Z. Kristallogr. NCS 223 (2008) 357-358 / DOI 10.1524/ncrs.2008.0155 357 © by Oldenbourg Wissenschaftsverlag, München Crystal structure of 1,3,5/2,4,6-hexahydroxycyclohexane, C6H12O6, scyllo-inositol Anton Zaschka and Kaspar Hegetschweiler* Universität des Saarlandes, Anorganische Chemie, Postfach 151150, 66041 Saarbrücken, Germany Received February 27, 2008, accepted and available on-line October 16, 2008; CCDC no. 1267/2318 and we can now provide a complete single crystal X-ray diffraction structure analysis of this monoclinic polymorph. The crystal structure can be discussed in terms of a threedimensional hydrogen bonding network, where every inositol molecule, lying on a center of inversion, is connected to eight neighbors via hydrogen bonding. Each of the six equatorial hydroxy groups acts as a hydrogen donor: O1−H4···O3i, O2− H5···O3ii, and O3−H6···O2iii (symmetry code i: 0.5+x,1.5−y,−0.5 +z; ii: 0.5−x,−0.5+y,1.5−z; iii:−0.5−x,0.5+y,1.5−z). Consequently, O3 accepts two and O2 one hydrogen atom, whereas O1 does not act as a hydrogen acceptor. The six membered cyclohexane ring adopts a chair conformation with puckering parameters Q = 0.581 Å, # = 180.0°, + = 0.00°. Table 1. Data collection and handling. Abstract C6H12O6, monoclinic, P121/n1 (no. 14), a = 5.0641(3) Å, b = 6.6605(4) Å, c = 10.6114(6) Å, 0 = 91.751(3)°, V = 357.7 Å3, Z = 2, Rgt(F) = 0.039, wRref(F2) = 0.112, T = 200 K. Source of material The title compound was obtained as a side product in the synthesis of cis-inositol [1]. Single crystals suitable for X-ray diffraction were obtained from an aqueous solution by slow evaporation. Elemental analysis confirmed the composition C6H12O6 as established by crystal structure analysis. Experimental details All hydrogen atomic positions were taken from a difference Fourier map. They were refined with variable isotropic displacement parameters. Discussion Inositol (cyclohexanehexol) exists in the form of eight diastereomers; all of them have been characterized by crystal structure analysis [2-9]. For the scyllo-(1,3,5/2,4,6)-isomer, a triclinic and a monoclinic polymorph have been observed, however, single crystals could only be obtained for the triclinic form [9]. Although being of lowest energy, the monoclinic polymorph has always been obtained as a mixture together with additional components. The authors mentioned several attempts to grow single crystals of this second polymorph, however without success [9]; its crystal structure finally followed from a combination of powder X-ray diffraction data and additional computational methods. Crystal growth in our laboratory was more successful, Crystal: Wavelength: ': Diffractometer, scan mode: 2#max: N(hkl)measured, N(hkl)unique: Criterion for Iobs, N(hkl)gt: N(param)refined: Programs: colorless prism, size 0.15 × 0.2 × 0.25 mm Mo K2 radiation (0.71073 Å) 1.52 cm−1 STOE IPDS, + 52° 5570, 705 Iobs > 2 "(Iobs), 670 79 SHELXS-97 [10], SHELXL-97 [11] Table 2. Atomic coordinates and displacement parameters (in Å2). Atom Site H(1) H(2) H(3) H(4) H(5) H(6) 4e 4e 4e 4e 4e 4e x −0.018(3) 0.270(4) −0.276(4) 0.399(5) 0.267(6) −0.286(6) y z Uiso 0.711(3) 0.965(3) 0.908(3) 0.645(5) 0.666(4) 1.099(4) 0.437(2) 0.627(2) 0.600(2) 0.392(3) 0.693(2) 0.759(2) 0.003(4) 0.010(4) 0.011(4) 0.040(7) 0.028(6) 0.035(7) _____________ * Correspondence author (e-mail: [email protected]) Unauthenticated Download Date | 6/15/17 5:25 PM 358 C6H12O6 Table 3. Atomic coordinates and displacement parameters (in Å2). Atom Site O(2) C(2) O(1) O(3) C(3) C(1) 4e 4e 4e 4e 4e 4e x 0.1220(2) 0.1231(3) 0.4003(2) −0.1369(2) −0.1317(3) 0.1479(3) y z U11 U22 U33 U12 0.7069(2) 0.8811(2) 0.7269(2) 1.0539(2) 0.9953(2) 0.8207(2) 0.6804(1) 0.6021(1) 0.4561(1) 0.7515(1) 0.6212(1) 0.4643(1) 0.0175(7) 0.0135(8) 0.0196(6) 0.0174(7) 0.0141(8) 0.0142(8) 0.0218(7) 0.0142(8) 0.0226(7) 0.0218(6) 0.0154(8) 0.0141(8) 0.0166(7) 0.0104(8) 0.0162(6) 0.0082(6) 0.0079(8) 0.0110(8) 0.0054(5) −0.0002(6) 0.0059(5) 0.0036(5) −0.0008(6) 0.0023(6) U13 0.0065(5) 0.0022(6) 0.0029(5) 0.0039(4) 0.0029(6) 0.0026(6) U23 0.0089(5) 0.0020(6) −0.0034(5) −0.0015(4) −0.0010(6) −0.0002(6) Acknowledgments. We thank Dr. Volker Huch for the collection of the data. Financial support from the E.U. Specific Targeted Project “Innovative tools for membrane structural proteomics (IMPS)” is gratefully acknowledged. References 1. Morgenstern, B.; Sander, J.; Huch, V.; Hegetschweiler, K.: Metal Binding of Polyalcohols. 6. Complexation of a Heptanuclear Polyoxotantalate Anion with K+: Formation of a Supramolecular [K6-('-OH2)6-(OH2)8]6+ Ring Structure. Inorg. Chem. 40 (2001) 5307-5310. 2. Freeman, H. C.; Langs, D. A.; Nockolds, C. E.; Oh, Y. L.: The crystal structure of cis-inositol monohydrate - Un objet retrouve. Aust. J. Chem. 49 (1996) 413-424. 3. Jeffrey, G. A.; Kim, H. S.: The Crystal and Molecular Structure of Epiinositol. Acta Crystallogr. B27 (1971) 1812-1817. 4. Bonnet, A.; Jones, W.; Motherwell, W. D. S.: allo-Inositol. Acta Crystallogr. E62 (2006) o2578-o2579. 5. Angyal, S. J.; Craig, D. C.: The unusually stable crystal structure of neoinositol. Carbohydr. Res. 263 (1994) 149-154. 6. Khan, U.; Qureshi, R. A.; Saeed, S.; Bond, A. D.: An orthorhombic polymorph of myo-inositol. Acta Crystallogr. E63 (2007) o530-o532. 7. Craig, D. C.; James, V. J.: 1,2,4,5-3,6-cyclohexanehexol (muco-inositol), C6H12O6. Cryst. Struct. Commun. 8 (1979) 629-633. 8. Jeffrey, G. A.; Yeon, Y.: The crystal structure of L-chiro-inositol. Carbohydr. Res. 159 (1987) 211-216. 9. Day, G. M.; van de Streek, J.; Bonnet, A.; Burley, J. C.; Jones, W.; Motherwell, W. D. S.: Polymorphism of Scyllo-Inositol: Joining Crystal Structure Prediction with Experiment to Elucidate the Structures of Two Polymorphs. Cryst. Growth Des. 6 (2006) 2301-2307. 10. Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997. 11. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997. Unauthenticated Download Date | 6/15/17 5:25 PM
© Copyright 2026 Paperzz