Critical Thinking Works - College of Education

Critical Thinking Works
Smart Resources for Forward-Thinking Schools
Skip to content





Home
Mission & Values
Shop
 Products
 Cart
 Checkout
 Checkout → Pay
 Order Received
 Transaction Results
 My Account
 Change Password
 Edit My Address
 View Order
Bookstore
Resources
 Text Complexity Analysis Tools
 On Line Anthologies
 Resources for Ed Reform
Planning Text Dependent Questions
Posted on September 17, 2012 by Julie
Embedded within the Common Core’s instructional shifts for literacy,
which focus educators on building coherent knowledge, demanding text
evidence, and working with sufficiently complex texts, is an emphasis on
close reading and text-dependent questions. So what are text-dependent
questions, and how can teachers develop them?
What are Text-Dependent Questions?
Text-dependent questions direct students’ inquiry into the text, rather
than outside of it, and can only be answered with evidence from
the text.
Text-dependent
questions can be used to check students’ understanding, but a strong
text-dependent question does not invite students merely to participate in
a scavenger hunt. That is to say, text-dependent questions are not lowlevel, nor do they prompt students to produce literal or recall
answers. A strong text-dependent question should invite students to
interpret theme, analyze syntax and text structure, support
students’ understanding of vocabulary, and analyze the effects
of specific word choice.
Start with a High-Quality Text
To explore text-dependent questions, we use Kate Chopin’s “Story of an
Hour,” which is a text suitable for the 9-10 grade band of text complexity.
The process of developing text-dependent questions begins with reading
the text and [Step 1] identifying the central ideas and core
understandings that you want your students to develop. In this case,
“The Story of an Hour” presents marriage as potentially repressive,
limiting to a woman’s self-assertion and freedom, and core
understandings relate to the text’s theme, tone, and irony.
With central ideas and core understandings identified, [Step 2] begin
planning your summative assessment, as your questions will scaffold
students’ inquiry into the text. A high-quality summative assessment will
involve writing and should allow students individually to demonstrate
mastery of one or more of the standards.
Next, [Step 3] target vocabulary and text structure. We have published
a vocabulary list for “The Story of an Hour” on Visual Thesaurus. This
short text contains thirty nine “Tier 2″ words that might be unfamiliar to
students; rather than see dense vocabulary as a deterrent to reading the
text with a class, text-dependent questions will specifically target words
that might otherwise be a barrier to their comprehension. As a last step
in planning text-dependent questions, [Step 4] identify what makes the
text difficult. “The Story of an Hour” is a difficult text because its central
message hinges on the reader picking up on the author’s tone, which is
ironic. Additionally, that tone is revealed through imagery and
symbolism rather than a more straightforward means.
For “The Story of an Hour,” we have developed approximately thirty
text-dependent questions which support close reading of this short text
over four or more days, examples of which follow:


Assess Vocabulary (Denotation & Connotation): “But she saw
beyond that bitter moment a long procession of years to come…”
What is a procession? What other words do you associate with
procession?
Analyze Semantic Choices: How would the meaning of this
sentence change if the author had chosen “line of years” instead of
the word “procession”?
 Analyze Syntax: The story says Mrs. Mallard “had loved him—
sometimes. Often she had not.” What is the effect of including the
word “sometimes” at the end of this sentence?
 Analyze Text Structure: Why does the author introduce Mrs.
Mallard’s first name more than 2/3 into the story?
 Analyze Theme: What is the “crime” that Mrs. Mallard perceives in
her “brief moment of illumination”? What is the effect of describing
this as an epiphany?
With text-dependent questions articulated, the next step in planning is to
group questions [Step 5] to structure coherent instruction. Rather than
present them randomly, teachers can sequence text-dependent questions
to help students gradually unfold their understanding and perform
rigorous analysis, learning to stay focused inside of the text to construct
meaning.
Any good instructional planning begins and ends with standards. Before
finalizing the summative assessment, [Step 6] step back to review the
standards being addressed in the series of text-dependent questions to
determine if any other standards should become a focus for the text.
Important tip: When you are working
with text-dependent questions to establish rigorous classroom discourse
and providing students with routine writing tasks to support
comprehension and analysis, you are activating most of the standards for
Reading, Writing, and Speaking & Listening most of the time.
Last, but not least, [Step 7] finalize your summative assessment,
ensuring that the culminating activity fully aligns with the textdependent questions and focus standards that you have identified.
Non Text-Dependent Questions
It is also useful to look at a series of non-text-dependent questions, all
gleaned from available study guides:
Non Text-Dependent Questions
What’s Wrong with This Q
“The Story of an Hour” is considered an important work of feminist
fiction. What important changes in women’s roles have happened from
This is an evaluative question which drives students o
the 19th Century to today.
their answers based upon historical research as well
Discuss what society expected of the typical nineteenth-century American
woman.
This is a research question and does not require stude
This question takes students entirely outside of the tex
Have you ever felt guilty for getting some benefit or happiness from the
personal experience. This is, however, a potentially g
misfortune of another person?
students in reading the text.
Would you recommend this story to a friend? Why or why not?
This is an evaluative question and does not contribute
Do you find the characters likeable? Would you want to meet the
This question takes students entirely outside of the tex
characters?
their analysis of the text.
Did the author, Kate Chopin, face problems similar to those of Mrs.
Mallard?
This question is biographical; the answer is not suppo
How do you think Mr. Mallard would feel if he knew what his wife felt?
This is a speculative question and cannot be answere
The simple but important distinction we can see here is that textdependent questions focus students to think to analytically about the text
itself, highlighting and probing various pieces of text evidence that might
be useful in developing an understanding – and ultimately a claim –
about a particular text. Non text-dependent questions, on the other
hand, allow students to speculate about questions for which there may be
no substantial text evidence or draw taved by Windows Internet Explorer
8" Subject: Planning Text-Dependent Questions Date: Thu, 22 Aug 2013
13:12:00 -0500 MIME-Version: 1.0 Content-Type: multipart/related;
type="multipart/alternative"; boundary="---=_NextPart_000_0000_01CE9F39.2FDD2F20" X-MimeOLE:
Produced By Microsoft MimeOLE V6.1.7601.17609 This is a multi-part
message in MIME format. -----=_NextPart_000_0000_01CE9F39.2FDD2F20 Content-Type:
image/png Content-Transfer-Encoding: base64 Content-Location:
http://criticalthinkingworks.com/wpcontent/uploads/2012/08/cropped-CS_1011.png
iVBORw0KGgoAAAANSUhEUgAAA6wAAADGCAYAAADWvA3lAAAgA
ElEQVR4nOy9WZMtyZGY97lH5jmn
trv37X3vHmCwD4bgouFm0tBMoiQzvdBM+jf6L3qRmfTCB4kcihyOjKT
MyKGGMxAGazd6utH7cvdb
VedkhrsePCIz8lTdIQkCMsGsC+hbp/JkRnq4e/geHvLaCy+5i2BJcAAMR
ehMEVMA6DKmI7vdlt0I
nVzht6+8yu/f/gbfu/YqN9MJyRJnu0x2hySM4oySISWSKOvsSDZ2Alkd
VUcQ3DT+E8q1jOeMZ+jT
ioPVAZvNBvfM6dkj3n/4Ee+efsz3H73LT88+5t3tZ5z6GbBjI0qH4KK4d
KBKEkUBzHEHF6H+PB7O
GGzLb528xO/f+h5/48o3eHF1GxG464/AIYliQsENqENyQ0i4rhjdyDnef
dSvWWvi491d/ujuD/hH
n/8JP3r0Dre6E/7+7e/xXz3117nV36KTxOn4kOwjnXQgikvAV18UcDoBb
b0IuMQ1FxDHVUAEd8Nz
DhglaKmaONAjHOfO+Bl/fP+H/MFn/44fPvoAQVknIelA50KyHkfIYuSC
IgHEgYIzmSFZfK4fRMB9
/k4q3vySZ+rP3sX5z3rR924WBJ+vSuGjciFr3NZnIRkYznkauZPO+dr2af
77+9/kvzv7Ci/aVYQV
d9kxMNLhqMv0Dp8+1TfHW5+Ig4uQXXpve0+L1Try/vcXn7kMjvr9Zd/
SzCW+rWPtABPnkMShJzo6
fqaf879e+QH/8OSH/ELuYjgHumJjCWzAANPgWZn4s9BdwN0X75yRIc
u/m5vqs/tf1Q/td3X8/XGd
4FUXLr6njONYzF2URKIbQyYNSdl2yplknjfnb+aev0vHiyqsRLiHsHOhp
51DQ2eRgKuZo3vQsgXG
J/qClPtnuCv9yn3tRLxck1YazHw/4V0Ecceb3/jMWS5B+eSgLrgrI5A1s1b
jqsMXbvyRjPwLd941
OCOzlh0rcUQSTs8oirkhjPQ4KkJGyR7vlUqXQts6j326THS/wCzLdXPhi
/9Intl7tPz2CfeIMLjz
MDvPp46/d7jhvzlZ8ztHHUcJHgxOzrB2SBqy2URjJXmeaCGil81ymom7
T7zS0rIh88QXl/1UuBcy
YxozLrf8uZQpzXuaZ8QrXxS6OWQs6KeCAskENUEFuk751Iw/eLDlH94
/5U/HUx5I5kASR5IQi/mZ
O66ABk9rtglvk1z999D/MixM/P6E75+Mt32emfXLEq/E77L+JrxKxtx4u
FN6lJePhP/8Vsc/eOaA
75woO9/xeMwIHSAYhoqTGrideU3sywspz9R1P/GHO26OklEFk55eOjaa
+WTI/OF94X/5eMe//vSU
Zzr4H1445L997pDXT3o6Mg/OtozuqAevJwSSgDrqjjnsRMgI6tBLYqXK
qnMejgP/7NMt/9MHA//m
gXLflJOUudo5ZsroCm6IZkQdcUU9sfOOc4RsQAYV4zAZt9cDv3UI37uS
+N1ra75+vObqSgHHLLM1
5zw7owsiTpc85ImDWgr5I2X9FXtVsiEWuBYMx8guGIlOhbU6vcDnW+
OPHzj/8PPMH94f+IvTzIl0
XFNBPeBHNfCdBUiIdIg4eCaTMTEkOYKiY4+YIimD5LIWlzxD5buG5X
55fi/au9GvOHhyQAFFyJjv
eHTmDLuOZ44Tf/0V4R98d+D3vrrj2gm49YzbDX/288T//G+Nf/rWyO
fnRnZj0wmpS5AS5iNuA0qH
eI+bAIYmA7Hyd2MnXSKzfnVr9d+Dp0Yn/Orx/iXs/3+CvRPVoujKYnD
DJZxKNASpuMLQsRIlp5FH
9oi3zt7n6hcbTuSAv3L9iJvdMWPekX0kq2OSEcuIAepkL4aSBqNrdjDHx
HANBSooah3iiktmtC33
hy0PvaOXFStZ88LxS9w+eoqnr9zixYcf8CcP3uLn5x/xwdmn3BvPWSkc
dQf0ArgyujA6JDoSkGwA
AUsJOiXvnAf5lI/Ge9wdH/Fcd4ONruiLqnEPhWYCIhafi/D30RCMLkQ
Fp2WBX9UrfPPwFe6ePOD0
/CHneYfnGMeL8PELpJCJuLMhVUjrXgwZLRwQFDWL71AJByIxCXhx
0EwIWRUOVwdcXR9zlDZ0KJlw
VkQMdwUDRAtceea2qlT9ojMwwVgYrGX2BfPX7xsmnA3tPQZ1imiWoo
C83BcDCRXGgB28OMlhLKoN
wAiuID3qHe7CyDmfdaf8cHOXr48PuLk75IqtOAYeiHJejIuV7xkvE01ms
4Zq3FENjpmajfs0OSj1
+9adZHqyGLvlWmtmzj+OLP6W5pM371l+d/HudkSf7LIKtTr0rnSuJFd
UGwe8GFHqhQY+O0DxffPZ
C9oafpH6ZSvRKt0vEWqL+8uY7fgtIzllELl8rhNASMg0BzGLNSRCVmF
MQnbAYI2yIWFi7MQwT4Wf
q5wqtGtgE2koUSZ1UehKs0YKrSsCFsaOxNjN+qrI8oIcKX9Pa0dkiSNpg
Gs4rOJUkEkWTbJXQFRw
sXBIPXiijqOEzJjmXiJs4jHGBHdDv4m2CzrEADPsLHii+TXP4D+IZ7xO
biFfF2t0+iWFEWawyhTo
oLgd4fSbgoWoQb3gYOJ3nzV2w/BLFpUyvixoteDXKcAxDxD3zhOf5Uah
aYOIOvY83Lwe5iBieW4K
QAYNlHAyq65TjYc8UxwtpyPRk9jayOe25S/ywAfZ2A7GRjKbXhEtAcMs
JBfMQv90Dp0LI0ou8GqL
oD2cLXSCN9dhwdbt9UpOaMjgy7Gn9TW9tsjlad3tyf0G3SZOFmcUZy3
K9S7xTN9xVGWkG4aBhkPj
VgctIUIH2oBGs15j+TvYJTqWCGYbjpnhkumUsKnU2ZqTEF7YHPLtY/g
b15UXDh3MOTNnUJBR6Cyh
Uta6QfbMICMuRkqJzhRMWaGsBTDj4W7kw7PMx2fGmTtd70hyRhRlR
XLDOEV8QH2NygqjY8zCdjTO
bKTTzHNr5xvHyl+72vG7VxNvnvTcWPVspGPIsBszg2c8jUhSVr5CXEN
GU5xWcdzyREwbCbunU5CE
Z0PdkSTs1Ni50YvQeSLnFX9xBv/0/in/9ME5n58LR9JxkBRRAWuDNk
YiPG2XESeBS0l8OJaDVi5j
RK9Q3LqwRRrSsqDhkhcX/D7x8Swb3WdroAmBLpIB87iCiWCEzpasM
OzoybxyTfndFzteuw0HGwPZ
MeaRB+fw4ePEe48zn20zZ+ZsOqVb9fQoeQC8i6Bc5VkN5WgyFAhS+W
+2i36Va/VJyY8L8qHB538U
3vfH+RL23wjYu+klHooLtNwcM/IqMAARJaVwJO6OX/Bnj0bWCVap5
1vHr3OkB4j0POAxGUPVQQyx
EArms8FWAQ1YGgXsVUiHc5g9M44R8U3ac5DWXEkrjrqOm90Vnlpf5
ednH/PDh3/BB2efcmd3lyFn
tnaOaIfKikQ3C0DJk2JKriQ6Hg1b3j39lPfXn/Hq6mkO9IDe1mQfyDrGo
hUNKmMFn44Rzq8WwHM2
BnN62fDCwbP8jm95uD3ls7O73JQTJMPoY/idKohpOL/F8pzoPgmumQ
lcqtFTiLlQbI1RI3OWQ3AG
26HScSTHPNPd5tn1Ld5Zf8rd8SGjjyQPg9M9spGmDddU5q70qTBV+s
mF1y//3v/xmfmWHLz/55Lb
vXno4tBLLFS+yoRiSQgqkWm/n875/uZD3hyv8YqdcGV3xIqeFZktmVE
cFaN3IdVF6zGyMTuT+3QK
pykgnxbeBFOb75z/3bOHyrMXr044qMbV3nftXS0Zlk9X3Pn0PSIkQDz
CAlsxelcOWLHxLgxOhyyx
/hOOSahQd6aqg8qTYZvFHGqG34GxzL+r+JQGQG/wtODnffzOn6U6O
u4BQ2FIqcaYE9lFHJcCZ4FN
RVDX+N5GckqYdjwWx2zghsGbJF6Tnhv0CANbL5F1ZAF88NqSG6XR
AtWhBJ8QJIvF63NGuGoIZMq0
1uek3D87LhUf8301SzZRuhnCq5PkDe3LDOK2IIS7s0XoEF6n43MyZzry
gWdGrMi5WQ6KhxMccnBW
QtYsgEkZtWu8Zvca52ARvCqe+uT41qlIsx4rai/wTFn5DqCl0mZmNimy
DhcMgaQkBCEjHiu8E6cv
/2lwM2hUskwykowxBkwl+1gDJhUOabFd9CgT7HJ5dniaYw2MMFHoM
tE6i+mZv7widHq24rMGLdqg
Stxn7sUI92IBRMVTLrMFR0m4Ju7lzFvbzM92A5/YyA7hWDtSCRj6XoY
dQmPaxBZlXjXwUT/OS+eC
DF0EQedHJz6ofLHPEy0PeYP7uvZajHiRJS1t6vLFw3YxQp71yXn1QPnt
o45bHWAZz1VDFKfftfCt
LXXeDPrimlwqAJmCgu4JEUUxEgMY5Bz8/txGeHnV870T4WvHxpEY
w2iMxWFOEllOVDEFyYobZBlx
zfQIKl2E3gVERk7N+MW58taZ8NEOxiycpMS6rlFXBKNTMIQhC4MLg
wdcPZlnDoyXjoTvXE185zjx
zeOOlw8SR6uShc7GkJ2cMyYCAQnqJSDqiqqTJIIBpo6VzJ5OlWZhY+K
OFbiSwIEaa4GzAX70yPnf
7sD/eRc+PIXejGtJWGmHiGCScWyWP5MQrUpKCufqJC9FStqhqZbY5+
fL1+oevzPL/zacXR8WyQ0k
SvJEh+JkpkCIGyqZYezYDStIwu3jc373JeOvv2y8cE3p6HGHYRQ+fQh/
cSfz0UPj0U7pe+j6cN7d
qr3vk1NRPZgItKUiE9oA2q92rU4qcu+eacxZPf7yeP81yZkvYf/1wt7VC1F
etoSkRlddDJdw1BLC
1W7FuW35wj7lzx4Laz1gZRu+dfIKm25NykKGKAdyQQ2iPohiYIZjJEQZi
hcjoioyk1i4KonOUxhF
bpzmx2zzOZtRWInybH+dqyfHvH74HC9tbvOTh+/yg4c/5/2zz7ibH2GM
9J3QiSBjmFauGdTwHGXP
a9kwZOOTsy/46PBzHpycco1rdLbCGDHPOIpIKk5vRiiZYSz8e1XUIku5t
YFRHfrE04e3+O61N7nb
3efp7jqShWxDceTDNKglHlpw73uMYg4Rma1k8ULg2aiZn6mR3FDKBg
yypTPn2Dfc8Ou8sH6KpzYn
PDh9wHYcEO9QT7ho4F0sou6uhQlmzmojIzQwtt+3TLZg6gbOhZ2/f3O
5JjK7h9PickpWtX17q+id
KI/pyITTKuJ0Akf0jDLyfvc5P119wi+G53hxvMXKetae2PqObRoZ1elM6
HLBP17yzT6Vk+siGxJ4
rpOvRlmbSW2/2ZtmncHenPYiq9PfrSu/vOMiMudxppLVCbkBeu9Sss/G
mcCJKGtdsfYONbAUalE8
tgkYPjmqExUqD2LgRpLYApAJQzhDWeMREL88fzwLs1Zfy/7f8bqS5aql
h/F9Ikoyw2ENHs6FNiaz
s6Io4jmM8a5j6BJn446DYeBV6/iu9LwpHVek47EVhz2kGVKrLqSlT6GL
T+ywkLzTna3XJl4yYEtn
05vn6jhe1sLk5NaVXtfI9H2LMJ/Wok08FhlSLzCb+ORciAWeTnFWCF+
VmOcXOvKFGI9xdii9hMGU
HDpqDYRMNK70cZlLmic6V5lF/X1xRUizGqTOoaKkKrVLZEU7iBTXyI
nMQzjsjniOIFQxhq3Q00Ui
kGlWZIWxEqcjKovEdQrWmCjZxhLIiSBqR9k6o6HipgBVI+MmmEUmk
Bc8U7+e5jKv7PrXxP8usxyd
cDAblzOvVVhk/ruyn8zM6gSPG17KKhWxFGtcovxPyjOjwCc74adb58Pdy
NYzdAlJKSqQzKasmGmV
3cEfOQq5SJWmjQGz0BmN8bL40BgxC75qUdvg/IK0LbLHm5dEkD5g
mV1zD+dbZJItAJ6rPnQOOufF
Q+GNQ+GKxlYc9whw1AB0KmWa1UBsAbrAwxOIe/xBcfYleFVd6GVAM
XwUyM5JMr56IrzQw1fXiQMB
3znZMojRCSQ1ECerMYogJMTK+neQHPxgIpgaWUbujM7Pz5T3tonHPt
KZcjwGDHlicEF0Tbae09HZ
WUZEOOmcp9eZ37mq/NXrPd+7mnjhQDnWhJpwtoPBLPSKZ5I4oh1G
j7sE7JUfSxXEVOmmsSZ7EioW
FX2eY2uUJ8Q7Nu70MpIN3t0K/+z+jn90x3j3sbO2nquy41hDO4yeMEZ
wQzyBaDVVZ5osqhxKULS1
OWTeXlB82yfqrwv8Po1cssiAeWTBBUeTYWqYhQPfkUiU9cmIZ1DJiA6
cZXiY11w76nj9+Y5vv5x5
7dbIOnXkbYdKx2DGZw8zH90beXwGyROb1NGrYxb2riQvZoKWqRdn3
bXoqBlBi1LgX+FaXYjBFtVy
4dIvh/dfo5z5EvZfH+zdxYzdrNykLMZ2ljXOlCWxc+Hj7V3+OP+Ino5Nl/
gtfY4T6RkMHtl5KAOt
jO+x1+ESGKtB1k5CiGiZed19ZozAYxIjyjGJq6nnsNtwkNbcWl/j9uYmPz/
9kLcef8DH53e4Pz7m
EY/oEHpVkiodHZ2XEpkkPLJzPt1+wfvbT/hkvMNT/U02acNoyuiGWxT
BdCH3p6yFA1JDx8VAGmQE
NXrtOEmHvHn8PGfpOkk6upQm5ThhVCrWa2nRkjtmgdBQx32PgYrB
W29orOf6P0E5Tgc8v7rJs6tr
/OL8Ex55xukL7OGMgJRszJIWDagT47UgPNGZbY3OQuYljS8y+/Sewpe
LTHN7b3t94uMwF8RL2RlG
MjjUjseM3JMz3tY7/CR9zhvpKZ6z6/SRgyd70FPcqMbGMlcyUQmhOGI
0hmC5o/7lzHicKdQaJfOs
6vet0T5zyRJpywLh/bLjpc8EcGHfZwvAhOuYTE9i5Yl1TvRdlEMqUS6W
PZNxNEEvJcvmJagS6Sck
zS9Q95JZDacsnN1LYLnsp9Kz8FXlJZ8CGbEGdMK6T2WNUzbSyzYEqn
CtJqCAxj6rrWc6jOdRvkXP
N1lxFWWLk11QS1Fb31KjDUMWYCeJUCW4eENt9iayv1YKd3nht9ZTq9
/vaRKpa3Vvzezd0A5SZPps
tLdFpA5kBEQ5QngJ+B3veCgdPxDjgSidJ5I5yUeSlD2KJeghXnYmmBcD
e6FULvxcUJaLbxoeaWj/
pLGmNSYC3k/zV3dwwz3KvxUBjbxpwnHNJfvnZFIpj1Q2qqxRxMCykSI
dRZ/rehfEuimO6NVbpy29
bjMUMz3mEEa7Qgu/VAdicrLn5+bNCMXZrxnVNrNa3+wNH16Qq7NF
MWef6xoJWrpFxlFFSCQ2IVF5
YJmf7c75/vaMD8fYz96rNpUDIUe8sej3ZrkkYaPqpLm2MBAu0RcX7lmi
OO67IN/iH/FZClsjdfEI
ZJVttxNPC46qsRtL9ZQKtzbCi4eJpzeK+MiQjSFSkySjxqLn9/oeMDT6sq
mumOfnjSCPIFtyp/Mc
gQMS5omNKK8fjLyM8Jx23EwJFWXHyMgOtwj6C11YT1KqRSR4TGW
DipHMgbGUDBsDIx9uMz94JHyw
dYSOAxU6DDPHRVHvyCgPB+VRqcK42RuvrpVvnShfOUl8/Sq8sVGeO
4AuRQZzMGVnQrao2iktOFAc
90yt2xBCXmeMAUOpgQTFi5IxjCzxbifRibLWRI8xjvD2mfEH9zP/x93M
jx9n8ihcVeFAO4SoIMhe
Q3rdcn00NFqsoT3+fdL1hTxuxtnn97DZpP0j1pMWyTRVPRhWSpRHw
CXjPiJYJBd8zWAdzo5Xbjp/
53Xluy8JN66UQPMY+nq7Ez66N/Lencyj84RQS8WJdV+2grTBk2ndVp
kyW7+X4uI/da1ehvfFUL8C
vP+65MyXsP96Ye+8+bKK7/rllCXyRhFLOEC9rLiia07HgQ+3n/InD3/M
Sb9mrcIbB7c5pGeXB0bt
ICmmkYHpJBRCjV62+3nivc5skgZoWpSBeBhVO5SdGYPv2ACalKPugNf
6F7i1ucGrZ8/z/PopfnT/
HX52+gs+y3fZ6Y6clMSKtUetviokFWzMnOWRT3d3+Wj3GS9tnuGg2y
Am5NFRyyQfp6Y8YXgLpQMA
oKCCK4xiZM1kGVm5cKU/4IQVO5ycFNVScm0O5ohqmV8lzhx5nxPes0
EwM11ttDEVfc0Ebx1qEiLC
yEhSeKo/4ZnuOhtd4zJHv6PwREsZXJ7LFGsZ5IJDF7y0MEQWUZYyj0
WV4yWMu8frizGo823GWNw7
s2XMWcIgT9mj3DlC3qxUyCQeW+ILzvlp9znfSPe4OR5z4Bs6cczCqFUci
5wDdYdpKsbFVBQsMJWe
Lqm0Z5jJBdBlcTWuXCInpuvLKzPm2wz0vhPri6cvkUCUclkN3dhNQQq
nc2VtiVWNpquQTck5x/0S
ka5k0XhmdJtq/twd0zC+1Z1UAlHjxGPVlmsJXMBqwF3oxubHKeOUEl9
0fsgtY1P5UmmQVrY9iQas
5hmkQ1gzmGE+8hTC19Kar7PmaU+MGPfcSAhd2RfkYpE1mmTl3r7iulY
a5pX55kYSx301Czn9rpx2
ofS3UtybdVTe05YsyIzIef+iF4e+eTfl/oaPp79ESkDQWbvydVvxQOETdR
5DyV6PqA9FPkV2sSQb
y/t8MrxaOUAZf8rqllsm0IkXVNCkip991Lb4puUZB0k4XegKMuoD5ByB
FFFICU+KiIXxTWYse8AG
VbJGaeRGezYS+7PMDCyTssSePVVEyhaTDLDDdQQU8TTBOWeQW9k
+/90aqiEnlzpguZopQZKm/LA6
hJP+nPE+y8umNmPfGJH6FiFFqAIzJZtAqSjoUDYoa4fR4LO84yfDKT8
bzrjvsNI+yk0pRq77DGtj
rKTGIG+DeJNaa3VDA+NE+0tgnxHTfN/cO7Hg9ExUGEipbjAXTIwsX
mgnJJMppmSEgd9pptPMGcaQ
hZOV8twmcXOjrDvw0dk5jElAlJQTOOQoK4v9kB64rvZV5Y6K//k6zbV
ASJQWK53vSDYwijLKCqXn
MCmv9CsEY5NBTNhKYpQRdEQsobaGEoxxE0THCOCQSGkdTZjyOeK
ZXgcSzuOc+fB84O1Hzv1tx6Em
OjVGBgaMbB29B9ecuyHJuLl2vnOs/NWjxN+5vuLNE+P62sLJzplddga
EnSWMFHtHRQI2alApHNak
qcgtZyCzxVi7sHJFRYnkcoSZRpxc6ZeEPkVvjw/PjX95b+Af33F+9NgQd
44751AFkRUDwuBbzEGl
RyRqiGYjq+GzfTnG8mdP/P7lvy/h95q1dAvmFQlb0qi8CUpGNOOMDD
gmI+IjKzdyXjPkQ1Dn5uaU
bz/t/I0XOp6/1kV/GMuoRhn52Rl8fD/zyUNnl51U9qbWyscn2R9R2VcW
21S38+taq//f4P1L2H/z
YO/a4E6bPZrGlqosW6NJUBKqHUmdc9vy7vkH/Ku7RpKRpN/gpc1zH
PbHZHO241D2FApZ8rQQW1RM
MJaFM9kmEoumZrPUiwJ0MIvoW6rRta7nVn+NK3rIre6Elw9u8/rpM/
zs9D3eOfuIT4f7PPYtg49g
HZu0RnVFpz3DOPDF+QN+/uhjXt28wFMn1yMLa4ney2ZfL6q8Zji1Zpk
Cy3EpjGIbStSPFV2/Rnxk
W/ZXRXOr2fpa7IGoe/QmnDRR9MZIrZHZy9yVebAyhhuD7EgCT6+u8
+L6Ka6lIz6SLzD3sket5Kpq
aTLGojamwtMwUfMaRJaM58LePCZbbBqsTqfeVHl1sseZ75HL3kUzfrM
oYn9dlLKGgRgl2yodyUfu
6jl/3n/M1/rbvDZc5zCvSpljzapa4dEZnhn0MgGvLaFmOhVq4QuaLDGw
zNE2JZ7z7Gj5fzZvmO6c
UT+P1xo+zc4sajbHpzc0hKtwVeHlUXqv3pFkBSoMOrDzDpXU8Ai4G6
NFls00jH5yOKmebX5TsQDn
WRc4CnO0iUBpYJmCHa2QrQiZpjAP4G6TMwQyOTdWpzkxV1wbXDB
3Ttz4qvZ8T9a8IYkjNx7gZAEr
JVDqacaVN7SpJbqN5J8rU/Zo3zJ1kaOTPJ0MBW9ZYJmFretymrI0C0A
mudmwRnyl87M4DRXmF0x8
6mEkjQgHDq+6cmorfqHwSEbuSWypOCnlahGNFxIabUrEp9LgS7hsdsz
a7xpZ0k5rYs1GNniDl4n8
5d7Yl+m0nWsMLQGWgNEldIYT5ZJJhB5lKxEEcY89MoeiHKrQe2Q4T
CWaEBY5CQm8C8B9h2ATUC3s
rWb3psy7lhXOD/iMm1oe7lX+NMKupf8cBVjgzCsvUgMg9d465ozwyN3
F2F7wBVEKrAKJxKo04ruX
Mz8ddvxgt+W9ceQU5YZAh0w0j39r4bksQaxis67/Og+Z71kwTcMbdQoT
5yxw13zf6ImJR5pxvXXq
qWXAjk7/g9ppNvZpJ9QdZWQ0Z6Tj6T7xlYPEM+vomJqzYYT8E9FJr0
VtsF2Ac557UxfjztSjgsoj
lUyReTSiOWUWwU2RLHQCq5RRjT2cgwmjKxmPrvcCksDNJ/6OwEIJ
MFjM3lA6gS4pYDzYJd4/dX5x
ZjwchAN1tMvsJHOWYTBHzDhU4fZaefOw5zvHie9e6Xn1KPHakXPSld
CEKaMpWSBLpVFoziyxtSMh
pbt06I0sA17K8ZXYV59c8AzWGXUzAh7jK8IaYVMQ+otz45/fH/nHd0b
+/D48GhLHCmvN8xozIRp2
OJpK0mBeKkEvn/m1/al2jDRcX9XAIti+XG5P4Hdv5HeBSZm2bLhHR/
t4tvBaGTwJdJ3wMMO9U+Pq
EXzvWeVvv5R546axXjl5iBM5NGWGXebz+/DeXeGTx4mdKV0XJeMtb
87KcubPmSGt4eEZJ7/KtbqU
ZRf1Cc3tvzzev4T9NxH2Loym2WyembAuxhmaScl6NR6cVeoQOeBsPOX
tx79gk5RNv4L+gBc3z7IZ
BB9GRlUGdbJXQ7o2tahDehHc9e0VEw30Jauy8fi+7lM0z4zZERtI0rOi4
8WD2zxzcJ2Xjp/ixUe3
+f79n/Pjh+/x4fAZp/mU0Qa2Em3Yldgb8Gg44/3Tz/nk/A5vHr/AmjVr
WUVTJYcs8x4VFZ+drSJs
1GGVlc5L6QyZneboQFqdh9rZ16rRMBN6QaG8wpcAACAASURBVPWW
BtLQQmbjZnZCKlH3pAig5uCZ
UXck7Tnuj3hqdZOnVtd47/wTRsuMbnSiczam0kgaR6jaW3tCioYnZiXb
AjV/bJ1ab75vZfeUNCp6
hfm2PaHaPFPHrzgqiqbuy5oWF8qB9OzSyLt6j5/0n/I76Vlu5UMUIUliF
zp7YXjPhdVxTZtrMerS
sa/G4mXQL11RmlHZ+759bj8gIQ1s8fdFxdqOuT/2AlRiv1/ZT22w8hVrN
pgKZzoieaCXHk2xIQAX
BgvnFgFJintkMLHYLxj7xWQqD9RKOGnk1t7n+kfrkOwtBcTnG+NfK0t
w3mM/O6tenGkQjX3iCuzM
GRg5zMYrnviWr/hq6rlCZifRJiqRGNUZPPYpVr+v7UQ7i8oqEGuJ7mW
LBeZghVc7ZbFOqiaQC/Rs
Sn8LHmOdtINcIGvh1RoiWPJhXatT86OCV59kexzj8jzKt23NHYXvc8aZ
GkdlTDOPQJ5IyHYiX5Iu
KQX2af5LJXfB8Knoa+fbfrd/wRv8uCM+4C54UrJWvoxGYHhkS62U2n
WaSGhkzzyM/s7jiJ9VOQ5j
RHBRRo0+DkopoZxQvlz7XiY4Y7mFvaHrJCxLCSC+xIW0urcRpHgT1J
SZjypuK14r3YuuqPB4Izy1
3BV7WClH0AiewvmPzKkyAB9Z5s93A+8MzqmnIi8pxaY0DrhMcC0Mm
fbDwuJpOHOPZ2jwIc3j9eOC
FfbkRHuDN0+FvTMHy0V86kkg5Xg581waRCbcQo+MJWj8wjrx1UPlZp
ejv4Wk0lY5xjOJUnTNVpp1
FeAmIVwVW31/g4sW/onm4dyN6kipIBCLd7iPDLYrpb6CSWQv44CHa
FjkMpAllWY6RK8NL22wbEcm
gUDSjqTCmQuf7YwPt3BvdM6yRUcIN7ZlPfQKK828eCC8cZL4u1dX/N5
RzwtHSrd2RDO7EcYc+zG9
ZFSV4CnzWsYLtaFlKs3csmRcclTnmNJJotPIPo5O0TnhsLpr2dcLh+KQ
nU+HzL95MPK/P8j8yWPn
fEiceMcVEbJEvwbxTJTSxtqr6yB4sG7Nanlt3pN/Ge8hi18Lm2SRzXoSv0
9lyfHfZNc4ceQjPa5F
c3i0iUsEbkyErQtD3vHcFeFvv5r4neeFq+uMD5lhB6sNoM7jbebjB8JHD
1fc23WYwDpBKtUHIRqq
PJMlX5ZoxxRI+zWu1cXXl+iBXxnev4T9Nw72Lp6CqeFSazQulE7zuBd3
QCJ6vU7RYW47bHn78Uck
WSHdAV1/wItynYO04kxGdpqjrLZ2VQRmOeBF0c/G6KTTmRW0uNM
xgjhDiu6tyYuSsCgtGXxEfc2m
W/Nsf5vN8SFP9U/x2sEL/OzxX/DO4w/47Ow+D+yc0/GUgQHVzLmf8
uHZ53x89gWPt6ccdGs2vmYr
AzsdcbrSnW5AvGxoldLOxEIARsS5IxsMYmzFQEbE6p7KmQK1m29kX
GPWrXPqTAi4aLhdQtXA0VxW
B5A83mOeMelYdRuur6/x/Pop3u0/5pPtXUYyazpUpHSMbNyjWU5ftD/
aH7n04wUmbRm0NdDasuEL
Tmtjl19g+j081P235jBKOZ5CmAIGh9JzqgOf6Rk/GT/nz7tPeHo44rZfpU
M5Ld0UV7mCE5kkK8C3
ZYm1V55K7axd2vDPS7TMtSkPfDLoMN23j8kZ8w2aZjw2b9q/a8FyLGn
nzE2L6rMdiev5kFv5iN5X
bAFl5ICRjXYkj1hLlJKHsk9lz1t1DtWXmbaWl7wQ2PeBr8Kt0H9WlI0so
qpRmfYe1gxl/VJo9hYj
5HJuZkLAhdGdczL4yEskvutrvulrbrlijJzJGDIFwgBUIUscUxGO+PyeZX
mAT4J7ArxBtjR/Voej
Qj6dyVqFfVnzizP39n885tdSdn89hYGz95gXLqtIbQMAXj86A7AV5wjlqy
bcIXFflXc9c+5Bg140
uucWGGT6d6b6FNW9hL5TtLdh5ulJn/GzwN8lY9RMVOHoaH4U56kh
Jogkcj0STMoeRY1BBnPODHYO
G4wDMisZo2uqACidaRxrI5GddR9QK86dCq4d1KCv0wRVGrwy46EGey
vwbbZlDuQ161ekoaNMeKr6
opUFLG8rPQAu4SBhbpDkTDwvCXJKuGfIUTK/Q3hvHPnBLvNJVjpW
0ZhKgndnH7gStJ1/gXcCIRBQ
o+91ui3sC/kPF2+q/NTMpRn9ibqkQlTdyzkXXMEupf/iuETX30wplXbn
sBNe3SS+tknc0IExl4aM
WvSC10zrdApIHPPTgtno033Z2M6BYhtEGbjhkjDpwknTOLMVRkYfY0t
GStOxdskknHI33Lc4HeiK
ZELKgqtGpZtEsN9Qeg0H++HWePvMeOfcuJeNM8soFv0dUuJKgleOhJ
cPjW9fS3zluOMbB2te7hRP
TmYgW/Q4yRrbNPAc67D+z0sAUH2R8QmMKyYpAglStn1IYpAIrKRyV
wSdItGwViWJ8fl5OKv/5N7I
v30EX+w6TlCOOtDOGBHMlYxF26JyKov5OEmv/TVSzOOF8pS27KPl2
9YOaf6eLj+B36sOcymVbhJl
4IKgGp8zCXOP7TvASp0xwz1LZBeeueL8lReNv/aa8NLTypqecTTER0Sd
QYW7Q8eHj5RPT3tOh0Sv
Rp9qWXCrZ2QPyifroV/HWl3grBlyvyrjPxXvX8L+mwd7N91TlUpj9bSK
UOqnaji4l9KhUHRHac3a
o+PmTx6+z2p1xEF/yGrzJs90V+ikQxmRnIjzV6V0VQzo5pKh6sjtC4Rq7
scZWaFUQu1EJ+IwngfL
jD6y242scpT7XterXDu+xnOb27y4eYqfrJ7irf4jfn7+MZ+Md3nsIyicj1s+2
97l/bPP+OT8Llc3
J6ylZ6cjO6KFu3rs23Ifw3IvlrmLFKNWSRIRxVyaHOTSobJ2AkaLOJJi9
LjP2VGBeqYh5bpQo/Az
I01Z1gW9yt7ViYm89CqEwT32e4hw1B/z4sHTPHv6AZ/vHnCetwhrkrbH
UuxxZ/vyhodaHrkkwXvh
0anEtzJtHUua59tVs7/Q2q8vWQ1eI4EAotNB9V54bI0yJOFxMt7rH/Cn
6494bbjOzfGYjh58KO8t
eVSfd6kGT8pk9Lfroi0324f1Muj3BUN9ci7wfQL+aEM6Zb3sjSmXjrInXe
qzjcMylmeetkN+a7jB
z4br3NFH7Bg5l2i0I+6Qo7lHZGSM6WBiKSXCHp3BtTYkq5kGoFRyzcK
sJWjljZYP2OMLgu9rIGM2
7KQY5zI94yIlsh9dn82EHbG/7Kpk3qDjO77mBTrwzKk6pzhd2b9aOw8j
xLG+eY8gDex1PVKDT1Ll
JJdGHKchGsk+TXGPeeatqk0J+DTX2nznIjLbNTbxRn1f8/7ZUa2KSdhJ
bBVYuXPbla+bcE86dmZ8
kKNiptNucgTUpbLAzJ8TTpYcOPG9z+9f/J7gnO+jubYoDW55p96kMSH
1PMnN2NeroIlUMjSDZ85z
ZmfCgQgvpY43+o6bKqgaQznmIZmw8jiXN47AGMvLUuG7FKuvyAUvO
F7QrCi4KUt/ycSn4MsiTN1s
+rhgFUizNpbypV5bNGRq6SBeztSNskNxRdUQUXJx5UTiWKc7Jrw9jLy
zyzzOyhEdK8loxcNCgMni
XQv6NRC29G/hmujcrqFmzUwFDjKPW5+5zLBq2d2JdTzFmqlypNTLS
D3TkmgOKcaYlWwdKs6tXnnp
AF5cCxsRtllLHwBDslAi+EAcAWUSTb3wuSqnvHXSKXPQqZXkSx0u1H
Lt0mxInNxFT5BsHnZHikyl
WpWPSpQSZ1wVEUiledN0fF3pf59iFyjZ4Yud8aNHxlunxqOx7PFV4Sgp
N1eJ1zbCd68637hmfPOq
8tSq41gTlo3dmNl5ONeqikgOoSmZ2KPZRYbQUxw3h03Bo+wW20qk2
HNEc6jIbwiWCiKd0tjNkARr
CYzeHYQfPM78szs7/vUD4+6grCVx3CldKpVutWkD5dhEIZzEikON7/Zt
mHaTDTAZ+/v8J/MDF+yi
C/bNzOKFecuxSGqht8pWC5FSpO7FjkQKHYWzUbl3nrh5KHznuZG/+
WrmtWeNzWGHP17hY4cm0BTn
6H5ymnj/oXLvLDGaRHa1dO+2Rgm4V6nT6ItaNbI/72Yiv8q1OtkCtDql
Gfc/Ee/T3L6E/TcK9q7V
mczjzKn/NrNKO4EY1XBwY2XC2leYOKfs+PGDd+k9sbkJm2tf4Uo65nB
cMXhEBSkIgVqGXN5Xoffm
PeXNVaAPMu+CdQsxMkqHakT51DNqGRiwHBvuRdec9Nd482TNzfUN
Xjz+lBcevcdbj9/nvbOPuTPe
4+PxDlu7z88ff8TbZx9xe32Tp1c36F2RHNG9ul8rzjEo1reGQZKr0lNBJ
M746iWTvLF0pSiUSbH7
ZHzMxJHyVTVeGqVfuCvsGWdG16UFnyHwnamsaTRnrWteWD/Fs5ub
/OT0fR4NZ4WO0RFxzhM2BlHD
HG1JXyvc9w3IiXz1uXqp+W7xGRbvk72xFtdhj08KDiRKqFRq+6RiR3g5
W9UtmsQk4fP+lB+sPubb
q9v8tj3NtbxhZTLhwks5cc2e1JJpK3v1Uvm7mCUTSIVCCzo0RfeXgd7M
od7H3gjx1Hx9vq+9PptB
+9fab+N3KlHckmfhlAEXeNaP+N74LKenj8BGftjd5UF3jugYFQ7mrLxH
PToW7nyMCgMBUsiFGijR
EpwaJYIhag2dG6R5y1stAlqhV37X+eh037yX1IlGUV4yVz1x1mYy59SNQ
ZxDgVdV+W06XvHEEXAG
bIkD2HOhgng075rO5ZlfN2tqaR3IBTMGlHvCuVUOLY39IrGXDFCNCJl
5aeF8NprC956rH5oZFLgC
8QuFVYJoWWDn0U33yI1XgFPrue/GXUbuSjTASwh9ORanHv4z/dvuI/
CGtvOrJj7YD3a10dsJ6ksU
2DzvwIsU5zGaa3lkvwD3cm4hGmkvc849c+ojSZSXuw1/9+CQ/+JwzZsr
ZSUlwOelWY8qmvrQeT5G
0xPz0rlstgACztAHMyv7RGApwHszcWm1+xSdaCbpTI7/ZDyL7OF4wsyS
9JdkVyvretnWIhZrKblH
4xcPunYi3PORdwbnre3AJ4MzmnCShJ5w9ureu2p41K0ALQFb/dFCU9f
GZCDtATmZBfs6Zu9zawi1
enK5Vim8Xdi+SloH3ErGspZVSxypkoydJ3Z5xUEynl87L2ycq2tHpMOy
MGo074rjsoKvoqy6HGlj
udGVM/BTJUIjFNzb2SznFl52PWM4MoyC05VW1Z5T4N7rJglAUnHCS
0CFXKyX0t/Bo4t7TzQl3HnH
x7vMDx9k3nkonA+Jw0557lB45TDxjeOObx0Kv31iPHNgXF/HdpjBjJ3v
GMmoaHTnzjvERyinJrh0
ZctoOR7FDRjAc1Tqq2IpdLa6klwRcbLCoHGUoOLYCNmAJPTqrLrMgw
H+3anxT+4a/9c946NzZ6Vw
qCBibBkZLLKoSTqSJ8L5j+OIxNsjvy7huYl9ZPHlvmN7wdbx5QCX8/tcr
h8JimLbukeCQx1kxH0A
H0iaSd4zemKbE3mrPHvL+JsvC997KXPtaIf4QB4F6EmpQ9Q4OzM+v
A/v3RHun3rw6bRdqu6XbeCc
4J9D5BPnLvh1b76/orW6wK38Jd/90nj/EvbfRNijl9CeoKxZu3jfbGK3D
RNQKdEfolwqQ2fKQVox
JOPO8IA/v/szrmjPSb/iKwcvc02uIFrONyvNl6pPsDBOGiE+T0Am4K1k
v7QeM0PsL80a4SKFOGcs
j4xkdp7Jw0jXrTnqDjjqN1zbXOHW+irPr27x1up93jn/CPHE57sHfLS9w
48evsdLB89waxOloisr
3RQnvCRq3LTiKYszijGokVRJaDTuKCWQ1jqqC+IJU4Hp/vclHDKfpbm
v9PapXhRm4cosICWT7eaM
llnR8VR/jWfWNznqDrlz/oghG53msjc3Sq1xLr6hlV3Na/eN8QU9W8aX
vefrvb732B4j/wd9phwZ
JNECv/PEUJpoJMqZvxZ70DbecS4D7/X3eGv1BR8PDzjJB2xcGFGGqW
/y7KhGqWlkJgSm4IVRj80I
gBY20hK8vwz0J1xrFOQlqGmLjSf7nXbdwj6ntO+qTvcIbBlQhGNb8ZXh
BsleYWXKev0h/498yiN9
yGMGDiU6Caepv2hphlaEk+vEtoRxHtlbiCYttHb+Pt3LH3uyb+Ihnx6Zjc
/2cBuT4jhJrNDYLiCM
lL3aCs9L4puivCEdxxL020mUpGkx7rxsXVDiWJMoNtWopJh9Deo+7w
V2ZQl7Jco+ZyyW+oWwdaXh
HOqYNEz72OTCNCGRsLrLsD7f14RW97lq+l6qrAl8jCX7dNUTr3niY4yP
dWArsMORHOf5TsbP9IrG
O9mDef/69KfP8Oz5PHsO6hJVk/qq8ysZfheDrlY/OBpb8dhm2HnmTD
JHnfNy1/F76wP+3sERv3uw
4riLIyS2nskeXXBTyc6KRNf4cPZyZIu8ZPdb+Va0tDRAemHYJbXqfuR9
ue9ztYBE1dGcZW1sBZFm
W81FsTkhZ+EsQd2Zg85rN7KNRudKr4Im5Qtz/ny74+3dyFkOOLWUq
VYSezN+dQZn+2GaTpM1bPDx
l8Be2eGJc2vmM32uuF5OGZBJjk/H0jmlpLnsIZTImIfbZJgYWxJb73iq
N14/NJ5ex9mY7mucjuzn
lD61ER612FJiqvNxXzXofGF+SxkgZQLV/gpnShp5Ps4JBC+NsSQ0VDbF
TAtPFBhEpsxsLE/DJZMZ
YuuPJXoSa4FsysdZ+fHjzDtnmW0Wnlv1vH4M37xmfO1K4hvHyhubxI0
eOom+IecmnJuRCduhK9k/
s1hsksBRXLUEMuI/mxry1r2ZBikyxOqhIGLPaWSJk1ipWovs8UqFXpwz
i2zwH941/uhe5v0zQQyO
1VmV8u7RHTOPvZoSTTpBGC3y1ypRopyL9d7Kk0XyoLW+n8SPlc7lyzY
w+2R+F6QkQMQcNE9FS8Xi
ADFULJp6WuLhsGLnPbcOM996WvgrLydeuKV0GHlrZNsimkipx805P
XU+ugMf3YXzbZTzp7IQW2e1
rmmZYPUFrG3FyiLAyJPmdgE98+cnrNXLZNhfKuN+abx/CftvGuzpxtV
r/+PiS6mlqpc/Nr1EpUSv
SwfWUvtiScldYuuZ3bjlfDzDbeREN9xYXWXdraYjJrKX6OMidA51r0O9
MC2SOiWJUj2t+4Ykyjii
bCIOkwZHRJFUlAcRdXePQ6KTJE66I57ur/Hs5iY311fouo5BndNxB6Pz
zOo6LxzcovceMxDJOBkv
+wwoGSqpC19K8L4QSj0yTGpEqVBp5b5gnkoxmede6dBifioTbi7uG50B
RROxk4ClHtquxH7fXhIp
KXfHR7x79gl3d49wi66CXdnz1x47NO2rbeCEmZkvZcQWdpaMv5jDTOZ
Cy+X8pvc2Y1/2zvpjxVjq
onAm1J1YUMqdaGIR/DNKKNprtuH2eMJT+YhjXwHCViKqm6riCpVS
MknRMKwvGdzqjGmDnKmJQ7Nu
5tLd9pvlvNorc6hIFve04+yPIhdGvuSnILDuk8lSj2HIiIOSWPuKW3bILT
tkQ89Wjft6ziPZUQNX
2Uv5nMS5rB1hZMV+33JmXhl/JyAuEfjxUkpXnm3Zqv5diS8s+Wk5y5J
NlPZvmfCmhLO6I/OYERPj
liS+LSu+x5qXowg8gl0UB4eSeXaduqauiGNcrIxf+VGqAVahWhg3Ql2Nr
TM4PTfxeR2s+exLoz+c
nD2q1qBidYymIOMsv6XcNskVqeu5vqrl16Xc8YIPReg8hczQ6GA5KNw
X566PZA+H1SUaXEaTmaDY
QolNv2XKflehUP9ujaB2Di2qpnLxhjcq6hwnk8teL0FMpuoS1zi2RAfnvo
/cTyPrzvn6ZsXfP77C
f318wjdWHTeSY8nZSj1fuOCjymezaKhTYIwO9amRV7M+mOGTRSlwu3
KnAKj7Yj6tPJic0jYkXq0O
muvNO2ciLq2SaW1J7L9F6jqZhqA3ZY2Qk/LD3cAfPj7j+2cjpx77NVOqD
mtxrGRehz6/ZQJzzsRU
3mxyNpMsWv60jvl0T10e7XXma9NzlVaN8V0lhJYzPMOxjjlEJY0iMpeq
IsbozsNRcFPePFT+1g3l
O1fg5krAe4acyDKC5JIVnGdmonNmYdJtZSItnxfa08iVCXiaAUoQsOYG
dTbEcInmYriUUxQUSSV4
Z8w63yFLZicDg0SLtE57+i5xJyt/+sj4F3d3vHW25VoPf+vGir9/W/n9m
853rhovHcCVLuye0ZzB
ogkTQmnAlYpELTBp4BTpwBPiWnp5eDigi8qkaH6pDuLRpX8UQcSiZL
lmHlF6TWy6jtGVtx87f/T5
yB98PvDTh/XMdUha6Eo0gUvo1E+oIyquYnkoql3B47wOqyyt8mumS8
ujc5ZxWrN7CmuKoT2B3yfH
0CvJa8Ig5KHX6i4J+yypsh067pyuOegS33ku819+zfneG4kb1yDvjGEbwY
jUd6SVMoyZ9z8f+ON3
nO9/INw/d5LCqo+S4DlhJcU2avRCA7u0i2t/zf0q1+qe3pjg8Es+/5J4X9
z3Jey/MbB3CxXnc8Od
epTKzMhxT1W1lcfrXhBHyeVAvg5lk3pGcz44/4L/+85P2eiazWrD64cvct
AdYmNisJFlm+wQ5lUW
x4TmFjILg3zCVtk77xkwrDTIMUmlFCZa97tksg9sx4GBROp61mnF0eYK
19ZH3FwfcWW95vbBVX58
7z3yDh7ajnvjjpu6ofOeUQZGxqJ006z8674RDaESXeV8Cq5Oi39a6A2Fd
SbcfhlcELYRDjWLUXC+
xE3774y3yGSVqLEBllFJHKQNN/prPLu+xYfdF9zPDxkwVtLTdm+e4Gg
+V4aS/ZsaHbv/c9m1C9f3
53758E90VoGp212QpexNAsaCuyQajZhMokBKMu93D/iz/iNeGq9xbXe
ASsfisGBisu1ZZQt8XKBC
fGrvaQt0nxwOWl65OGIdY/+b5RMV6nnlVnenlRxOPZanZqWjzNkZyeC
JAz/itdzR7TrWohy58Ker
j/g8PeKBZJIPbOg4dKEngcZem5F6IHwJTBHNS9RLaTYS+2VbIVnn0x
B3dnKWvynwRvlhg50yPcUj
KFYasJ2TOZfMDUm8QeLrtuIVOo4EdmJTNDsVpMo0iuJEcxJppGsVpi
GCvEH4pNqZypT3KdnI1Hot
lvZMu3p81bSWhSnTEnslZ80yZeeqANHyxlkQlDHrLct51NvmEtWQF5X
PswjnGnK0c+d5SXybFXcx
7sjIXck8JmR+X9Lg3k6xyPXJEJqc1ZbO9XqDv+bXPu1bbThhuMw/Nwf
fq2jp9kpkVs1K87nMjV74
+uaAv3d4yO8fHPKNvmPFyOiZrSvZBSxqKLzoFbEIQEo5r5PwEahbtRe
g1+BEwevkrBa9Na3LSWZW
p5bpfi/3V3nfMNH0jon1pKmsmVR6YwXQ4La8T5qScBdnJCogVsVYfzA
ab++cH29HPsvGShNdMkyd
7HN1xkSnigOaMvMWhInjfGEIT8M0smChC/cE/r6RNF1rbq3vb2WK1H
cgU3DKldkpoDQplBRlroxY
zhyK8cJGeeMocWNlUX1gHoERFCRNQYVakGs1yCRTXnfGTFkPE2NP
OrOdqFzE27Tn2AqepFRC6XR/
bToY/w8YkkGKejZG7chaju6RhIhimjg1+HQ74GS+fgVe2sDvXTV+94ryz
AZ6jQRDzhL7et2iBqkc
DxX7TsPhrHtDXQSkHAlmxCL0XKZc9w0HEQSZTgEKuyWyox1OZ0Q2
VJR1r/RJGEx597HxLz+Df/6Z
8fajzJCdkySskjBK4KYmNUS8VMcE787KQkp+PITEHMhbkGJefw2V9j
NUldcu2EWFPy/j91akRSl6
afzlAZe6Bv00bOwhO+ejMo7O7esj/9nrO/7q68Ktkw63FeOQyTmOedTk
GJlH5yOf3M98cl94cBYA
rLo4HnLhjFcZTZ1D7QVS7PJmr4k0c/p1rNV9/NPc86vA+69TznwJ+68P
9m6Rw5XWSFpCPU2yMjQh
tPHSLThFzgkczZkNwqg9j8i8P9zn3z76Gf26Z5VWvLZ5MZo1aT330otR
Qwg1KQK4iDV8WeCIVSxF
1ktwxAyRTDSTCCEpJY2jIrEHqSgnd2G0TOacbXJWCFe6A751+BIvrK7y
Sn+D988ecrS5wkOMQzMO
PPY25lqagRUj0qORjIZy6oFpv5JE59Q2gXyhY2P7ZxsgKPeFIeOL67X1+
oWsS/OONtgQcrkajFHE
2knP9f4KLx48zS9OP+Hx8IhRRkx6VEpJ3SVjL8D02RCu074MnosA7g/
Ywr5Aw9KwfcJQ7XWdDH+f
WudT9yVKRCi70LOsiEPIP0uP+cHqE7423Oa18SZX6OhEmkzznBVowj
XUc/wuGhuXwfYfAv2/76d9
01+y4i+ajpeO5fjk1IuVxjkIgjEy8iAJKh0vDdc4MLhlK27YIf9q9QFvp7vsy
HT+/7L35s2SJMdh
588jMrOq3uu7Z6Z7BnNhcB8UMSQIkeIlwiTZymw/7K7trkQtKclMa1xK
XHEhkhIBUOCAw8EAc/X0
+d6rqsxw3z88IjKyXvVwBhDA1e5UW7+qysrDw8PD3cPPBHSIeNXgCd
+MdlhVtK36pstzC3BN+FUL
dcb5IZ1UlU+8sqkVHiDzevFNNyDGJMaeidGUlQgv0vN1HfiCdlxFsGhM
AqbqoWjB17FHeOcNtQip
quYHRoiW/hvzYFF6Lq/Rlqcu13k7WFksqnJZc17zXdpr23U0a0EV4zMX
oaZilI1eFSTkELFs8k8i
bLOEWatxI8FrIfJ+6Hk3KH8pE491YmM9KwuYSa6u2w65wUI13bJ8tU
yl4mWWXAu2WT2V8zPKzyWQ
JZp6TYMQwUAn5TwpUxx5LgrfWK35JyfX+K2TU16KSm9bdqJelEvBe3
BmOSc+JrNSLDBk/u8pICol
B7SAuyTc8k2sUnCDj3ntSr12nrGiO0ZRAQAAIABJREFUyLbaQrspLd7V
WdFsaepQPiwpUUookLhH
S8UQ8aJUTxR+uFe+t5v40aSco5wEJQbxQjwqmIW8RjJMFf4l3ftPjdYD
l/l8mcdZtC9fh/LgKWxN
mvPntTlPgm+ScjazePh8EqdbLOcrS2QyZZ8SnSnP9MorG3j5BK72gWQ
w6YhV/aOrvNQnUXPCfkDC
DM+s3JVVe8hVyhzO4eDzr+79mkheXTf/Mu+7fB5NEpMZTIIEoQ+BoI
pO6lWGpUOkoxMlZr5Hch3l
WjB++Urk1mrFqyfw6ipxe3CgL1JkGl3fi5KQHJ6KiRehLFAqQMLCHpV
AkB7oKBqsZUxpGa9IpQ2D
nP8dQRIiyWWECaYRCYEhCikaP9pN/NED5Q/eV/7sAewRrkQlRMNiR
KTzFj5qpOA4AwGNJM3756hY
EFLyh3cH+sscnXKZxg6V98sE2My7PJ3eiwxUXD8Lwecy5A2qmPeIFQJ
JhYudkSbj1nrkK3cmfu3V
HZ+707EKPWkXUR0IdPTi9L1LIx+eJ378EN59pJztwCTSdVJ5xexUaY
m1LNXK1A7GKT+3tfqLwPun
sP/3CXs36xFPOSMzmTkHsTnPsv9KvN9hMBeCUaHLvbXGoWM05Yfb
9+nv/4BTTumv99xZPcOmWzPq
nr3ucfbt9/INWqhMTTIcxeqjOIP1FjK+4FNm6IL3pxKNlKJFpctVzG0YV
I2krpTvMZJ0nLDiqlzn
an/K+uqGO5uHqKzoMJLuc5NrsBC8oppNeXnnRW45nAXLM1+UQJuL
UDTrvvWcOi/PeC2b4HJOnsRi
bS/4L2roURqS+V6FT4sIKq6UBJQB41o84cXVszw3XOdvw9vsLDEFGJj
DX4sCW713B0rApecfA6pZ
GGUILpwun3uJDI8McJEIvjjV578oD154xa2sGszL+OuswHcWUYvclz0/
GO7xX/cf8o39jqu6YUVg
K8ZelA6ntdLmooQXl8zGipOqFF1GR6OWNsePzd6ssJbrOHrFR8w/hYa
W+ZUtHLMYmre0JUQ4N0xg
L0pP5NQiL403ObENaz1lk9acrN7kB/37nIUdasomdKwk0lsgWK68WMo
XhUAMETEjJcvrpwBSrLi+
RmY+ZDOtlDVSQ+mcR6TsLe9NfB3TFMPKmwkP7Rbu2oov24avac/zB
EJuOVUKLFE9JALZGNXl+U4y
1HUtMyPK8MvhBF+aa/esNUVeGtwvVIGGmVtzbubA8wE5uOjSImolj9
XJrnmWGa+L+gFF0DS3COB5
+SR2map6E26o8OXQ80DgEfA9JnbZKNCZefEeWq9qvneevwrxAejLKs
gzf7zU+699b/Ap4j0Fo+Wo
G/Fw/XNTxjTRSeLlVc8/XK349uqUb61PeLHzTOy9qffndZcbwTRvAgqy
3ANUPO1Sn9sYYOr8NOvX
LBs2pMHt7D0tUty9q7Ig+HIeUN9rBf1ixG297XzUa0kjladbqNE7YokQB
evg3t748+2e716MPMo2
5BiUPtOGmddw8CkoyCg8Z45CEZaBKosdnM0fm7dFoEJBpLTHmyV4Y
NdYrsVWIctwGrVzs0diiHtD
fePlAzWJTBbZJ2GNcGclvLw27gxKH3v2E4y283oIYUCsY5KE5qJ0Pm7
3f7YkXipFt8aKFmyQWWnM
a7isUctzZqG0IPKNYi2/LgnfsE5e8VZj9S5alv0m7t3s6NwjaoapMokxBOP
Vk8RnMe6uOm72MIhh
BHYpsBsNTUaUue2sUPKCc0oF5n1U8zd3JDjGQaoRzCoPmKmk8EP3
MXhGcGcJU68p0YVAFxwT7+4S
f/Rg4l99qPz548ijMXIyGJscL6g5cNqls0feeeXkWCNVFM36mi55NXmtF
xK1BTktXodKfEuLZRkv
CXv5Xqih0Gmp2i1FjxSnoVJccJzg0YVwpTe+dFf5R5+b+PILIycbI12MjF
6IIW94DYIxJeX+Gfzo
ofD+eWCbhH5wjy24PlQ2rJIZWzVAYY3jZJZCZbNaxzyf8N9krZbrPwrv
HNzik+P9U9j//mCf5eQn
hb3j8LV48nJwC7lTFrUEyInxk5TS6R2YF/G52neMGE+2Iz989AFr/R4d
Hf/w1sCL6+e87q7NVuFq
m5XM8urY5kGqBWdJ6hbRSdzynXLeYmdeqU7xsuyalYGoxd/jIbtBvYy9
0bG1jkkDkY7TcI1XNwMp
gU5CtG2uchpAOt8I2egWMc+IwJPmwcx7wXoxFhahfgvcLWakQXUTY
mgHvy2Uu+XXy8ezoGtzIwo+
BLccn4SeO/11nhmusQodT9QYsZonsyBamd/qMw4AuLQBteV1x96f+joQ
BIuN7KyBXLpRKwSQtg22
b0gSbniIGGIRTNjGHe/3Z7zRP+KH4THP6SnXLLBD2EsOA8SQILMCa
QnTKYfT5tjAI2M7lq/60eNf
bkRlcXy+10IRKqJfmnMOuc0lHM24ATwvG1deE96OqVf3lG4RenpuTjf4
Nd1wOw3cMvjfw8ifdx/w
MCa2Ytwy4YpFuiTsNLElh4WFQJc3rBNTziWeqWtBZ8cIu9DQJRowr1J
rwiROu5qVDEFziwDjBj1f
1BO+rmteNNhE5Uk0dqKoeqEQCeI5mJk/FA+aEjCiR5HINK/XYybEwq
IKE24GJpkmW8FvB2NpvRCL
PNfFrB2+mme36yLfr0aBSHPSAYEVj64V4C17bBCvwm6JCdgGb4vRm/
CCRn6FwAcY91A+EOMC5QSn
G5Wa7HFkQg9eLb6ODFUuyaRZGJW7S6NoBtxrMCbYSuKJjkiYeLXv+
b3NFf7Z5gq/Mqy43hnJtuzE
q8yT3EvqazqXs5aAxggWstxIlFgLJLeYuJTX0YxY5nmn2YDOGGklcjHeF
P5aNIpygcxXNkr1ZY2h
XHIZ9yXvTmBW1TWbqoKbiS0ab9vIf9pt+ev9REJYhZA9kt7mx4vmlEn
L+ax1w+rPCUWZKTBZkXu2
ALfafw4Um1bhMZZDvKTz5N/k8JqG5I05fLsYZJxecv9xNVJQRHpGIon
IaQefWQdeWBvXOi/8MwXB
SAgjaM5/DFpxXsaPeF2NVgK0Ydtt7MMcIgyF15cryjnkvqWRQKdC0FxY
SYpxUDPvCMToo1NTN7L3
gcBEZIdoykhJJIRkyhCVV04TK5QTjTB17E0YQ8k0VWLAPX8iWQfKI5
OAd4a1rF8IwuB55JYb+uT1
VGWoQWlJOM+X5hQmNzoFdW+2SmTV++bt3k75vx+O/Kv3tvzxAxh1
w7UhEvqAifdDRgMaINmEMdIh
dNZjuShVWV+ivt6D9wKiJKof6jFLo+nyeJ6iY0uw/lRZ9FPovdCBinq1/
UIfkvvQKqRkjEnYp8CN
G4Fvvab85heN5666gW2nE5MKvfp4NCa6CNMo3DsX3n4I93eBKQSGz
pDgBaxNG4S0g8n/Z5lbtYx5
XPx81urHwXthe3OqyyfH+6ew//cHe3foWZXmPsdeNSndmrYeElCUCQ
+P6rJgk2SsQqATGFGepC3f
PX+bru+9R2voud1f46Q75TztmGzMSoEL1ZDbwZSCFyVhyAfhjLpamjP0
ZZNbPEwmmnMZcphNyLke
Ife5MldQknkV0WDKKgTWskYlMYqiIWVlNuf9ZNFn1goWm2ezeTtUVC
7hk2X41OwdO/6Sg/c5/Ld9
HpWaikdKK04UbCLlYiE3+is8O9zgRn+Fh/uLHCodctGiOZCz7UfqDwkt
jc+b63bjdglY/9zI5Xxt
c36jYMjhfZ7yahdXwZ8VgwEy04tqblORcyzNcnVMYyuJv+4+5Durn/AS
p1xLN+kNOhuryoB1GELK
TeV7PDw1BKvh54uBApe3qpegZ1ZQZmHQfi/nyeJzO+fL533U+j3UYZe
U04Y9C9F8o+5llpQ1wg1d
86XxWYJ4tekr6zf509V73JMzHsoFwVZcpfdiNKSsxkxYzv0LgEkk5XYjQ
bWG9RuWlS+33QdmQ4BK
lq6ZcDzCIudZMtOUiBfFSiZMGtkgvMzAL9PxRYTToIziVYGTzkavMn4o
/MY37SaJaL6FBc+jcu0k
I1McN6Ugxew1Y8HVtXWV5EtrWFx+6OxdlcqkKfy23LLcoq6R7IWp3pt
8Tck7akxPmTtmD0eOSNE6
aoRcMMvKPSXT+EQSNwyeKwzAdRU+a8LrIXKPyHfing9toreOE+vzHc
1bPtW1OIeeu9cnt7ImV+CW
Ym7xeS8eGVHn3WodQsydk0bMJpeCFhGJBHOelcx4QuDMlD3K1Qiv9
QO/uznhn2yu8Ppqw40oJJ3Y
TcYUNPfGztVUQ8Fvxmnl67M/tYSji1BDwy3jrM6xFCxIJpk2vLPwrHwP
nFYW3KLcT+DYqp4NEQe/
W+GZB1oIJSIqU4IA6kadgMs9RHiclDd2E9/bjbyvxtB39Lkom/cw9Y2G
VmvorAWJ1Zm+BHErm455
p1pFaXGxLM9pryk/zwbvMlyZRXI+yQrOrHjhPaTZQsBTCNw7GFQ9bF
QCN1bG564knl974THUsFp0
KxuptXgUi88xVJhaw2GbH1g9qXX2Zv5wwCb8e/W+5W1D3vzXNV1PD
rRRKvVwPtejzhKleIavQSVi
nITAgPeZ36uwN/eclo1TyAzWV3Phg5lpFUMuHigtVpvAuXHABI0hG0
mK/mR1Ev2OCRMv0qcKkoQo
Rh+ULgbORuH/ejDxv7438qcPJx6Owo2QOA2Bfa4gXAtx5r6mSKZJY+a
lLoRq0/nq85cKTqW1Q8Pv
MaNaq7O1foilfnSc3rGZL6est5QIpIjlisaBs52xU7h+EvjK88a3PjvxhbvGJ
vRMOxjN5awQvZ9y
SCCBXYq881h466FwtgteHNHbaPggzCqN+bHZSbQY4QJ2Wa7hT7hW2
/dZzn0yvFeZWNbRJ8T7p7B/
FOzzHk/KAFpem68r+zJpYK8gtffJ7x5llAvEQaXBsudr9w7F2G1Fkojzu9
nDWgXJZcHY/j4Xj7Dc
xrpUz4zO/AIYiZhyhdXRGd1GerRLPLBz/vL8LVaxoyfwzRtf5dZwk2jClM
BsykIxezlESSG4d9Oc
+Xg7L2MUy4Vc5oIpJQhkVurCrGTUyS0LMHtcTTH2dQL2BtOUJyUES
uEEt8TioSWZzZXubSLaEIVU
0ihwXEJnYdTy9NBOP2+mF2m+z0MpIu/IS8DELa+aXBlz9qdoSoTYcR
LXPLe6xQurZ7k/nfEoXTAJ
rGQpeEveD5VIXTAd6z2ZCYV2YHUxtsfyx2Mb0sXCzX/aDW17UjkuhX6
rl1rmc8yo7rd8cSDRAxsT
dib8qHvAn67f5Mt2g5d219hMXlCodOnDvNfdhCLmgUdBhCiyAHgZiFs
E8uV5nkV1oRlbfF+eLx9x
r0xrl9auUJnFAVYLTdXcM8tKkWRThEV8NfnLM763jCIIkS/sX+DWdJ
3npuuc8n3+dHiLd+Qxjxix
GL1AizkvSDaRpomggZ6OFAJTiKgV1ceIFB+B4n5TD+HKPh8Mb0Dvyn
9PRPOG2NhlOOfcVWFrXgTo
eQt8XTq+KsZz3cSIciHGZBBUiOo0rsHwfjy+rlMwNCQEpVPv4ZlsnqkS
ujBjyPlvrRRd0Gqex66N
FJuZfmOqagRY5cULSvLvbhcRStGpYpBxPtiuRaWUFnWVzBsQiZG9n/n
qPPfzRpZGifRcKkLICpVX
e05mbEhsDL5swuMQeSjGmSRS6pno3RAk3udQJbeUMI9qCeaRLVPwk
OOyYU1lzEWIigFeL8Cs82gc
PDw74L1Qi8EuWEewiNGxR3kiyk4mrgXj9dWKf7Y54Xc2Gz4/DJwGeK
LJI2hSBEtIqVgfY8V59Ybq
bFpwmZp7X9ZjTcJ/UQBluerKRrGZzIJ4yua8hA5Xi3dDA2VeKj1khrpM
R5jpTirDLVAc8Ong+LWg
mE10An3Xc4Hww4uJ757t+cmo7CVwJUYGAUuKWkCsc1oJaXayVpDnu
A1t+O+MrxZXFTlPVczKq8iJ
1rh5eE4rHC/ZTwu/w4hqRM2wRu/TrNH7qZoqMY2gQh/h7gY+f8V4bh
081HRSmNykS/ASINhESICE
XIW4hFK69lHmCeb5lEOttvB9ab+VK8rHmRt4YUltTna+PHsx5vuX5Cp
MfAw1LyCb6syNiZP1ucNB
QIN7NGMjc4rcb0EuxmG/T+6bUKLKxKste7GymBXVgJh7Eksua6BEv
mleC+4EQWAVlEGMcVrxV2eB
33/f+IMPEg8VrkXhNOfUenX62UwieFEhrANKLYpqnXO6jUX6NOSTL
y66VrnXgvbK2Fudo3lV2pun
cH4/Qu+SW+j5fZ2wA1m3JbDXgbPRGHrlK3eF3/584mt3E1dWhlwMT
KNAmHK7qTkHNqnw8EJ481Hg
x4+EcQ8nIvRS6KgYWhrYCxyFAR3+UNNyGpx9wrVa9z8Nnj8p3st9fha
8fwr702GfBYnM+ojND2o+
XoJ9zr8v8rs8KLrhucmVDlJoMEDRxYouImWzanVsXcVJ+4wDxLQIab
GWynGT2pW0niKuqE35QIiB
wWDUxOPpjO89+ltOWHEa1/zStc9zrbvCWtecTefsZSLEXOjcxBtLYyAR
omfZWR6mkfmvzc2fnZnP
CAw2w+zKXiNWrTBhrROhuIUPkZzHVBS7YnmoU9ow8Dbc64AaG5Qe
iqkW51VPaTexRlXKiuIxBwtd
fkm5nZEthl7hslQELNWLkxghCGsGbg/XeWHzLD/a3ePRdstIQruM3QU
zzj5XK3CU7Xp5uFyin/Yn
rFGwngL/0Wvb442gOMTf5evzD2XBNxgqCmQIMEhEDR6GM94Y3uO
N8X1e393hRbvJhhUXXLBn9B5z
dN7Go1iJTAhWik4UqpyBWH6eFZanDffYUJqtSUM/T0H0Id7q30Ohapf
OnGGrVNRQt0dQJIRokRMb
eElXxF1HF3pu6gl/1L/Jm90D3g1nnNjAdR3opfeQWyZURpIljI6OLofj58
JHmWlINjCpFSHuuBUr
61by0YD3FDRS9pgEYB+FrQi7BC9o4Ov0fIOeZ/KzdgZjHpPvxUL19nlb
n0TQYoRzZcfXQKp6nufq
k6PPQjHUEyTUUEOyImd5bI0df1YmK49yupm9FTSMQiqxezP5OTu5X
FtmrM6XlHsZmG+6ocAx/0ti
XnTE5kcavokpzw/mXtiYeaABo8AT8Q3sbQt8TXveZeABe35ixkMSJwiD
5lzS4IWLyuwqwftDS+kF
qCgtPZaqA/l/bpUTzMMwE54rh3grjagRBbamXADnpmiY+EwH3xwGvr
1Z8xvrFa+tOlYxMKp7JCZJ
SFSy37bitAh5sxkrlQcd5ixbFqytFbrw73KzwvPmg/Ve7dfW8uanzved6xks
132TGZtveRhjsdRq
jFwAPWPZTAlM9ASCBC4m4T9vt/zlbstjhQ6vDh3wNi/ktBmyolEG0Lb
CaJn8Jf2heVV0HJzXnm/1
xOPKXkV7KzDLkxpZUfizmDivsLwKzA1khEDItXTHpJDgNCh3VoGX1h
03BqeP2l9UYo62KJ5Cn4FS
Gd1yNdx2JFZnacbGcmYcd46+OepmmQpSvBWHOF3qBLPi22q2Ur1jh5
NgeC6vljWXo9dqMcwF7DPe
Z/6Vj5ubsst9grtl6wbbcnSSqxKh+qNDTqUyDBT6aPQrl81phD9/YvyLe3
v+5OGe9/ZK7HoPe1ZD
bYK6EZ+15wVNLpFVUVOYcLU5H9MvmiG2XqmW9lov2bHHFVzVaI0
KphtYi0EzkI3g+bedCheTManx
mRPjN14M/NYrgc9ci54fPCkhBddhMi+VIFjoORuVdx4rP34IH14EJoPN
kAjidVxMW94m82JEFnO9
hP1nX6v1+gXv++R4t0+M909h/9iwHwLT3KdlsRzAvuQHWc/AmJ0BIe
MjgeUuMZKjNqTwumy8Sh66
LrnOgnI0h3UJTwXikM9JbhVC7g1WwsjyVUnc2+qKiV/cWeQaK6Y0cX/
3iP/86A36KPTBeP3qF7nC
KXsN7CNob25RnwLZ9UqufoOV6r9awmGkUkUJj1MpPkCqV3gG3hZjP
P5qBXBr5bTFGZdFBhyG6ZbL
5BCH5TxZnrRISpZZUMxKDZnnHQkHbk4pVCrgPdHJVfPydwuu8N0cr
vDC+lme6d/hJxf3mRg9dFZa
OBomZqUcU/5af89ALE01Myz8XThnXnj58+GiPoKudpoWe2YrOM7fJX
hhLLJgVPFjnUCnyoVM3Lcn
vCHv84bc4ybXuMYaYUdiR5BAT/A+okR8KxAIGhFTLJtwWk/o4ff22G
HILwdHyuv4eYf3mYXN8pg0
x1lwz6c9sb1bEWgVp+YZ6zv2rCTyfLrBty9OuJWuMWzW/B/2A77Xv8u
WkSiRU3pWEoniW94x7RGb
GGxAiYziLQiSgHdB9NYH3hxHkZwj6FAWBQcQ857HRg0PBtiLMIqwE
eFlEb5B4Au5Mfxjc0EtohA9
jNcs8yoxxCbnKRYIFt0bIYJZypvP3DLFihcheEHQIDkvuoS35pBc8RYgJ
gHRrlGoWkt/yaorGJ49
FDTKn0AOYW9MI0L1ihYPSJkxzXllwpgx5qHBpdqtSPZbFyFi4jlnGBqM
CcOSG2ME7yXd4ZtyEM4D
7MR4NgXupsA3EjwMga1MvM2ImNDlaJionven4jl3LjvUq/nmyI0JJVg2
SEizfiT3+g1KZxOaUzc0
KEEig/YEIntTzpg4R+mC8kKE3xlW/I+bDd9aD9zqQEx5rAlNeD9ISdAp
QSMhb3qX6RizplDavTUL
Z95sLqxwbUpHu7Zk8X501VUlu+H1LTMTGoaYDx4qMVI81EV7WWop
pZgPOBuvYtUMU3h3nPjObstf
TXsSHRtA1PG9DFtdjq2GXRbQ8iMX/PsIL6+glUFbM9yM43Z1HGGFD
b9qfjzQY4p3uoS6e6rQlNMJ
PP2gi4HRlN3kbWCei8aLfeTZYWAToht+y8bPF2SFzddqMxhp8PAUTrv
ksTLjoLnCyhyLNYrlfKei
Q0hz1QKdlTSzXBCWJFPpuIykrWxwgMO/C3Zq0pHzQ8lF/AQsGCo5b
E2yN1hCDeP31lGQ1Ddcq94Y
Bkip441t4F98sOd/ev+Cdy72XI1gsWeSyF5GoilWUkhKpMLBGA8H1NL
Y4UCLnLu03pv7tfrcJ6N3
W+hHBt5eL59YvKoEZRJ4sveCcTdOlK/fhd96RfjqHWHd9Yx7o9eJXiJC
59qHJZCOSSL3zhJv3pt4
94Gx2/tCl951Y/VMjcpnatTWgdrw81qrv3i8fwr7J4KdRqs8Arsc3ruRU8
XR5TqTp/OUQmpBxA3P
kjyVwoCsFxSeKRgheVG0oAHFjS11w3rIkFpgHKCGQeY/3tzYPQglTFeyI
CthQjUsOV8eDKK5JfOc
kffGe3zncWLT9VzrrvKl1cucxhUS4Mx2XsId8RyTbBGVpJTNUcjKWyrW
KQfmAFrJFm+pntjFWMU9
Ny2HmyfdlqdXxLSHliES5Z4tCv0Yl16lrPiiJUE52drrj4iNPC+Hv1S6qTw
xOk6kEGC2AONWjB7h
Wjzh7nCLZ7qbrOUdHmvynqyZec4eqPzg4lKCOYwwI829ApfH2mgVH+
t1iSaP4u/y97YdUHnVxuwI
UbIlOdNTFA9JiuIq/TbseWP4kP8yvs8r6XmuplP34uTwRExzdm9kwgu
AAXWTIc2zZx5zGfjLx2ZL
+uXxt8ePrtZL9z4WTtpa65e0KdVLcCl08cj9wRjx6shrM25Oa76hLxA0c
Hta8W83K77f3eO9eM4Z
I9et56Z2DKw4w1tDJRJBAl3nhTWSeR9IJ6Pijctl/fEN5RxX4fSt5lWwo3
qO1STCTj1V4TXreF06
PodwHeU8CdsWh+rKTVGxcl1pf3ZWqIKBGyEmBCWqh4uWdidmnsdf+
jiS75Sy8lcqU0MO2WXmkWI6
G9MqpRTaLXPh1FSZuPt9M8RuLNFyngRvNSLOmxNgogRLvnHMMGs
oYXulwqtQGoqWHoqJDHcA8709
4OujM5+ZC4x9ELZB2Ai8mjruq/FugAcysTflAmETPed0ynBbyCHeYfb2
1hAggreiAMpmIGXjWGdC
bzAJTDHzMwnsLTBhPCZxISMnAl/qO35rNfB7mzW/uhq4HSMjMOpE
Sm6UCAZEX7/JSiJJpnebZ8MF
dGMyrBu+xu9VBPWBdmJ1HhdLZ/kuhyHAThOL0OBj5vgC0wFPrZynP
meOxylh6JUXZ/4+xB4EHqvy
1+PI90blJ8nYBGPIxsjSzoecv1qUpkVYex63SCNm83ntsVZpatBQ0XIow
+q4ytQcoMNBbGR48yyr
f2beLOAbKDPmIkyBTpQdxs6MK8F4cTBeHYRn+0gvwoVmLiHzxq9yp
DJ/suSuVuRiHXIT4l3PaqMl
pL4X+qoK4iVWbBknlRJpDS4zDjJfKfrG4W2a6XNjtNTvx2XI02Av1+Dh
qQRMS4Xi3ApQzdPHADH1
OQg58F96YlT6MDEEl6k/vDD+4H7i395X/uqJV4S/NeRg5RyarnHCsjH
h2GZ1STPS0AyXaKYcOkav
h/Q4/26fgN6tXuP38TDyoCCqLk9icKOejpztlSiB127Db74mfOX5kc0pM
ME4ZgOMGbncC7kuKMmE
B0/grQ+MDx7BOBldL8ggqAqayhxJw/JmnvPzXav/rfD+98Fn/v8AuxyK
kI+EvcJWZQJ4vSAQmY0x
Lg9z7EXeGM48tKQWuIwxCV63REpVdzeULz2ssyxevFf2W5BQABaqu7
oUGysjqUir7wUDnvO3iR3n
bPnR7j3+4+MVm+46cq3n88Nd1mFglyb2uKclRC/DTkoexhBdWaksvcS
/VvzJnMNj5ZwMZ93QNBRQ
JqmZoDoTVVloPIpU+VTvc0kIfMzXsaJXLf6s4FgaUBoY2pcLXv+hGucl
K+bmwirkaUimTD