xx/xx/xxxx Lab scale isolation of compounds by Flash Chromatography • Properties of Silica Gel • Using Thin Layer Chromatography (TLC) for chromatographic method development • Transfer from TLC to Flash Chromatography Lab scale isolation of compounds by Flash Chromatography • Applications - Rapid and reliable transfer from TLC to Flash Chromatography Dr. Michael Schulte Merck Chimie S.A.S. © Merck Editor: Presentation name here 25/11/2005 Page 2 1 xx/xx/xxxx Silica Production Process Hydrosol Na2SiO3 (water glass) + H2SO4 (oligosilicic acid, orthosilicic acid) Hydrogel temperature control Production Plant control of temperature and pH drying temperature control Xerogel (raw silica powder, particle size 0.5 - 6 mm) Ground silica gel (dp 5 - 500 µm) Classified silica gels ... the biggest chromatographic silica gel plant in the world, washing pH-control, ion content Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 3 Merck Chimie S.A.S. 25/11/2005 Page 4 2 xx/xx/xxxx Standardized Silica Gels Production Plant LiChrosorb Si60 LiChroprep Si 60 Three reactors for silica gel production, Silica Gel 60 + Silica Gel for TLC ... Large scale production, btach size: several tons Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 5 All from one Production Process CONSTANT SELECTIVITY Merck Chimie S.A.S. 25/11/2005 5, 10µm 15-25 µm 25-40 µm 15-40µm 40-63µm [9385] below 63µm 63-100µm 63-200µm [7734] 200-500µm Page 6 3 xx/xx/xxxx Factors influencing Selectivity and Usability Separation Optimization Form irregular / spherical Efficiency, Pressure Drop Surface Modification Selectivity Area / Pore Size Loadability Purity Selectivity, Resolution pH Selectivity Water Content Selectivity mechanical Life Time chemical (pH) CIP - Conditions Stability Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Resolution - the key parameter for preparative chromatography RS = ( k´ N α −1 )⋅( )⋅ α 1 + k´ 4 maximize through sorbent screening Page 7 Merck Chimie S.A.S. 25/11/2005 minimize - keep cycle time maximize - high short efficiency sorbent Page 8 4 xx/xx/xxxx Method Development – using Thin Layer Chromatography Method Development – using Thin Layer Chromatography •You have to consider three phases in TLC : • Several parameters have to be considered when developing a TLC method : – Activity of the stationary phase Gas phase – Conditioning / preparation • methanol / isopropanol (plate developing or dipping) • drying (30 min @ 120 °C) – Support (plastic, aluminium, glas) Sample – Binder – Fluorescent indicator – Manufacturer / lot reproducibility Stationary phase Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Liquid phase – Manufacturer / comparability with Flash / column chromatography Page 9 Merck Chimie S.A.S. 25/11/2005 Page 10 5 xx/xx/xxxx Method Development – using Thin Layer Chromatography Method Development – using Thin Layer Chromatography • The mobile phase should : • Solvents classification: Snyder triangle 0.6 0.2 – Dissolve the sample – Desorb the sample from the stationary phase 0.3 – Transport the sample over an acceptable distance • The mobile phase should in general be : proton donor – Simple (maximum 4, better 2 components) xd xe 0.4 proton acceptor – Non-toxic – of chromatographic quality 0.5 0.3 – Not cause any secondary reactions – Not demixing 0.6 0.2 – Of favourable low viscosity Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 11 Merck Chimie S.A.S. 25/11/2005 0.3 x 0.4 n dipole interaction 0.6 0.2 0.7 Page 12 6 xx/xx/xxxx TLC - equipment TLC/HPLC - Conversion Rf = d oS d of ATTENTION : the migration distance is measured from the sample spot Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here k´DC = • CAMAG – vario chamber parallel us of 6 different solvents or solvent mixtures 1 −1 Rf Page 13 Merck Chimie S.A.S. 25/11/2005 Page 14 7 xx/xx/xxxx Thin Layer Chromatography (TLC) as pilot technique TLC/HPLC - Conversion Some general rules: Place a spot of the sample on a TLC-plate • Adjust polarity to lower retention values on TLC plates Develop chromatogram with mobile phases of different elution strength • Try to maintain the same relative activity on the plate and on the column • Do not use volatile mobile phase components Literature: ε0 TLC as a pilot technique for transferring retention data to HPLC W.Jost, H.-E.Hauck, F.Eisenbeiss, Kontakte 1984 (3), p.45-52 Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 15 (elution strength) far too low too low perfect too high Literature: E.Stahl, Chemiker-Ztg. 82 (1958) 323 Merck Chimie S.A.S. 25/11/2005 Page 16 8 xx/xx/xxxx TLC-Approach 1 (Solvent Screening model TLC/HPLC - Conversion Apolar Compound n-Heptane 0.01 0.38 Cyclohexane 0.04 0.56 0.57 0.58 Dioxane THF Etat MTBE 0.38 0.82 0.88 0.95 IPA EtOH MeOH ACN ε0 Merck Chimie S.A.S. 25/11/2005 Editor: Presentation name here 1) Two series of neat solvents covering a broad polarity and selectivity range Polar Compound MTBE Dichloromethane 0.42 © Merck J.Dingenen, Janssen Pharmaceutica) Run 1 MTBE Toluene CH2Cl2 CH3CN EtAc THF Run 2 MeOH EtOH IPA Acetic acid 2-propanone 2-butanone 2) Solvent series based on dichloromethane – methanol mixtures Run 3 Lane ε0 Page 17 Merck Chimie S.A.S. N-Hexane 50% CH2Cl2 50 % 1 25/11/2005 MeOH 2% 2 MeOH 5% 3 MeOH 10% MeOH 20% MeOH 50% 4 5 6 Page 18 9 xx/xx/xxxx TLC-Approach 1 (Solvent Screening model TLC-Approach 1 (Solvent Screening model J.Dingenen, Janssen Pharmaceutica) J.Dingenen, Janssen Pharmaceutica) 2) Solvent series based on dichloromethane – methanol mixtures Good selectivity for one of the tested neat solvents or for one of the dichloromethane – methanol mixtures 1) Start experiments on the preparative chromatography column 2) Good selectivity for one of the tested neat solvents but Rf values to high Addition of an apolar solvent to adjust the Rf values between 0.10 and 0.35 (corresponding to a k` value between 1.85 and 9) 3) Unsatisfactory resutls On the basis of the observed spot shapes in the experiments with neat solvents the most suitable solvent combinations (binary – ternary) are chosen and further inverstigated Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 19 Merck Chimie S.A.S. 25/11/2005 Page 20 10 xx/xx/xxxx TLC-Approach 1 (Solvent Screening model TLC-Approach 1 (Solvent Screening model J.Dingenen, Janssen Pharmaceutica) J.Dingenen, Janssen Pharmaceutica) Binary solvent mixtures: THF/acetone or Ethanol/Acetone Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Ternary solvent mixtures Page 21 Merck Chimie S.A.S. 25/11/2005 Page 22 11 xx/xx/xxxx TLC-Approach 2 TLC-Approach 2 (EtAc/Heptane-Gradient, Solvias) (EtAc/Heptane-Gradient, Solvias) TLC-Screening with Ethyl acetate / n-hexane (1:4) Transfer to LiChrospher Si 60, 12 µm packed into Selfpacker columns 125 mm length and 25 or 50 mm I.D. Exponential gradient: c( EtAc ) = Segment 3 (Rf=0.60-0.90) (e ( a⋅t / T ) − 1) ⋅ (1 − K ) +K ea − 1 T=length of gradient(min), K=c(EtAc) at t=0, a=exponential gradient parameter, t=runtime Segment 2 Rf (Rf=0.25-0.60 a K T Segment 1 (Rf=0.05-0.25) 0.05-0.25 7 0.15 8 0.25-0.60 6 0.09 6 0.60-0.90 8 0.05 6 Literature: Transfer to preparative normal phase silica, according to segment Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Automated normal-phase preparative HPLC as a substitue for flash chromatography in the synthetic research laboratory P.Renold, E.Madero, Th.Maetzke, J.Chromatogr. 2001 (908), 143-148 Page 23 Merck Chimie S.A.S. 25/11/2005 Page 24 12 xx/xx/xxxx Example for TLC method development (Diastereomers + impurities) TLC-Approach 2 (EtAc/Heptane-Gradient, Solvias) ea / hex = 1:4 0.9 1.00 0.8 0.70 Bibenzyl 0.7 0.80 0.6 0.54 Dibutylphtalate 0.50 Acetophenone 0.5 0.43 Diéthylphtalate 0.4 %B(C) 0.60 Ethylbenzoate 0.60 G-1 100 % n-Heptan 95 % n-Heptan 5 % Ethylacetat 85 % n-Heptan 15 % Ethylacetat 80 % n-Heptan 20 % Ethylacetat 0.40 G-2 0.33 Diméthylphtalate 90 % n-Heptan 10 % Ethylacetat G-3 0.3 0.20 0.22 Benzylalcool 0.2 12.7 12.1 11.5 10.9 9.7 9.1 8.5 7.9 7.3 6.7 6.1 5.5 4.9 4.3 10.3 0.05 Acetanilide 3.7 3.1 2.5 1.9 1.3 0.1 0.7 0.00 0.1 t Ref1 Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 25 Merck Chimie S.A.S. 25/11/2005 75 % n-Heptan 25 % Ethylacetat Page 26 13 xx/xx/xxxx Example for TLC method development (Diastereomers + impurities) Example for TLC method development (Diastereomers + impurities) Retention Time (min) 0 50 100 2 1,55 1,68 1,89 4 6 8 10 12 14 16 18 150 200 250 High 300 90 % n-Heptan 10 % Ethylacetat 5,04 95 % n-Heptan 5 % Ethylacetat Intensity (mV) 2,62 3,08 7,85 100 % n-Heptan HPLC chromatogram Retention Low TLC chromatogram 85 % n-Heptan 15 % Ethylacetat Merck Chimie S.A.S. © Merck 80 % n-Heptan 20 % Ethylacetat 25/11/2005 Editor: Presentation name here 75 % n-Heptan 25 % Ethylacetat 90 % n-Heptan / 10 % Ethylacetat Page 27 Merck Chimie S.A.S. 25/11/2005 Page 28 14 xx/xx/xxxx Comparison of TLC and HPLC Comparison of TLC and HPLC Example 1: Triazines TLC: HPLCe: Used stationary phases: TLC HPTLC KG 60 LiChrospher Si 60 HPTLC RP-8 LiChrospher 100 RP-8, LiChrospher 60 RP select B HPTLC RP-18 LiChrospher 100 RP-18 HPTLC CN LiChrospher 100 CN HPTLC NH2 LiChrospher 100 NH2 HPTLC Diol LiChrospher 100 Diol Merck Chimie S.A.S. © Merck HPLC 25/11/2005 Editor: Presentation name here Mobile phase: Pesticide Terbutryn Prometryn Terbuthylazin Propazin Sebuthylazin Atrazin Metribuzin Simazin Cyanazin Hexazinon Desethylatrazin Metamitron Desisopropylatrazin Page 29 Merck Chimie S.A.S. 25/11/2005 HPTLC-Fertigplatte RP-8 F254s LiChroCART® LiChrospher ® 100 RP-8 bzw. LiChroCART ® LiChrospher ® 60 RP select B Acetonitril/Water 60/40 hRf 19,3 21,4 27,1 30,0 30,0 35,7 45,7 45,7 47,1 52,1 55,0 60,7 61,4 K’P 4,18 3,67 2,69 2,33 2,33 1,80 1,19 1,19 1,12 0,92 0,82 0,65 0,63 K’S(RP-8P K’S(select B) 15,70 3,20 14,18 2,90 2,10 1,91 1,89 1,71 1,85 1,68 1,46 1,31 1,06 0,94 1,10 1,01 0,95 0,85 0,81 0,79 0,66 0,62 0,61 0,54 0,52 0,49 Page 30 15 xx/xx/xxxx Comparison of TLC and HPLC Comparison of TLC and HPLC Example 1: Triazines Example 1: Triazines a1) RP-8 (without Terbutryn and Prometryn): r = 0,996; K’S = 0,11 + 0,75 K’P Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here a2) RP-select B: r = 0.996; K‘S = 0,03 + 0,75 K‘P Page 31 Merck Chimie S.A.S. 25/11/2005 Page 32 16 xx/xx/xxxx Comparison of TLC and HPLC Comparison of TLC and HPLC Transfer of a real sample (salad) 1 All samples, except 0,995 0,99 Phenoxycarbonic acids 0,985 0,98 0,975 0,97 HPTLC-Chromatogramm (λ = 200 nm) Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Silica HPLC-Chromatogramm (λ = 200 nm) CN Amino Diol RP-8 RP-18 Real sample (Salad, spiked) Correlation coefficient between TLC and HPLC Page 33 Merck Chimie S.A.S. 25/11/2005 Page 34 17 xx/xx/xxxx Transfer to Flash Chromatography Transposition, example 1 • We now have a complete range of Flash Cartridges : • In ideal conditions, transposition from TLC to Flash Chromatography should give such results 800g 70g 90g 200g 300g 150g 200g 300g 400g 600g 2,5g 10g 15g Merck Chimie S.A.S. © Merck 25g 30g 25/11/2005 Editor: Presentation name here Registered Trademarks of Götec-Labortechnik Page 35 Merck Chimie S.A.S. 25/11/2005 Page 36 18 xx/xx/xxxx How to increase performance… Particle size comparisons • .. by using smaller particles, but: Test silice Si60 40-63 µm Test silice Si60 63-200 µm Test silice Si60 15-40 µm 300000 Smaller granulometry Higher pressure !!! 250000 Ex : Back pressure in Cyclohexane 90 / 10 Dioxane Bed height = 100 mm Flowrate = nominal 200000 150000 Si60 63-200 µm Si60 40-63 µm Si60 15-40 µm 0,4 bar 1,2 bar 4,3 bar 100000 50000 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Need for pressure stable flash cartridges Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 37 Merck Chimie S.A.S. 25/11/2005 Page 38 19 xx/xx/xxxx Efficiency depending on particle size Efficiency depending on particle size • Comparison between 15-40, 25-40 spherical and 40-63 µm • Comparison between 15-40, 25-40 spherical and 40-63 µm Biotage 40-63 µm Biotage 40-63 µm LiChroprep 15-25 µm Pharmprep CC 25-40 µm Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 39 Merck Chimie S.A.S. 25/11/2005 Page 40 20 xx/xx/xxxx Difficult separations – cis/trans-Phytol Difficult separations – Citrus-Oil HPLC-Chromatogram HPLC-Chromatogram Biotage 40-63 µm Merck Chimie S.A.S. © Merck Supervarioprep 15-40 µm 25/11/2005 Editor: Presentation name here Biotage 40-63 µm Page 41 Merck Chimie S.A.S. 25/11/2005 Supervarioprep 15-40 µm Page 42 21 xx/xx/xxxx Dry loading Dry loading • Dry loading : Another advantage of pre-packed cartridges • In order to obtain good transposition to Flash on basis of TLC results(especially in Anti-Langmuir because of low solubility in solvent) : Check loading in TLC. Use Dry loading. – In TLC, the sample is always deposited as a "Dry loading". – In Flash, it depends of the solubility of the sample in the eluent. Our cartridges have special empty volume for this Dry loading : But… the sample does not always behave identically if injected in solution, or as a Dry loading. Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 43 Merck Chimie S.A.S. 25/11/2005 Page 44 22 xx/xx/xxxx Conclusion Contact • New Flash cartridges packed with Si60 15-40 µm offer : • We remain at your service for any question regarding Flash Chromatography : – Easy transposition TLC / Flash. – Very good purification efficiency. – Products presentation – Quicker purifications than Glass columns. – Tests on your products – Smaller fractions to evaporate. – Purification strategy – Secure working area (no glass breakage risk). – Trainings – Easy Dry loading directly on-column. – Etc… Thomas PONCET Process Separations Merck Chimie SAS [email protected] Merck Chimie S.A.S. © Merck 25/11/2005 Editor: Presentation name here Page 45 Merck Chimie S.A.S. 25/11/2005 Page 46 23
© Copyright 2026 Paperzz