1 204 79 72 2 101 315 24 68 368 118 34 0 73 254 59 75 33 29 5 18 0 227 46 29 1037 613 30 0 2772 8709 98 13 50 62 107 4 189 71 811 241 14 1741 0 10 0 0 20 228 314 5 176 0 0 13 0 39 5 81 0 0 288 1 0 887 84 20 0 33 64 21 15 0 79 0 10 0 107 3 12 719 490 40 0 1784 5070 23 10 28 72 54 8 92 110 345 861 681 11460 4452 16 4 10 2130 838 47 67 16314 3 25 69 5 197 56 155 7 95 383 0 38 12196 78 2538 0 16 1731 113 379 0 899 21 1 0 109 10 176 1524 3057 517 6185 1716 11207 79 4 277 797 62 90 575 12 2337 FSU REPUBLICS 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 LC APPENDIX II Table A16 SUITABLE AREAS FOR CONSERVATION FORESTRY - EXCLUDING CULTIVATED AND URBAN AREAS ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 11 11 11 11 11 11 12 12 12 12 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 9330 802 2041 2213 107 695 1239 172 226 6891 67158 14756 26286 32302 3717 11039 11530 6016 6067 28788 15145 893 2358 4386 292 601 1465 2028 2260 8499 81188 0 0 0 0 0 0 0 0 81187 77168 4596 8521 16623 892 3704 3925 8102 7795 52742 34328 8205 12103 18838 2046 6159 3898 6735 4578 10911 75635 5 372 888 0 5 367 516 3533 71214 3590 1107 1748 2109 556 551 641 361 436 1045 71560 6661 13381 21073 1224 5437 6720 7692 12248 38239 1445 121 308 445 21 100 187 137 38 961 17018 100 1122 2877 0 100 1022 1755 676 13442 28898 0 112 398 0 0 112 286 1105 27394 7103 3736 4605 5237 814 2922 869 632 210 1654 70690 0 0 0 0 0 0 0 0 70665 3223 450 1161 1606 96 354 711 445 306 1311 45825 0 24 934 0 0 24 910 1154 43737 12435 3674 6208 7089 1432 2242 2534 881 324 5022 9258 3046 4731 5945 501 2545 1685 1214 256 3058 8045 735 1661 2734 5 730 926 1073 327 4892 16690 9819 11492 12164 4456 5363 1673 672 189 4337 1873 2 83 715 0 2 81 632 294 865 30583 14311 20800 23341 3538 10773 6489 2541 201 7040 12890 6737 8955 9856 1833 4904 2218 901 370 2664 53040 10224 18862 28659 1267 8957 8638 9797 2867 21515 66395 20 1389 5424 0 20 1369 4035 9759 51204 3685 698 1267 1769 248 450 569 502 447 1469 40300 293 2417 11612 1 292 2124 9195 8906 19782 32600 343 3589 6527 17 326 3246 2938 7503 18571 16665 106 1466 2663 0 106 1360 1197 1489 12513 5180 871 1652 2376 102 769 781 724 189 2616 302708 519 3406 9997 0 519 2887 6591 17004 275689 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 235212 1230696 1465908 66502 96330 162832 117095 167673 284768 139849 247164 387013 26496 24758 51254 40006 71572 111578 50593 71343 121936 22754 79491 102245 13011 91102 104113 82282 892254 974536 878 95 8108 7653 2360 7650 5388 10343 29720 0 830 5480 6878 12195 13748 16935 9233 10590 18013 2165 37043 11843 32713 104640 14298 33838 3550 156700 116778 70143 33 411 1 4515 2768 692 4257 3833 5407 20083 0 508 5180 5453 9169 11470 13397 6697 6893 11826 332 11199 10698 18462 11638 6594 3759 79 651 4794 304 0 660 14 6520 4091 815 5062 4538 7770 25229 0 616 5442 6457 10322 12426 14599 7845 7800 14679 843 12848 11156 21174 19723 8167 5423 267 1563 5626 692 1 755 19 7269 4718 1033 5519 4886 8637 26946 0 653 5457 6637 10462 12434 14696 8054 8068 15332 1268 13543 11157 24021 29102 8479 6515 937 2939 6681 1800 2 127 0 1348 921 214 1598 2057 2963 10472 0 208 693 1542 3732 3268 2074 253 1576 3401 52 3424 1575 7470 4289 1450 1574 40 184 1606 29 0 284 1 3167 1847 478 2659 1776 2444 9611 0 300 4487 3911 5437 8202 11323 6444 5317 8425 280 7775 9123 10992 7349 5144 2185 39 467 3188 275 0 249 13 2005 1323 123 805 705 2363 5146 0 108 262 1004 1153 956 1202 1148 907 2853 511 1649 458 2712 8085 1573 1664 188 912 832 388 1 95 5 749 627 218 457 348 867 1717 0 37 15 180 140 8 97 209 268 653 425 695 1 2847 9379 312 1092 670 1376 1055 1108 1 0 2 98 1404 52 161 312 273 615 0 1 7 16 112 0 116 74 109 254 230 339 0 3545 3118 212 347 23 891 526 338 0 122 74 741 1530 1274 1970 189 1434 2159 0 176 15 224 1622 1314 2123 1105 2412 2427 666 23159 686 5146 72420 5607 26976 2590 152870 109571 68004 31 749841 181070 222368 248019 58140 122930 41298 25651 13175 488637 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL LC 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 APPENDIX II Table A 17 SUITABLE AREAS FOR CONSERVATION FORESTRY - EXCLUDING CULTIVATED AREAS, URBAN AREAS AND AREAS CURRENTLY UNDER FOREST ADM REG NAME 2 11 12 13 14 15 16 17 18 19 20 21 22 23 4 Mongolia 12 1 1 1 1 1 1 1 1 1 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12 12 12 Armenia Azerbaijan Byelorussia Estonia Georgia Kazakhstan Kirghiztan Latvia Lithuania Moldavia Tajikistan Turkmenistan Ukraine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 147800 158 2239 8074 11 147 2081 5835 5259 134466 1788 4578 1680 370 1515 214330 12170 210 1463 10 2655 40375 640 101 95 1149 178 126 1891 82 127 786 2 0 0 378 303 379 1427 220 393 4565 566 195 1348 5 0 0 494 429 783 1490 261 511 9616 1009 198 1365 6 8 8 530 0 0 301 22 29 414 19 40 336 1 0 0 146 101 95 848 156 97 1477 63 87 450 1 0 0 232 202 284 278 42 267 2674 484 68 562 3 0 0 116 126 404 63 41 118 5051 443 3 17 1 8 8 36 91 844 9 25 180 2536 287 2 7 3 7 1 16 1268 2643 180 84 824 202178 10874 10 89 1 2640 40366 94 281784 4915 9895 16214 1308 3607 4980 6319 4008 261251 Krasnodar Kray 12 625 Stavropol Kray 12 965 Arkhangelsk oblast 12 11818 Astrakhan oblast 12 4380 Belgorod oblast 12 0 Bryansk oblast 12 0 Vladimir oblast 12 13 Volgograd oblast 12 1890 Vologda oblast 12 1253 Voronezh oblast 12 258 Nizhni Novgorod oblast12 298 Nenets a.okr. 12 15018 Ivanovo oblast 12 25 Kaliningrad oblast 12 30 Tver oblast 12 118 Kaluga oblast 12 65 Kirov oblast 12 235 Kostroma oblast 12 253 Samara oblast 12 5 Kursk oblast 12 0 Komi-Permyak a.okr. 12 170 Leningrad oblast 12 800 Lipetsk oblast 12 0 Moscow oblast 12 193 Murmansk oblast 12 6555 Novgorod oblast 12 233 Orenburg oblast 12 2480 Oryel oblast 12 0 Penza oblast 12 0 Perm oblast 12 325 Pskov oblast 12 265 Rostov oblast 12 453 Ryazan oblast 12 405 Saratov oblast 12 615 Smolensk oblast 12 0 Tambov oblast 12 0 Tula oblast 12 13 Ulyanovsk oblast 12 18 Yaroslavl oblast 12 83 Adigei Republic 12 103 Bashkortostan Republic12 808 Daghestn Republic 12 4188 Kabardino-Balkarian Republic 12 663 Kalmyk-Khalm-Tangch 12 Republic6183 Karelia Republic 12 3005 Komi Republic 12 8200 Mari-El Republic 12 100 Mordovian SSR 12 125 North-Ossetian SSR 12 378 Karachai-Cherkess Republic 12 623 Tatarstan Republic 12 8 Udmurt Republic 12 3 Checheno-Ingush Republic 12 960 Chuvash Republic 12 0 Altai Kray 12 4503 195 147 636 0 0 0 9 0 772 5 115 0 13 13 90 61 123 166 0 0 82 393 0 162 0 161 0 0 0 153 154 0 276 0 0 0 13 0 69 55 88 160 109 0 354 485 45 87 74 116 6 3 194 0 1706 224 251 2261 0 0 0 12 0 981 18 285 3 25 21 105 65 215 240 0 0 153 682 0 183 38 222 0 0 0 285 246 0 398 0 0 0 13 0 71 56 162 325 137 0 1949 2116 85 124 99 164 6 3 290 0 2590 354 278 3064 0 0 0 13 0 1088 58 293 95 25 28 109 65 232 247 1 0 165 730 0 192 166 225 2 0 0 306 255 66 405 10 0 0 13 5 72 60 219 890 162 0 2510 2915 91 124 123 192 6 3 432 0 3081 92 59 177 0 0 0 1 0 242 0 8 0 1 4 37 26 57 82 0 0 37 152 0 62 0 36 0 0 0 91 47 0 78 0 0 0 6 0 34 25 21 62 43 0 21 202 5 52 61 55 4 2 111 0 848 103 88 459 0 0 0 8 0 530 5 107 0 12 9 53 35 66 84 0 0 45 241 0 100 0 125 0 0 0 62 107 0 198 0 0 0 7 0 35 30 67 98 66 0 333 283 40 35 13 61 2 1 83 0 858 29 104 1625 0 0 0 3 0 209 13 170 3 12 8 15 4 92 74 0 0 71 289 0 21 38 61 0 0 0 132 92 0 122 0 0 0 0 0 2 1 74 165 28 0 1595 1631 40 37 25 48 0 0 96 0 884 130 27 803 0 0 0 1 0 107 40 8 92 0 7 4 0 17 7 1 0 12 48 0 9 128 3 2 0 0 21 9 66 7 10 0 0 0 5 1 4 57 565 25 0 561 799 6 0 24 28 0 0 142 0 491 97 14 268 0 0 0 0 0 72 156 0 39 0 0 2 0 0 1 2 0 0 57 0 0 146 7 7 0 0 2 2 14 0 3 0 0 0 6 0 0 136 414 37 0 178 590 0 0 25 20 0 0 74 0 143 174 672 8473 4380 0 0 0 1890 92 42 5 14864 0 1 7 0 4 4 2 0 5 14 0 1 6243 1 2471 0 0 17 8 372 0 601 0 0 0 6 10 43 452 2876 465 6182 310 4695 8 0 229 411 2 0 454 0 1279 FSU REPUBLICS 103 107 111 112 114 115 117 118 119 120 122 123 124 127 128 129 133 134 136 138 139 141 142 146 147 149 153 154 156 157 158 160 161 163 166 168 170 173 178 179 180 182 183 185 186 187 188 189 190 191 192 194 196 197 101 LC APPENDIX II Table A 17 SUITABLE AREAS FOR CONSERVATION FORESTRY - EXCLUDING CULTIVATED AREAS, URBAN AREAS AND AREAS CURRENTLY UNDER FOREST ADM REG NAME 102 104 105 106 108 110 116 121 125 126 130 131 132 135 137 144 150 152 164 165 167 169 171 172 174 175 176 181 193 195 198 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 LC Gorno-Altai Republic 12 Krasnoyarsk Kray 12 Primorski Kray 12 Taymyr a.okr. 12 Khabarovsk Kray 12 Amur oblast 12 Evenk a.okr 12 Yevrey (Jewish) a.oblast 12 Irkutsk oblast 12 Ust-Orda Buryat a.okr. 12 Kamchatka oblast 12 Koryak a.okr. 12 Kemerovo oblast 12 Chukchi a.okr. 12 Kurgan oblast 12 Magadan oblast 12 Novosibirsk oblast 12 Omsk oblast 12 Sakhalin oblast 12 Sverdlovsk oblast 12 Aga-Buryat a.okr. 12 Tomsk oblast 12 Tyumen oblast 12 Khanty-Mansi a.okr. 12 Yamalo-Nenets a.okr. 12 Chelyabinsk oblast 12 Chita oblast 12 Buryat Republic 12 Tuva Republic 12 Khakass Republic 12 Sakha (Yakutia) Republic 12 RUSSIA WEST RUSSIA EAST RUSSIA TOTAL 211 212 213 214 237 241 221 222 223 231 232 233 234 236 242 243 235 244 245 246 251 252 253 215 261 262 264 265 254 263 272 11 11 11 11 11 11 12 12 12 12 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 17 17 18 18 19 Beijing Tianjin Hebei Shanxi Shandong Henan Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Jiangxi Hubei Hunan Fujian Guangdong Guangxi Hainan Sichuan Guizhou Yunnan Nei Mongol Shaanxi Gansu Ningxia Xinjiang Xizang Qinghai Hongkong CHINA TOTAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Total Suitable Areas (000ha) ------------------------------------------------------------------------------------------------Extent VS+S VS...MS VS...mS VS S MS mS vmS NS 4118 73 505 531 14 59 432 26 77 3510 5383 1143 2033 2252 393 750 890 219 123 3008 1490 172 637 836 39 133 465 199 156 498 71523 0 0 0 0 0 0 0 0 71522 18580 1718 3326 4563 342 1376 1608 1237 1238 12780 6033 2153 2831 3777 722 1431 678 946 606 1650 9323 0 16 26 0 0 16 10 78 9219 1318 422 800 941 203 219 378 141 34 342 8388 240 718 1026 47 193 478 308 847 6514 350 7 57 115 0 7 50 58 29 207 9120 23 303 725 0 23 280 422 185 8188 25808 0 108 320 0 0 108 212 1018 24469 925 161 178 365 23 138 17 187 135 425 60873 0 0 0 0 0 0 0 0 60847 2543 306 743 1098 53 253 437 355 289 1156 31205 0 12 580 0 0 12 568 522 30104 8383 2004 3435 4116 890 1114 1431 681 269 3997 5148 1392 2144 2863 303 1089 752 719 250 2034 973 103 247 291 0 103 144 44 23 651 2898 2113 2330 2383 950 1163 217 53 3 511 1038 0 35 377 0 0 35 342 178 482 10153 4322 6465 7502 870 3452 2143 1037 44 2606 7145 3643 4625 5151 959 2684 982 526 287 1707 20210 4702 7701 11633 445 4257 2999 3932 1308 7269 41490 3 470 2159 0 3 467 1689 2728 36596 1518 131 247 412 71 60 116 165 409 696 11328 95 1275 2832 0 95 1180 1557 1718 6778 10333 95 1557 2162 1 94 1462 605 1298 6873 5498 30 655 929 0 30 625 274 306 4263 1360 590 781 892 71 519 191 111 19 449 107800 68 490 1386 0 68 422 896 3205 103191 75204 496758 571962 5584 27415 32999 12513 47314 59827 16289 65324 81613 1993 7244 9237 3591 20171 23762 6929 19899 26828 3776 18010 21786 2369 17525 19894 56486 413821 470307 673 78 6618 6105 515 1193 1468 2573 9320 0 275 500 1465 4710 5280 4623 540 2330 7725 848 24765 6493 11850 90058 9673 31640 3505 153305 106460 69645 10 306 0 3653 2109 134 605 660 409 5090 0 130 452 1376 3742 4486 3732 318 1551 5589 112 4528 5934 7041 4421 3452 2690 66 578 679 298 0 492 7 5338 3169 172 734 992 523 6140 0 161 494 1433 4086 4792 3962 364 1798 6737 299 5088 6160 7855 9652 4524 4038 246 1385 1001 664 0 559 9 5960 3662 187 770 1196 1262 7502 0 164 499 1433 4144 4792 3977 393 1848 6941 460 5387 6160 8793 16697 4828 5062 896 2632 1458 1741 0 91 0 1044 689 64 231 310 183 2793 0 62 40 290 1864 1037 548 10 288 1862 17 1413 861 2692 1223 708 1096 30 152 295 29 0 215 0 2609 1420 70 374 350 226 2297 0 68 412 1086 1878 3449 3184 308 1263 3727 95 3115 5073 4349 3198 2744 1594 36 426 384 269 0 186 7 1685 1060 38 129 332 114 1050 0 31 42 57 344 306 230 46 247 1148 187 560 226 814 5231 1072 1348 180 807 322 366 0 67 2 622 493 15 36 204 739 1362 0 3 5 0 58 0 15 29 50 204 161 299 0 938 7045 304 1024 650 1247 457 1077 0 0 2 74 1140 31 43 162 266 592 0 0 0 0 51 0 37 12 17 56 100 145 0 1228 2284 129 318 23 791 252 334 0 112 66 583 1304 298 381 109 1044 1226 0 110 0 32 515 488 609 134 465 727 287 19233 332 1830 71076 4717 26259 2585 149882 104751 67570 9 564243 64141 82306 99412 19922 44219 18165 17106 8087 456734 APPENDIX III Soil Suitability Ratings Table A18 Table A19 Soil unit suitability ratings for tree species Soil phase suitability ratings for tree species 107 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) SU AC ACf ACg ACh ACp ACu AL ALf ALg ALh ALj ALp ALu AN ANg ANh ANi ANm ANu ANz AR ARa ARb ARc ARg ARh ARl ARo AT ATa ATc ATf ATu CH CHg CHh CHk CHl CHw CL CLh CLl CLp CM CMc CMd CMe CMg CMi CMo CMu CMv CMx FL Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica IL H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera FAO '90 Soil Units SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL Input Level Table A18 FAO '90 SOIL UNIT RATINGS FOR TREE SPECIES IN BOREAL, TEMPERATE AND SUBTROPICAL CLIMATES SEQ Bi 1 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 001 4 4 4 4 4 4 6 6 2 2 2 2 2 2 2 4 2 2 2 6 2 2 2 2 2 2 6 6 6 2 2 6 6 2 2 6 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 002 4 4 4 4 4 4 4 4 6 6 6 6 4 4 6 4 6 2 6 6 2 2 2 6 6 6 4 4 4 6 4 4 4 4 6 4 2 2 6 6 6 6 6 2 2 2 2 2 2 2 2 2 003 4 4 4 4 4 4 6 6 6 4 6 6 6 6 2 2 6 4 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 004 4 4 4 4 4 4 6 6 2 2 2 2 6 6 2 4 2 2 2 6 2 2 2 2 2 2 6 6 6 2 2 6 6 2 2 6 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 005 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 6 6 6 6 6 6 6 6 006 4 4 4 4 4 4 6 6 2 2 2 2 6 6 2 4 2 2 2 6 2 2 2 2 2 2 6 6 6 2 2 6 6 2 2 6 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 007 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 4 3 3 3 2 3 3 3 3 2 3 6 6 6 3 2 2 2 2 3 6 1 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 008 2 2 2 2 2 2 6 6 6 6 6 6 6 6 2 4 6 2 6 6 2 2 2 6 6 6 4 4 4 6 4 4 4 4 6 6 2 2 6 6 6 6 6 2 2 2 2 2 2 2 2 2 009 2 6 6 3 6 6 2 2 6 4 6 6 6 6 2 2 6 4 4 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 4 4 3 3 4 4 4 4 4 2 3 2 6 2 2 3 2 2 010 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 4 3 3 3 2 3 3 3 3 2 3 6 6 6 3 2 6 6 2 3 6 3 3 3 3 3 3 3 1 1 1 1 1 1 3 3 3 011 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 2 4 4 4 4 4 4 4 4 4 4 6 6 6 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 4 4 012 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 013 1 1 1 1 1 1 6 6 2 2 2 2 6 6 1 4 2 2 2 2 2 2 2 2 2 2 6 6 6 2 2 6 6 2 2 6 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 014 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 015 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 016 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 017 6 6 6 6 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 018 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 019 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 4 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 020 4 6 6 4 6 6 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 4 4 4 021 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 6 2 2 2 4 2 2 2 2 2 2 2 2 2 2 4 3 2 6 6 6 6 6 2 3 2 2 2 3 6 2 2 022 6 2 2 6 2 2 6 6 6 6 6 6 6 6 2 4 6 2 6 6 6 2 2 6 4 6 6 6 6 6 6 6 6 6 6 4 3 2 6 6 6 6 6 2 3 2 2 2 3 6 2 2 023 2 3 3 2 3 3 2 2 2 2 2 2 2 2 3 4 2 2 2 2 6 2 2 2 4 2 2 2 2 2 2 2 2 2 2 4 3 2 6 6 6 6 6 2 3 2 2 2 3 6 2 2 024 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 6 2 2 2 4 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 2 2 2 2 2 2 6 6 2 025 2 6 6 2 6 6 6 6 6 4 6 6 6 6 2 2 6 4 4 6 4 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 026 2 3 3 2 3 3 2 2 2 2 2 2 2 2 3 4 2 2 2 2 6 2 2 2 4 2 2 2 2 2 2 2 2 2 2 4 3 2 6 6 6 6 6 2 3 2 2 2 2 6 2 2 027 3 1 1 3 1 1 2 2 2 2 2 2 2 2 3 4 3 3 3 3 2 3 3 3 4 2 2 2 2 2 2 2 2 2 2 4 3 3 6 6 6 6 6 3 3 3 3 3 3 2 3 3 028 4 4 4 4 4 4 4 4 6 6 6 6 4 4 6 4 6 2 6 4 6 2 2 6 4 6 6 6 6 6 6 6 6 4 6 4 2 6 4 4 4 4 4 2 2 2 2 2 2 6 2 2 029 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 031 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 032 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 6 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 033 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 034 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 035 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 2 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 036 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 037 6 6 6 6 6 6 6 6 6 6 6 6 6 6 2 4 2 2 2 2 6 6 6 2 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 2 4 2 038 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 4 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 6 6 4 4 4 4 4 2 2 2 2 2 2 6 6 6 039 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 040 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 041 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 042 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 043 6 2 2 6 2 2 6 6 6 6 6 6 6 6 6 4 2 2 2 2 2 2 2 2 6 2 2 2 2 2 2 2 2 2 2 6 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 044 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 045 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 4 4 4 4 4 4 4 2 3 3 3 3 3 3 6 3 046 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 047 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 048 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 2 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 049 2 6 6 2 6 6 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 050 2 2 2 2 2 2 6 6 6 6 6 6 6 6 2 4 6 6 6 4 6 6 6 6 6 6 4 4 4 6 6 6 6 4 6 6 2 2 6 6 6 6 6 2 2 2 2 2 2 2 2 2 051 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 6 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 3 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 052 6 4 4 6 4 4 6 6 6 6 6 6 6 6 6 4 6 6 6 6 4 4 4 6 4 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 053 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 054 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 4 1 1 4 4 4 4 4 1 1 1 4 1 1 1 1 1 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) SU FLc FLd FLe FLm FLs FLt FLu FR FRg FRh FRp FRr FRu FRx GL GLa GLd GLe GLi GLk GLm GLt GLu GR GRg GRh GY GYh GYk GYl GYp HS HSf HSi HSl HSs HSt KS KSh KSk KSl KSy LP LPd LPe LPi LPk LPm LPq LPu LV LVa LVf LVg Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica IL H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera FAO '90 Soil Units SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL Input Level Table A18 FAO '90 SOIL UNIT RATINGS FOR TREE SPECIES IN BOREAL, TEMPERATE AND SUBTROPICAL CLIMATES SEQ Bi 1 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 055 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 3 3 3 4 3 3 1 6 1 056 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 3 3 3 3 1 4 1 1 1 1 1 1 1 1 1 4 4 1 1 4 4 4 4 4 1 1 1 4 1 1 1 1 1 057 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 4 1 1 4 4 4 4 4 1 1 1 4 1 1 1 1 1 058 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 4 1 1 4 4 4 4 4 1 1 1 4 1 1 1 1 1 059 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 4 6 6 4 4 4 060 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 061 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 4 4 3 1 1 1 1 4 1 3 3 3 1 1 1 1 1 4 4 1 1 4 4 4 4 4 3 3 3 4 3 3 1 1 1 062 4 4 4 4 4 4 6 6 2 2 2 2 6 6 6 6 6 2 6 4 2 2 2 6 6 6 6 6 6 6 6 4 4 6 6 4 4 4 4 6 4 4 4 6 6 6 6 6 6 2 6 2 063 4 4 4 4 4 4 6 6 6 6 6 6 4 4 6 6 4 4 4 4 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 064 4 4 4 4 4 4 6 6 2 2 2 2 6 6 6 6 6 2 6 4 2 2 2 6 6 6 6 6 6 6 6 4 4 6 6 4 4 4 4 6 4 4 4 6 6 6 6 6 6 2 6 2 065 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 066 4 4 4 4 4 4 6 6 2 2 2 2 6 6 6 6 6 2 6 4 2 2 2 6 6 6 6 6 6 6 6 4 4 6 6 4 4 4 4 6 4 4 4 6 6 6 6 6 6 2 6 2 067 4 4 4 4 4 4 6 6 2 2 2 2 6 6 6 6 6 2 6 4 2 2 2 6 6 6 6 6 6 6 6 4 4 6 6 4 4 4 4 6 4 4 4 6 6 6 6 6 6 2 6 2 068 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 6 6 6 6 6 6 6 6 6 4 4 6 6 4 4 4 4 6 4 4 4 6 6 6 6 6 6 6 6 6 069 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 070 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 4 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 071 3 6 6 3 6 6 6 6 6 4 6 6 6 6 3 3 6 4 4 4 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 072 3 6 6 3 6 6 6 6 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 073 2 6 6 2 6 6 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 074 2 6 6 2 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 6 4 4 4 6 4 6 2 2 2 6 6 6 6 6 4 4 4 4 4 4 4 4 4 6 2 6 4 6 6 6 4 6 075 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 076 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 077 3 6 6 3 6 6 6 6 6 4 6 6 6 6 3 3 6 4 4 4 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 078 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 079 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 2 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 6 6 6 080 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 081 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 082 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 083 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 084 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 085 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 086 2 4 4 2 4 4 4 4 4 4 4 4 4 4 2 6 6 6 6 6 6 6 6 6 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 4 4 4 087 2 4 4 2 4 4 4 4 4 4 4 4 4 4 2 6 6 6 6 4 6 6 6 6 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 4 4 4 088 6 4 4 6 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 089 2 4 4 2 4 4 4 4 4 4 4 4 4 4 2 2 6 6 6 6 6 6 6 6 4 4 2 2 2 4 4 4 4 4 4 4 6 6 6 6 6 6 6 2 2 2 2 2 2 6 6 6 090 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 091 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 092 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 093 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 094 2 2 2 2 2 2 3 3 2 2 2 2 3 3 1 4 3 3 3 1 2 2 2 3 2 3 3 3 3 3 3 3 3 2 2 2 4 4 4 4 4 4 4 2 3 3 3 3 3 1 4 1 095 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 2 3 1 1 1 3 3 3 3 2 2 2 6 6 6 6 6 6 6 3 3 3 3 3 3 6 6 6 096 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 097 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 6 6 6 6 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 098 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 6 6 6 4 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 099 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 6 6 6 6 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 100 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 101 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 6 6 6 6 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 4 4 6 102 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 6 6 6 4 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 103 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 104 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 6 6 6 4 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 105 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 106 3 1 1 3 1 1 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 107 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 4 6 2 6 4 2 2 2 6 6 6 6 6 6 6 6 6 6 4 6 4 2 2 6 6 6 6 6 2 2 2 2 2 2 2 2 2 108 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 2 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) SU LVh LVj LVk LVv LVx LX LXa LXf LXg LXh LXj LXp NT NTh NTr NTu PD PDd PDe PDg PDi PDj PH PHc PHg PHh PHj PHl PL PLd PLe PLi PLm PLu PT PTa PTd PTe PTu PZ PZb PZc PZf PZg PZh PZi RG RGc RGd RGe RGi RGu RGy SC Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica IL H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera FAO '90 Soil Units SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL Input Level Table A18 FAO '90 SOIL UNIT RATINGS FOR TREE SPECIES IN BOREAL, TEMPERATE AND SUBTROPICAL CLIMATES SEQ Bi 1 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 109 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 110 2 6 6 2 6 6 2 2 6 4 6 6 6 6 3 6 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 4 4 4 111 3 2 2 3 2 2 1 1 1 1 1 1 1 1 1 4 1 1 1 1 2 2 2 1 2 1 1 1 1 1 1 1 1 1 2 2 6 6 4 4 4 4 4 2 3 3 3 3 3 1 6 1 112 2 6 6 2 6 6 2 2 6 6 6 6 2 2 2 4 6 6 6 6 4 4 4 6 4 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 113 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 114 1 1 1 1 1 1 3 3 3 3 3 3 3 3 1 4 1 1 1 1 1 1 1 1 3 1 3 3 3 1 1 1 1 3 3 3 1 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 115 3 1 1 3 1 1 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 2 3 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 116 4 4 4 4 4 4 6 6 6 6 6 6 6 6 4 4 6 2 6 4 2 2 2 6 6 6 4 4 4 6 6 6 6 4 6 4 2 2 6 6 6 6 6 2 2 2 2 2 2 2 2 2 117 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 2 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 118 1 1 1 1 1 1 3 3 3 3 3 3 3 3 1 4 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 2 2 3 3 3 1 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 119 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 6 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 4 2 2 4 4 4 120 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 121 4 4 4 4 4 4 3 3 1 1 1 1 3 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 122 4 4 4 4 4 4 3 3 1 1 1 1 3 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 123 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 4 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 124 4 4 4 4 4 4 3 3 1 1 1 1 3 3 1 6 1 1 1 3 1 1 1 1 3 1 3 3 3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 3 3 3 125 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 126 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 4 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 1 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 127 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 128 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 2 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 129 2 6 6 2 6 6 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 130 2 6 6 2 6 6 6 6 6 4 6 6 6 6 2 6 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 4 4 4 131 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 132 2 2 2 2 2 2 1 1 3 3 3 3 1 1 2 4 1 1 1 1 1 1 1 1 2 2 3 3 3 2 3 3 3 2 2 2 6 6 2 2 2 2 2 1 1 1 1 1 1 6 6 6 133 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 2 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 134 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 135 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 6 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 4 4 4 136 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 4 1 1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 1 137 2 6 6 2 6 6 6 6 6 6 6 6 6 6 2 4 6 6 6 6 6 6 6 6 4 2 2 2 2 6 6 6 6 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 138 2 6 6 2 6 6 6 6 6 6 6 6 6 6 2 4 6 6 6 6 6 6 6 6 4 2 2 2 2 6 6 6 6 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 139 2 6 6 2 6 6 2 2 6 6 6 6 6 6 2 4 6 6 6 6 6 6 6 6 4 2 2 2 2 6 6 6 6 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 140 6 4 4 6 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 141 2 6 6 2 6 6 6 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 6 6 4 2 2 2 2 6 6 6 6 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 142 2 6 6 2 6 6 6 6 6 6 6 6 6 6 2 4 6 6 6 6 6 6 6 6 4 2 2 2 2 6 6 6 6 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 143 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 145 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 146 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 147 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 148 2 3 3 2 3 3 2 2 2 2 2 2 2 2 2 4 2 3 2 6 2 3 3 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 149 2 3 3 2 3 3 2 2 2 2 2 2 2 2 2 4 2 3 2 6 2 3 3 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 150 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 4 2 3 2 6 2 3 3 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 151 2 6 6 2 6 6 4 4 6 6 6 6 4 4 6 4 6 2 6 4 4 2 2 6 4 6 4 4 4 6 4 4 4 4 4 4 6 6 6 6 6 6 6 2 2 2 2 2 2 6 6 6 152 2 6 6 2 6 6 6 6 4 4 4 4 4 4 2 2 6 4 4 4 4 6 6 6 4 6 6 6 6 6 4 6 6 6 4 4 4 4 4 4 4 4 4 6 2 6 4 6 6 6 4 4 153 2 3 3 2 3 3 2 2 2 2 2 2 2 2 2 4 2 3 2 6 2 3 3 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 154 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 155 1 1 1 1 1 1 3 3 3 3 3 3 3 3 1 4 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 3 1 3 3 3 1 3 1 1 156 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 4 4 4 4 4 4 4 2 3 2 2 2 3 3 4 1 157 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 4 1 1 1 3 3 1 1 1 2 1 1 1 1 1 1 3 3 1 1 2 1 3 1 1 1 1 1 3 1 3 3 3 1 3 1 1 158 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 4 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 3 1 3 3 3 1 3 1 1 159 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 160 1 1 1 1 1 1 2 2 3 3 3 3 2 2 1 4 1 1 1 3 3 1 1 1 2 1 3 3 3 1 3 3 3 3 2 2 1 3 2 2 2 2 2 3 1 3 3 3 1 3 1 1 161 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 162 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) SU SCg SCh SCl SCk SCm SCn SCy SN SNg SNh SNj SNk SNm SNy VR VRd VRe VRk VRy SEQ Bi 1 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 163 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 164 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 165 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 166 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 167 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 168 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 169 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 170 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 171 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 172 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 173 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 174 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 175 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 176 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 177 6 6 6 6 6 6 2 2 6 6 6 6 2 2 2 4 6 6 6 6 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 178 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 6 6 6 4 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 179 6 6 6 6 6 6 2 2 6 6 6 6 2 2 2 4 6 6 6 6 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 180 4 4 4 4 4 4 2 2 6 6 6 6 2 2 2 4 6 6 6 6 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 4 4 181 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L AC ACf ACg ACh ACp ACu AL ALf ALg ALh ALj ALp ALu AN ANg ANh ANi ANm ANu ANz AR ARa ARb ARc ARg ARh ARl ARo AT ATa ATc ATf ATu 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 4 4 4 4 4 4 2 6 2 2 2 4 2 1 3 1 6 1 3 4 2 6 2 6 2 2 2 4 1 1 1 1 1 4 4 4 4 4 4 2 6 6 2 6 4 2 1 6 1 6 1 3 4 2 2 2 2 6 2 2 4 1 1 1 1 1 4 4 4 4 4 4 2 6 6 2 6 4 2 1 6 1 6 1 3 4 2 2 2 2 6 2 2 4 1 1 1 1 1 4 4 4 4 4 4 2 6 2 2 2 4 2 1 3 1 6 1 3 4 2 6 2 6 2 2 2 4 1 1 1 1 1 4 4 4 4 4 4 2 6 6 2 6 4 2 1 6 1 6 1 3 4 2 2 2 2 6 2 2 4 1 1 1 1 1 4 4 4 4 4 4 2 6 6 2 6 4 2 1 6 1 6 1 3 4 2 2 2 2 6 2 2 4 1 1 1 1 1 6 4 6 6 4 6 2 6 2 2 2 4 6 1 2 1 4 1 2 4 6 6 6 6 6 6 6 4 1 1 1 2 2 6 4 6 6 4 6 2 6 2 2 2 4 6 1 2 1 4 1 2 4 6 6 6 6 6 6 6 4 1 1 1 2 2 2 6 4 2 4 2 2 6 6 2 6 4 2 1 6 1 4 1 3 4 6 6 6 6 4 6 6 6 1 1 1 1 1 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 4 1 3 4 6 6 6 6 4 6 6 6 1 1 1 1 1 2 6 4 2 4 2 2 6 6 2 6 4 2 1 6 1 4 1 3 4 6 6 6 6 4 6 6 6 1 1 1 1 1 2 6 4 2 4 2 2 6 6 2 6 4 2 1 6 1 4 1 3 4 6 6 6 6 4 6 6 6 1 1 1 1 1 6 4 4 6 4 6 2 6 6 2 6 4 6 1 2 1 4 1 2 4 6 6 6 6 4 6 6 4 1 1 1 2 2 6 4 4 6 4 6 2 6 6 2 6 4 6 1 2 1 4 1 2 4 6 6 6 6 4 6 6 4 1 1 1 2 2 6 6 6 6 4 6 3 2 2 3 2 4 3 1 3 1 6 1 1 4 2 6 3 2 2 3 3 6 1 1 1 1 1 6 6 6 6 4 6 3 2 2 3 2 4 3 1 3 1 6 1 1 4 2 6 3 2 2 3 3 6 1 1 1 1 1 6 6 4 6 4 6 2 6 4 2 4 4 2 1 4 1 4 1 1 4 2 6 2 2 4 2 3 4 1 1 1 1 1 2 6 4 2 4 2 3 6 4 3 4 4 3 1 4 1 4 1 1 4 2 6 3 3 4 2 3 6 1 1 1 1 1 6 6 6 6 4 6 2 6 6 2 4 4 2 1 6 1 4 1 1 4 2 6 2 2 6 2 3 4 1 1 1 1 1 4 4 4 4 4 4 2 6 6 2 4 4 6 1 6 1 4 1 1 4 2 6 2 2 6 2 3 4 1 1 1 3 1 2 6 6 2 4 2 3 6 6 3 4 4 3 1 6 1 4 1 1 4 6 4 2 2 4 6 2 4 1 1 1 1 1 2 6 6 2 4 2 3 6 6 3 4 4 3 1 6 1 4 1 1 4 2 6 3 3 6 2 3 6 1 1 1 1 1 2 6 6 2 4 2 3 6 6 3 4 4 3 1 6 1 4 1 1 4 2 6 3 3 6 2 3 6 1 1 1 1 1 6 6 6 6 4 6 2 6 6 2 4 4 2 1 6 1 4 1 1 4 2 6 2 2 6 2 3 4 1 1 1 1 1 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 4 1 3 4 4 4 4 4 4 4 4 4 1 1 1 1 1 2 6 6 2 4 2 2 6 6 2 4 4 2 1 6 1 4 1 3 4 2 6 2 2 6 2 2 6 1 1 1 1 1 6 4 6 6 4 6 6 4 6 6 6 4 6 1 3 1 4 3 2 4 2 6 2 2 2 2 2 6 1 1 1 1 1 6 4 6 6 4 6 6 4 6 6 6 4 6 1 3 1 4 3 2 4 2 6 2 2 2 2 2 6 1 1 1 1 1 6 4 6 6 4 6 6 4 6 6 6 4 6 1 3 1 4 3 2 4 2 6 2 2 2 2 2 6 1 1 1 1 1 2 6 6 2 4 2 2 6 6 2 4 4 2 1 6 1 4 1 3 4 2 6 2 2 6 2 2 6 1 1 1 1 1 2 4 6 2 4 2 2 4 6 2 4 4 2 1 6 1 4 1 3 4 2 6 2 2 6 2 2 6 1 1 1 1 1 6 4 6 6 4 6 6 4 6 6 4 4 6 1 6 1 4 1 3 4 2 6 2 2 6 2 2 6 1 1 1 1 1 6 4 6 6 4 6 6 4 6 6 4 4 6 1 6 1 4 1 3 4 2 6 2 2 6 2 2 6 1 1 1 1 1 2 4 6 2 4 2 2 4 6 2 4 4 2 1 6 1 4 1 3 4 2 6 2 2 6 2 2 4 1 1 1 1 1 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 4 1 3 4 2 6 2 2 4 2 2 6 1 1 1 1 1 6 6 4 6 4 6 6 6 4 6 4 4 6 1 4 1 4 1 3 4 4 4 4 4 4 4 4 4 1 1 1 1 1 2 6 6 2 6 2 2 6 6 2 6 4 3 1 6 1 2 1 3 4 3 3 3 4 6 3 3 2 1 1 1 1 1 2 6 6 2 6 2 2 6 6 2 6 4 3 1 6 1 6 1 3 4 2 2 2 4 6 2 2 6 1 1 1 1 1 Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis IL H H H H H H H H H H H H H H H H H H H Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii FAO '90 Soil Units Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica Input Level Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera Table A18 FAO '90 SOIL UNIT RATINGS FOR TREE SPECIES IN BOREAL, TEMPERATE AND SUBTROPICAL CLIMATES 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 4 1 3 4 6 6 6 4 4 6 6 4 1 1 1 1 1 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 4 1 3 4 6 6 6 4 4 6 6 4 1 1 1 1 1 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 6 1 3 4 6 6 6 4 4 6 6 4 1 1 1 1 1 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 6 1 3 4 6 6 6 4 4 6 6 4 1 1 1 1 1 2 6 4 2 4 2 2 6 4 2 4 4 2 1 4 1 4 1 3 4 6 6 6 4 4 6 6 4 1 1 1 1 1 2 6 2 2 6 2 3 6 6 3 6 4 3 1 2 1 6 1 3 4 2 2 2 6 6 2 3 2 1 1 1 1 1 2 6 3 2 6 2 3 6 2 3 2 4 3 1 3 1 4 1 3 4 3 3 3 2 2 3 3 2 1 1 1 1 1 2 6 2 2 6 2 3 6 6 3 6 4 3 1 2 1 4 1 3 4 2 2 2 2 6 2 3 2 1 1 1 1 1 2 6 6 2 6 2 3 6 4 3 4 4 3 1 6 1 4 1 3 4 2 2 2 2 4 2 3 2 1 1 1 1 1 2 6 2 2 6 2 3 6 6 3 6 4 3 1 2 1 4 1 3 4 2 2 2 2 6 2 3 2 1 1 1 1 1 2 6 2 2 6 2 3 6 6 3 6 4 3 1 2 1 4 1 3 4 3 3 3 2 6 3 3 2 1 1 1 1 1 2 6 2 2 6 2 2 6 2 2 4 4 3 1 2 1 4 1 3 4 6 6 6 6 6 6 6 6 1 1 1 1 1 2 6 6 2 6 2 2 6 6 2 4 4 3 1 6 1 4 1 3 4 2 2 2 6 6 2 2 6 1 1 1 1 1 2 6 6 2 6 2 2 6 6 2 4 4 3 1 6 1 4 1 3 4 2 2 2 2 6 2 2 6 1 1 1 1 1 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) SU CH CHg CHh CHk CHl CHw CL CLh CLl CLp CM CMc CMd CMe CMg CMi CMo CMu CMv CMx FL FLc FLd FLe FLm FLs FLt FLu FR FRg FRh FRp FRr FRu FRx GL GLa GLd GLe GLi GLk GLm GLt GLu GR GRg GRh GY GYh GYk GYl GYp HS HSf Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica IL L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera FAO '90 Soil Units SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL Input Level Table A18 FAO '90 SOIL UNIT RATINGS FOR TREE SPECIES IN BOREAL, TEMPERATE AND SUBTROPICAL CLIMATES SEQ Bi 1 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 034 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 035 3 6 6 3 6 6 2 2 6 4 6 6 6 6 2 2 4 4 6 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 2 6 6 036 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 037 6 6 6 6 6 6 6 6 6 6 6 6 6 6 2 2 6 6 6 6 6 6 6 6 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 2 4 2 038 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 6 6 4 4 4 4 4 2 2 2 2 2 2 6 6 6 039 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 040 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 041 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 042 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 043 2 2 2 2 2 2 6 6 6 6 6 6 6 6 6 6 2 2 2 2 2 2 2 2 6 2 2 2 2 2 2 2 2 2 2 6 4 4 4 4 4 4 4 6 2 2 2 2 2 2 4 2 044 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 045 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 4 4 4 4 4 4 4 2 3 3 3 3 3 1 6 1 046 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 047 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 048 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 049 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 050 2 2 2 2 2 2 6 6 6 6 6 6 6 6 2 2 6 6 6 4 6 6 6 6 6 6 4 4 4 6 6 6 6 4 6 6 6 6 6 6 6 6 6 2 2 2 2 2 2 6 6 6 051 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 052 6 4 4 6 4 4 2 2 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 6 4 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 053 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 054 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 4 1 1 4 4 4 4 4 1 1 1 4 1 1 1 1 1 055 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 4 4 1 3 3 3 1 4 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 3 1 1 4 1 1 1 6 1 056 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 4 4 3 3 3 3 1 4 3 3 3 3 3 3 3 3 3 4 4 3 3 4 4 4 4 4 3 3 3 4 3 3 3 3 3 057 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 4 1 1 4 4 4 4 4 1 1 1 4 1 1 1 1 1 058 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 4 4 1 1 1 1 1 4 3 3 3 3 3 3 3 3 3 4 4 3 3 4 4 4 4 4 3 3 3 4 3 3 3 3 3 059 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 4 6 6 4 4 4 060 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 061 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 4 4 3 3 3 3 3 4 3 2 2 2 3 3 3 3 3 4 4 3 3 4 4 4 4 4 3 3 3 4 3 3 3 3 3 062 4 4 4 4 4 4 6 6 2 2 2 2 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 2 4 2 063 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 6 4 4 064 4 4 4 4 4 4 6 6 2 2 2 2 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 2 4 2 065 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 066 4 4 4 4 4 4 6 6 2 2 2 2 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 2 4 2 067 4 4 4 4 4 4 6 6 2 2 2 2 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 2 4 2 068 4 4 4 4 4 4 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 6 4 6 069 2 4 4 2 4 4 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 070 2 4 4 2 4 4 2 2 6 4 6 6 6 6 3 3 6 4 4 4 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 071 6 4 4 6 4 4 6 6 6 4 6 6 6 6 2 2 6 4 4 4 6 6 6 6 4 6 6 6 6 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 072 2 4 4 2 4 4 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 073 6 4 4 6 4 4 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 074 2 4 4 2 4 4 2 2 6 4 6 6 6 6 3 3 6 4 4 6 4 4 4 6 4 6 2 2 2 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 6 6 4 6 6 6 4 6 075 2 4 4 2 4 4 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 076 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 077 2 4 4 2 4 4 6 6 6 4 6 6 6 6 2 2 6 4 4 4 4 4 4 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 6 6 6 078 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 079 2 6 6 2 6 6 6 6 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 2 6 6 080 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 081 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 082 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 083 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 084 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 085 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 086 2 4 4 2 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 4 4 4 087 2 4 4 2 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 4 4 4 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) SU HSi HSl HSs HSt KS KSh KSk KSl KSy LP LPd LPe LPi LPk LPm LPq LPu LV LVa LVf LVg LVh LVj LVk LVv LVx LX LXa LXf LXg LXh LXj LXp NT NTh NTr NTu PD PDd PDe PDg PDi PDj PH PHc PHg PHh PHj PHl PL PLd PLe PLi PLm Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica IL L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera FAO '90 Soil Units SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL Input Level Table A18 FAO '90 SOIL UNIT RATINGS FOR TREE SPECIES IN BOREAL, TEMPERATE AND SUBTROPICAL CLIMATES SEQ Bi 1 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 088 6 4 4 6 4 4 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 6 6 4 6 4 4 4 4 4 4 4 4 089 3 4 4 3 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 6 6 6 6 6 3 3 3 3 3 3 6 6 6 090 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 091 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 092 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 093 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 094 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 3 3 3 1 6 6 6 3 2 2 3 3 3 2 2 2 2 2 2 2 4 4 4 4 4 4 4 2 3 3 3 3 3 1 4 1 095 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 3 3 3 2 2 2 2 2 2 2 6 6 4 4 4 4 4 3 3 3 3 3 3 6 6 6 096 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 097 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 6 6 6 4 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 098 6 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 4 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 099 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 100 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 101 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 6 6 6 6 4 4 4 6 4 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 4 4 6 102 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 6 6 6 4 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 103 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 104 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 6 6 6 4 6 6 6 6 4 6 6 6 6 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 6 105 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 106 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 107 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 2 6 4 2 2 2 6 6 6 4 4 4 6 6 6 6 4 6 6 6 6 6 6 6 6 6 2 2 2 2 2 2 6 6 6 108 3 6 6 3 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 109 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 110 2 6 6 2 6 6 2 2 6 4 6 6 6 6 3 3 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 4 4 4 111 2 2 2 2 2 2 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 6 6 4 4 4 4 4 6 2 2 2 2 2 1 6 1 112 6 6 6 6 6 6 6 6 6 6 6 6 6 6 2 2 6 6 6 6 4 4 4 6 4 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 113 1 1 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 114 3 3 3 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 3 3 3 3 2 2 2 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 115 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 116 4 4 4 4 4 4 4 4 6 6 6 6 4 4 4 4 6 2 6 4 2 2 2 6 6 6 4 4 4 6 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 117 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 2 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 4 4 6 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 2 6 6 118 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 3 3 2 2 3 2 2 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 119 2 6 6 2 6 6 2 2 6 44 6 6 6 6 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 6 6 6 4 4 4 120 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 121 4 4 4 4 4 4 3 3 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 122 4 4 4 4 4 4 3 3 1 1 1 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 123 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 124 4 4 4 4 4 4 2 2 2 2 2 2 2 2 3 3 3 3 3 2 3 3 3 3 2 3 2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 125 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 126 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 1 3 2 1 1 1 3 2 3 2 2 2 3 3 2 2 3 2 2 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 127 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 128 2 6 6 2 6 6 2 2 6 4 6 6 6 6 3 3 6 4 4 6 6 6 6 6 4 6 2 2 2 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 2 6 6 129 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 130 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 6 6 4 4 4 4 4 6 2 6 4 6 6 4 4 4 131 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 132 2 2 2 2 2 2 1 1 3 3 3 3 1 1 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 2 2 2 4 4 2 2 2 2 2 2 1 1 1 1 1 4 4 4 133 3 6 6 3 6 6 2 2 6 4 6 6 6 6 2 2 6 4 4 6 6 6 6 6 4 6 3 3 3 6 6 6 6 6 4 4 6 6 4 4 4 4 4 2 3 2 6 2 2 6 6 6 134 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 135 2 6 6 2 6 6 2 2 6 4 6 6 6 6 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 2 6 4 6 6 4 4 4 136 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 1 137 2 6 6 2 6 6 6 6 6 4 6 6 6 6 2 2 4 4 4 4 4 4 4 4 6 2 2 2 2 2 4 4 4 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 138 2 6 6 2 6 6 6 6 6 4 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 6 6 6 6 4 4 4 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 6 139 2 6 6 2 6 6 6 6 6 4 6 6 6 6 2 2 4 4 4 4 4 4 4 4 6 2 2 2 2 2 4 4 4 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 140 6 4 4 6 4 4 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 6 6 4 6 4 4 4 4 4 4 4 4 141 2 6 6 2 6 6 6 6 6 4 6 6 6 6 2 2 4 4 4 4 4 4 4 4 6 2 2 2 2 2 4 4 4 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) SU PLu PT PTa PTd PTe PTu PZ PZb PZc PZf PZg PZh PZi RG RGc RGd RGe RGi RGu RGy SC SCg SCh SCl SCk SCm SCn SCy SN SNg SNh SNj SNk SNm SNy VR VRd VRe VRk VRy Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica IL L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera FAO '90 Soil Units SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL SL Input Level Table A18 FAO '90 SOIL UNIT RATINGS FOR TREE SPECIES IN BOREAL, TEMPERATE AND SUBTROPICAL CLIMATES SEQ Bi 1 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 142 2 6 6 2 6 6 4 4 6 4 6 6 4 4 2 2 4 4 4 4 4 4 4 4 6 6 6 6 6 6 4 4 4 6 6 4 6 6 6 6 6 6 6 2 2 6 4 6 6 6 6 2 143 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 145 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 146 4 4 4 4 4 4 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 147 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 148 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 2 2 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 149 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 6 2 3 3 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 150 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 6 6 3 3 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 151 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 6 2 6 4 6 2 2 6 4 6 4 4 4 6 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 152 6 4 4 6 4 4 2 2 6 4 6 6 6 6 2 2 6 4 4 4 4 6 6 6 4 6 6 6 6 6 4 4 4 6 4 4 4 4 4 4 4 4 4 6 2 6 4 6 6 6 4 4 153 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 6 2 2 2 6 2 6 6 6 2 2 6 6 2 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 154 6 4 4 6 4 4 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 6 6 4 4 4 4 4 4 4 4 155 1 1 1 1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 3 3 1 1 2 1 3 1 1 1 1 1 3 1 3 3 3 1 3 1 1 156 2 2 2 2 2 2 3 3 2 2 2 2 3 3 3 3 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 3 3 1 2 2 4 4 4 4 4 4 4 6 2 2 2 2 2 3 4 1 157 2 3 3 2 3 3 2 2 2 2 2 2 2 2 3 3 3 3 3 2 2 3 3 3 2 3 2 2 2 3 3 2 2 3 2 2 3 2 2 2 2 2 2 2 3 2 2 2 3 2 3 3 158 3 1 1 3 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 3 1 3 3 3 1 3 1 1 159 6 6 6 6 6 6 4 4 4 4 4 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 6 4 4 6 6 4 6 4 4 4 4 4 4 4 4 160 2 3 3 2 3 3 2 2 2 2 2 2 2 2 3 3 3 3 3 2 2 3 3 3 2 3 2 2 2 3 3 2 2 3 2 2 3 2 2 2 2 2 2 2 3 2 2 2 3 2 3 3 161 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 162 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 163 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 164 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 165 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 166 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 167 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 168 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 169 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 170 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 171 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 172 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 173 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 174 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 175 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 176 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 177 6 4 4 6 4 4 2 2 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 178 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 179 6 4 4 6 4 4 2 2 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 4 4 180 4 4 4 4 4 4 2 2 6 6 6 6 2 2 6 6 6 6 6 6 4 4 4 6 4 6 6 6 6 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 4 4 181 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH IL H H H H H H H H H H H H H H H H H H H SP Anthraquic Duripan Fragipan Gelundic Gigai Inundic Lithic Petroferric Phreatic Placic Rudic Salic Skelectic Sodic Takyric Yermic Desert Gobi Cultivation SEQ Bi 1 001 1 002 1 003 1 004 2 005 1 006 1 007 2 008 3 009 1 010 3 011 3 012 4 013 3 014 4 015 4 016 4 017 4 018 4 019 1 PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH PH L L L L L L L L L L L L L L L L H H H Anthraquic Duripan Fragipan Gelundic Gigai Inundic Lithic Petroferric Phreatic Placic Rudic Salic Skelectic Sodic Takyric Yermic Desert Gobi Cultivation 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 3 3 1 2 3 1 2 3 1 3 3 4 3 4 4 4 4 4 1 Fir Abies alba Abies sibirica Cunninghamia lanceolata Pine Pinus sibirica Pinus sylvestris Pinus tabulaeformis Pinus massoniana Pinus yunnanensis Pinus koreaiensis Spruce Picea abies Picea asperata Picea ajanensis Picea obovata Picea koreaiensis Black locust Chestnut Wallnut Larch Larix gmelinii Larix sibirica Alder Lime Maple Acer plantanoides Acer campestre Acer campbelii Beech Hornbeam Ash Fraxinus excelsior Fraxinus mandshurica Oak Quercus robur Quercus petraeea Quercus rubra Quercus lanuginosa Quercus cerris Quercus acutissima Quercus variablis Quercus mongolica Willow Salix alba Salix viminalis (plantation) Poplar Populus nigra Populus euramericana Polpulus alba Populus tremula Populus balsamiferas Populus maximowiczii Populus tomentosa Populus euphraetica Birch Betula pubescens Betula pendula Betula verrucosa Betula tortuosa Betula Platypphylla Betula papyrifera FAO '90 Soil Phases Input Level Table A19 FAO '90 SOIL PHASE RATINGS FOR BOREAL, TEMPERATE AND SUBTROPICAL TREE SPECIES 2 3 4 5 6 Po 1 2 3 4 5 6 7 8 Wi 1 2 Oa 1 2 3 4 5 6 7 8 Be Ho As 1 2 Al Li Ma 1 2 3 Bl Ch Wa La 1 2 Sp 1 2 3 4 5 Pi 1 2 3 4 5 6 Fi 1 2 3 1 3 1 2 1 3 6 2 1 2 2 4 2 4 4 4 4 4 1 1 3 1 2 1 3 6 2 1 2 2 4 2 4 4 4 4 4 1 1 1 1 2 1 1 2 3 1 3 3 4 3 4 4 4 4 4 1 1 3 1 6 1 3 6 2 1 2 2 4 2 4 4 4 4 4 1 1 3 1 6 1 3 6 2 1 2 2 4 2 4 4 4 4 4 1 1 2 3 6 1 1 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 6 1 1 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 6 1 1 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 2 1 2 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 6 1 1 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 6 1 1 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 6 1 3 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 6 1 3 4 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 2 1 1 6 2 1 3 2 4 2 4 4 4 4 4 1 1 3 3 4 3 1 4 2 1 3 2 6 6 6 4 4 4 4 1 1 3 3 4 1 3 6 2 1 2 2 4 2 4 4 4 4 4 1 1 3 3 4 1 4 6 6 1 6 2 4 2 4 4 4 4 4 1 1 6 2 4 1 4 4 4 1 6 6 4 6 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 6 4 6 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 1 1 4 1 1 6 2 1 3 2 4 2 4 4 4 4 4 1 1 1 1 4 1 1 6 2 1 3 2 4 2 4 4 4 4 4 1 1 1 1 4 1 1 6 2 1 3 2 4 2 4 4 4 4 4 1 1 2 2 4 1 4 4 6 3 6 6 4 6 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 4 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 2 3 6 1 2 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 6 1 4 6 6 1 6 2 4 6 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 6 4 6 4 4 4 4 4 1 1 1 1 2 1 1 2 2 1 3 3 4 3 4 4 4 4 4 1 1 3 1 2 1 1 6 6 1 3 2 4 2 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 6 4 6 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 6 4 6 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 6 4 6 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 6 4 6 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 6 4 6 4 4 4 4 4 1 1 3 1 2 1 1 6 6 1 3 2 4 2 4 4 4 4 4 1 1 3 1 2 1 1 6 6 1 3 2 6 3 6 4 4 4 4 1 1 3 1 4 1 2 6 6 1 2 2 4 2 4 4 4 4 4 1 1 3 1 4 1 6 6 6 1 6 2 4 2 4 4 4 4 4 1 1 3 1 4 1 2 6 6 1 2 2 4 2 4 4 4 4 4 1 1 3 1 6 1 2 6 6 1 2 2 4 2 4 4 4 4 4 1 1 2 2 4 1 4 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 2 6 1 4 4 6 1 6 2 4 2 4 4 4 4 4 1 1 3 3 4 1 4 6 2 1 6 2 4 2 4 2 2 3 2 3 3 6 2 1 2 2 4 2 4 4 4 4 4 1 2 2 3 2 3 3 6 2 1 2 2 4 2 4 4 4 4 4 1 3 3 1 2 3 1 2 3 1 3 3 4 3 4 4 4 4 4 1 2 2 3 6 3 3 6 2 1 2 2 4 2 4 4 4 4 4 1 2 2 3 6 3 3 6 2 1 2 2 4 2 4 4 4 4 4 1 3 6 2 6 3 1 4 6 1 6 2 4 2 4 4 4 4 4 1 3 6 2 6 3 1 4 6 1 6 2 4 2 4 4 4 4 4 1 2 6 2 6 3 1 4 6 1 6 2 4 2 4 4 4 4 4 1 6 6 2 2 3 2 4 6 1 6 2 4 2 4 4 4 4 4 1 2 6 2 6 3 1 4 6 1 6 2 4 2 4 4 4 4 4 1 2 6 2 6 3 1 4 6 1 6 2 4 2 4 4 4 4 4 1 2 6 2 6 3 3 4 6 1 6 2 4 2 4 4 4 4 4 1 2 6 2 6 3 3 4 6 1 6 2 4 2 4 4 4 4 4 1 1 2 2 2 3 1 6 2 1 3 2 4 2 4 4 4 4 4 1 1 2 2 2 3 1 6 2 1 3 2 4 2 4 4 4 4 4 1 2 2 2 4 3 3 6 2 1 2 2 4 2 4 4 4 4 4 1 6 2 2 4 3 4 6 6 3 6 2 4 2 4 4 4 4 4 1 6 4 6 4 3 4 4 4 3 6 6 4 6 4 4 4 4 4 1 2 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 4 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 3 3 3 4 3 1 6 2 1 3 2 4 2 4 4 4 4 4 1 3 3 3 4 3 1 6 2 1 3 2 4 2 4 4 4 4 4 1 3 3 3 4 3 1 6 2 1 3 2 4 2 4 4 4 4 4 1 6 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 6 2 2 4 3 2 6 6 1 6 2 4 2 4 4 4 4 4 1 6 6 2 6 3 2 6 6 3 6 2 4 2 4 4 4 4 4 1 4 2 2 6 3 4 6 6 3 6 2 4 6 4 4 4 4 4 1 4 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 3 3 1 2 3 1 2 2 1 3 3 4 3 4 4 4 4 4 1 2 2 3 2 3 1 6 6 1 3 2 4 2 4 4 4 4 4 1 4 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 4 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 4 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 4 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 4 6 6 4 3 4 4 6 3 6 6 4 6 4 4 4 4 4 1 2 2 3 2 3 1 6 6 1 3 2 4 2 4 4 4 4 4 1 3 2 3 2 3 1 6 6 1 3 2 6 3 6 4 4 4 4 1 6 2 3 4 3 2 6 6 1 2 2 4 2 4 4 4 4 4 1 6 2 3 4 3 6 6 6 1 6 2 4 2 4 4 4 4 4 1 6 2 3 4 3 2 6 6 1 2 2 4 2 4 4 4 4 4 1 6 2 3 6 3 2 6 6 1 2 2 4 2 4 4 4 4 4 1 6 6 6 4 3 4 4 6 1 6 2 4 2 4 4 4 4 4 1 6 6 6 6 3 4 4 6 1 6 2 4 2 4 4 4 4 4 1 4 2 2 4 3 4 6 2 1 6 2 4 2 4 4 4 4 4 1 4 4 4 4 1
© Copyright 2026 Paperzz