Math 234 Summer 2002 Assignment 11 - Solutions Turn in the Problems with ! and show your work in detail. Reading assignment: Section 3.1. Show your work in detail. 1. Page 113: 2, 4, 9, ! 10, 11, ! 12, 13, ! 14(b)(c) 2 y ! c 1 e 4x " c 2 e "x , " # # x # #, y!0" ! 1, y $ !0" ! 2 y $ ! 4c 1 e x " c 2 e "x , y!0" ! c 1 " c 2 ! 1, y $ !0" ! c 1 " c 2 ! 2. Solve c 1 and c 2 . c1 " c2 ! 1 4c 1 " c 2 ! 2 # c1 c2 ! 1 "1 1 4 "1 1 ! 2 3 5 The solution of the initial value problem: y ! e 4x " 2 5 3 5 2 5 , e "x . 4 y ! c 1 " c 2 cos!x" " c 3 sin!x", , " # # x # #, y!!" ! 0, y $ !!" ! 2, y $$ !!" ! "1 y $ ! "c 2 sin!x" " c 3 cos!x", y $$ ! "c 2 cos!x" " c 3 sin!x" y!!" ! c 1 " c 2 ! 0, y $ !!" ! "c 3 ! 2, y $$ !!" ! c 2 ! "1, c 3 ! "2, c 1 ! c 2 ! "1 The solution of the initial value problem: y ! "1 " cos!x" " 2 sin!x" 9 !x " 2"y $$ " 3y ! x, y!0" ! 0, y $ !0" ! 1 a 2 !x" ! x " 2, a 1 !x" ! 0, a 0 !x" ! 3, f!x" ! x All these functions are continuous on "#, # . a 2 !x" ! x " 2 $ 0 when x $ 2. Let I ! "1. 5, 1. 5 . 10 y $$ " tan!x"y ! e x , y!0" ! 1, y $ !0" ! 0 a 2 !x" ! 1, a 1 !x" ! 0, a 0 !x" ! tan!x", f!x" ! e x . a 2 !x" $ 0, and a 2 !x", a 1 !x" and f!x" are continuous everywhere. However, a 0 !x" ! tan!x" is continuous on " ! , ! . 2 2 So, the initial value problem has a unique solution on " ! , ! . 2 2 11. y $$ " y ! 0, y!0" ! 0, y!1" ! 1, y ! c 1 e x " c 2 e "x . y!0" ! c 1 " c 2 ! 0 y!1" ! c 1 e " c 2 e "1 ! 1 , 1 1 c1 e e "1 c2 ! 1 "1 e "e ! ! ! "1 1 e e 1 c2 e "1 " e e ex " e e "x The solution of the initial value problem: y ! " 2 1"e 1 " e2 c1 1 1 "1 0 12 y ! c 1 " c 2 x 2 , " # # x # #, y!0" ! 1, y $ !1" ! 6 y $ ! 2c 2 x, y!0" ! c 1 ! 1, y $ !1" ! 2c 2 ! 6, c 2 ! 3 The solution of the initial value problem: y ! 1 " 3x 2 13 y ! c 1 e x cos x " c 2 e x sin x, 1 " 0 1 " e 1 " e2 e 1 " e2 !a" y!0" ! 1, $ y !!" ! 0 ; !b" y!0" ! 1, y!0" ! 1, ; !c" y!!" ! "1 ! 2 y !1 ; !d" y!0" ! 0, y!!" ! 0 . y $ ! c 1 e x cos x " c 1 e x sin x " c 2 e x sin x " c 2 e x cos x ! c 1 e x !cos x " sin x" " c 2 e x !sin x " cos x" !a" !b" !c" !d" y!0" ! c 1 ! 1, , the solution y ! e x cos x " e x sin x y $ !!" ! e ! !"1" " c 2 e ! !"1" ! 0, c 2 ! "1 y!0" ! c 1 ! 1, y!!" ! e ! !"1" ! "1 , no solution since e ! $ 1. y!0" ! c 1 ! 1, y ! 2 ! c 2 e !/2 ! 1, c 2 ! e "!/2 y!0" ! c 1 ! 0, ! y!!" ! c 2 e !0" ! 0, c 2 is free. , the solution y ! e x cos x " e "!/2 e x sin x , the solution y ! c 2 e x sin x 14 y ! c 1 x 2 " c 2 x 4 " 3, " # # x # # !b" y!0" ! 1, y!1" ! 2 !c" y!0" ! 3, y!1" ! 0 !b" y!0" ! 3 $ 1, we cannot find c 1 and c 2 so that y satisfies the boundary conditions. So, there is no solution for this boundary value problem. !c" y!0" ! 3, so it is true for any c 1 and c 2 . y!1" ! c 1 " c 2 " 3 ! 0, c 1 ! "3 " c 2 y ! !"3 " c 2 "x 2 " c 2 x 4 " 3, infinitely many solutions. 2. State the criterion for linear independent solutions of a homogeneous linear nth-order differential equation on an interval I. If y 1 , . . . , y n are linearly independent on I if and only W!y 1 , . . . , y n " $ 0 for all x in I. Page 113: 15, 17, 18, ! 20, ! 21 15 f 1 !x" ! x, f 2 !x" ! x 2 , f 3 !x" ! 4x " 3x 2 Since f 3 ! 4f 1 " 3f 2 , f 1 , f 2 , f 2 are linearly dependent. 17 f 1 !x" ! 5, f 2 !x" ! cos 2 x, f 3 !x" ! sin 2 x Since f 1 ! 5f 2 " 5f 1 , f 1 , f 2 , f 3 are linearly dependent 18 f 1 !x" ! cos!2x", f 2 !x" ! 1, f 3 !x" ! cos 2 x Note that cos 2 !x" ! 12 " 12 cos!2x". Since f 3 ! 1 f 2 2 " 1 f , 2 1 f 1 , f 2 , f 2 are linearly dependent. 20. f 1 !x" ! 2 " x, f 2 !x" ! 2 " |x|, " # # x # # Let c 1 f 1 !x" " c 2 f 2 !x" ! c 1 !2 " x" " c 2 !2 " |x|" ! 0. Now we solve c 1 and c 2 . x % 0, c 1 !2 " x" " c 2 !2 " x" ! !2 " x"!c 1 " c 2 " ! 0 # c 1 " c 2 ! 0 x # 0, c 1 !2 " x" " c 2 !2 " x" ! 0 # 2!c 1 " c 2 " " x!c 1 " c 2 " ! 0 # c 1 " c 2 ! 0 c1 c2 ! 1 1 1 "1 Since c 1 ! 0, c 2 ! 0, f 1 , f 2 are linearly independent. 2 "1 0 0 ! 0 0 21 f 1 !x" ! 1 " x, f 2 !x" ! x, f 3 !x" ! x 2 Since f 1 !x" $ c 1 f 2 !x" " c 2 f 3 !x", f 2 !x" $ c 1 f 1 !x" " c 2 f 3 !x", f 3 !x" $ c 1 f 1 !x" " c 2 f 2 !x", f 1 !x", f 2 !x", f 3 !x" are linearly independent. 3
© Copyright 2026 Paperzz