More Review for Midterm Exam AP Calculus - Meinke Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine the limit algebraically, if it exists. 6 sin x 1) lim x 0 7x A) 6 7 3) lim x 4 B) Does not exist 1 9 D) Does not exist 3) B) 0 C) 3 2 D) - 1 2 4) B) 2 C) 16 D) Does not exist x3 + 12x2 - 5x 5x lim x -7 5) B) 5 C) 0 D) -1 x2 + 11x + 28 x+7 6) B) 154 C) Does not exist D) 11 x2 - 4 lim x -2 x + 2 A) Does not exist 8) C) 0 x2 + 2x - 63 x-7 A) -3 7) 1 9 x2 + 4x - 32 x2 - 16 A) Does not exist 6) 2) B) - A) 0 5) lim x 0 D) 0 x A) Does not exist 4) lim x 7 C) 1 1 1 x+3 3 2) lim x 0 A) 1) 7) B) -2 C) -4 D) 1 10 - x lim x 10 10 - x A) Does not exist 8) B) -1 C) 0 1 D) 1 Find all points where the function is discontinuous. 0, x< 0 9) f(x) = x2 - 4x, 0 x 4 4, 9) x> 4 A) x = 0 B) x = 4 C) x = 0 and x = 4 D) Nowhere Determine the limit algebraically, if it exists. x+6 10) lim x 6 (x - 6)2 A) Does not exist 11) lim x 2 10) B) 6 C) -6 D) 0 x-3 A) 1 11) B) 0 C) Does not exist D) -1 Solve the problem. 12) Find the points where the graph of the function has horizontal tangents. f(x) = 4x2 + 4x - 4 A) (0, 4) B) - 1 ,- 5 2 C) 1 , - 18 2 12) D) (-12, 716) Find the limit, if it exists. x2 - 4x + 17 13) lim x3 + 9x2 + 8 x A) 14) 17 8 lim x - B) 1 C) 0 D) -12x2 + 8x + 9 -15x2 + 2x + 8 A) 15) 13) 14) B) 9 8 C) 4 5 D) 1 6x + 1 lim 13x - 7 x A) 0 15) B) C) 2 6 13 D) - 1 7 Find all points where the function is discontinuous. 16) 16) A) x = -2 B) x = 1 C) None D) x = -2, x = 1 Find the limit, if it exists. 4x3 + 3x2 17) lim x - 6x2 x A) 4 17) B) - 1 2 C) - D) Find dy/dx. 18) y = sin3 x - cos 10x 18) A) 3 sin2 x cos x + 10 sin 10x B) 30 sin2 x cos x sin 10x C) 3 sin3 x cos x - 10 sin 10x D) 3 sin2 x + sin 10x 19) y = 2 tan4x A) 8 tan4x sec x 19) B) 8 tan3x sec2 x C) 8 tan3x D) 8 tan5x Suppose that the functions f and g and their derivatives with respect to x have the following values at the given values of x. Find the derivative with respect to x of the given combination at the given value of x. x f(x) g(x) f (x) g (x) 20) 3 1 20) 4 8 7 4 -3 3 5 -4 f(g(x)) at x = 4 A) -32 B) 24 C) -20 D) 8 x f(x) g(x) f (x) g (x) 21) 3 1 9 6 5 4 -3 3 5 -4 1/g2 (x) at x = 4 2 A) 27 21) B) 1 32 C) - 3 8 27 D) 8 27 x f(x) g(x) f (x) g (x) 22) 3 1 9 6 7 4 3 3 2 -5 g(x) at x = 3 1 A) 2 7 22) B) 7 6 C) 1 D) 2 7 1 6 At the given point, find the slope of the curve, the line that is tangent to the curve, or the line that is normal to the curve, as requested. 23) x2 + y2 - 2x + 4y = 8, tangent at (4, 0) 3 1 A) y = - (x - 4) B) y = (x - 4) 2 2 23) C) x = 4 D) y = 0 C) 4 1 D) 4 Find the value of df-1 /dx at x = f(a). 24) f(x) = 4x + 8, a = 1 A) 8 25) f(x) = A) 1 B) 8 24) 1 x + 10, a = -2 4 1 10 25) B) 1 4 C) 10 D) 4 Find the derivative of the given function. 26) y = tan-1 5x 1 A) 1 + 5x 27) y = 3.1 cos-1 2t 6.2 A) 1 - 4t2 28) y = sin-1 A) 5 B) 2(1 + 5x) 5x B) 1 C) 10 5x(1 + 5x) 3.1 C) - 1 + 4t2 6.2 1 - 4t2 1 1 - 5x D) D) - 3.1 x 1 - x10 27) 1 - 4t2 1 x5 -5 26) 28) B) -5 C) 1 + x10 -5x5 1 - x10 D) -5 x x10 - 1 Find dy/dx. 29) f(x) = -7e8x A) -7e8x 29) B) -56e8x C) 8e8x 4 D) -56ex 30) y = 7xex - 7ex 30) A) 7x B) 7xex C) 7ex D) 7xex + 14ex 31) y = log (2x - 9) 2x - 9 A) 2 ln 10 2 B) ln 10 1 C) (2x - 9) ln 10 2 D) (2x - 9) ln 10 32) y = ln (ln 5x) 1 A) x 1 B) 5x 1 C) ln 5x 1 D) x ln 5x 31) 32) Use logarithmic differentiation to find dy/dx. 33) y = (cos x)x 33) A) ln x(cos x)x - 1 B) (cos x)x (ln cos x + x cot x) C) (cos x)x (ln cos x - x tan x) D) ln cos x - x tan x 34) y = 5 8x 34) A) 40 (ln 8) 58x B) 40 (ln 5) 58x C) 8 (ln 5) 58x D) 5 (ln 8) 58x Find the points of inflection. 35) y = x 7 - x2 35) A) (0, 7) B) (7, 0) C) (0, 0) D) No inflection points. 36) y = 1 4 x - x3 + 15 4 36) A) (0, 0) and (2, 11) B) (0, 0) C) (0, 0) and (2, -4) D) (0, 15) and (2, 11) Use the Concavity Test to find the intervals where the graph of the function is concave up. 37) y = 6x - 5e-x A) ( - , 37) ) B) (- , 0 ) C) ( 0 , ) D) None Solve the problem. 38) Given the distance function s(t) = t2 + 9t + 10, where s is in feet and t is in seconds, find the velocity function, v(t), and the acceleration function, a(t). A) v(t) = 2t + 9; a(t) = 0 B) v(t) = 2t + 9; a(t) = 2 C) v(t) = 2t + 9; a(t) = 2t D) v(t) = 2t + 19; a(t) = 2 5 38) 39) The radius of a right circular cylinder is increasing at the rate of 5 in./s, while the height is decreasing at the rate of 8 in./s. At what rate is the volume of the cylinder changing when the radius is 15 in. and the height is 20 in.? A) -300 in.3/s B) -300 in.3/s C) -80 in.3 /s D) 1200 in.3 /s 40) A man flies a kite at a height of 50 m. The wind carries the kite horizontally away from him at a rate of 10 m/sec. How fast is the distance between the man and the kite changing when the kite is 130 m away from him? A) 51 m/sec B) 10.9 m/sec C) 9.2 m/sec 6 39) D) 10 m/sec 40)
© Copyright 2026 Paperzz