Crystal structure of 1,3,5/2,4,6-hexahydroxycyclohexane, C6H12O6

Z. Kristallogr. NCS 223 (2008) 357-358 / DOI 10.1524/ncrs.2008.0155
357
© by Oldenbourg Wissenschaftsverlag, München
Crystal structure of 1,3,5/2,4,6-hexahydroxycyclohexane, C6H12O6,
scyllo-inositol
Anton Zaschka and Kaspar Hegetschweiler*
Universität des Saarlandes, Anorganische Chemie, Postfach 151150, 66041 Saarbrücken, Germany
Received February 27, 2008, accepted and available on-line October 16, 2008; CCDC no. 1267/2318
and we can now provide a complete single crystal X-ray diffraction structure analysis of this monoclinic polymorph.
The crystal structure can be discussed in terms of a threedimensional hydrogen bonding network, where every inositol
molecule, lying on a center of inversion, is connected to eight
neighbors via hydrogen bonding. Each of the six equatorial
hydroxy groups acts as a hydrogen donor: O1−H4···O3i, O2−
H5···O3ii, and O3−H6···O2iii (symmetry code i: 0.5+x,1.5−y,−0.5
+z; ii: 0.5−x,−0.5+y,1.5−z; iii:−0.5−x,0.5+y,1.5−z). Consequently, O3 accepts two and O2 one hydrogen atom, whereas O1
does not act as a hydrogen acceptor. The six membered cyclohexane ring adopts a chair conformation with puckering parameters
Q = 0.581 Å, # = 180.0°, + = 0.00°.
Table 1. Data collection and handling.
Abstract
C6H12O6, monoclinic, P121/n1 (no. 14), a = 5.0641(3) Å,
b = 6.6605(4) Å, c = 10.6114(6) Å, 0 = 91.751(3)°,
V = 357.7 Å3, Z = 2, Rgt(F) = 0.039, wRref(F2) = 0.112,
T = 200 K.
Source of material
The title compound was obtained as a side product in the synthesis of cis-inositol [1]. Single crystals suitable for X-ray diffraction
were obtained from an aqueous solution by slow evaporation. Elemental analysis confirmed the composition C6H12O6 as established by crystal structure analysis.
Experimental details
All hydrogen atomic positions were taken from a difference Fourier map. They were refined with variable isotropic displacement
parameters.
Discussion
Inositol (cyclohexanehexol) exists in the form of eight
diastereomers; all of them have been characterized by crystal
structure analysis [2-9]. For the scyllo-(1,3,5/2,4,6)-isomer, a
triclinic and a monoclinic polymorph have been observed, however, single crystals could only be obtained for the triclinic form
[9]. Although being of lowest energy, the monoclinic polymorph
has always been obtained as a mixture together with additional
components. The authors mentioned several attempts to grow single crystals of this second polymorph, however without success
[9]; its crystal structure finally followed from a combination of
powder X-ray diffraction data and additional computational
methods. Crystal growth in our laboratory was more successful,
Crystal:
Wavelength:
':
Diffractometer, scan mode:
2#max:
N(hkl)measured, N(hkl)unique:
Criterion for Iobs, N(hkl)gt:
N(param)refined:
Programs:
colorless prism, size 0.15 × 0.2 × 0.25 mm
Mo K2 radiation (0.71073 Å)
1.52 cm−1
STOE IPDS, +
52°
5570, 705
Iobs > 2 "(Iobs), 670
79
SHELXS-97 [10], SHELXL-97 [11]
Table 2. Atomic coordinates and displacement parameters (in Å2).
Atom
Site
H(1)
H(2)
H(3)
H(4)
H(5)
H(6)
4e
4e
4e
4e
4e
4e
x
−0.018(3)
0.270(4)
−0.276(4)
0.399(5)
0.267(6)
−0.286(6)
y
z
Uiso
0.711(3)
0.965(3)
0.908(3)
0.645(5)
0.666(4)
1.099(4)
0.437(2)
0.627(2)
0.600(2)
0.392(3)
0.693(2)
0.759(2)
0.003(4)
0.010(4)
0.011(4)
0.040(7)
0.028(6)
0.035(7)
_____________
* Correspondence author (e-mail: [email protected])
Unauthenticated
Download Date | 6/15/17 5:25 PM
358
C6H12O6
Table 3. Atomic coordinates and displacement parameters (in Å2).
Atom
Site
O(2)
C(2)
O(1)
O(3)
C(3)
C(1)
4e
4e
4e
4e
4e
4e
x
0.1220(2)
0.1231(3)
0.4003(2)
−0.1369(2)
−0.1317(3)
0.1479(3)
y
z
U11
U22
U33
U12
0.7069(2)
0.8811(2)
0.7269(2)
1.0539(2)
0.9953(2)
0.8207(2)
0.6804(1)
0.6021(1)
0.4561(1)
0.7515(1)
0.6212(1)
0.4643(1)
0.0175(7)
0.0135(8)
0.0196(6)
0.0174(7)
0.0141(8)
0.0142(8)
0.0218(7)
0.0142(8)
0.0226(7)
0.0218(6)
0.0154(8)
0.0141(8)
0.0166(7)
0.0104(8)
0.0162(6)
0.0082(6)
0.0079(8)
0.0110(8)
0.0054(5)
−0.0002(6)
0.0059(5)
0.0036(5)
−0.0008(6)
0.0023(6)
U13
0.0065(5)
0.0022(6)
0.0029(5)
0.0039(4)
0.0029(6)
0.0026(6)
U23
0.0089(5)
0.0020(6)
−0.0034(5)
−0.0015(4)
−0.0010(6)
−0.0002(6)
Acknowledgments. We thank Dr. Volker Huch for the collection of the data.
Financial support from the E.U. Specific Targeted Project “Innovative tools
for membrane structural proteomics (IMPS)” is gratefully acknowledged.
References
1. Morgenstern, B.; Sander, J.; Huch, V.; Hegetschweiler, K.: Metal Binding
of Polyalcohols. 6. Complexation of a Heptanuclear Polyoxotantalate Anion with K+: Formation of a Supramolecular [K6-('-OH2)6-(OH2)8]6+
Ring Structure. Inorg. Chem. 40 (2001) 5307-5310.
2. Freeman, H. C.; Langs, D. A.; Nockolds, C. E.; Oh, Y. L.: The crystal
structure of cis-inositol monohydrate - Un objet retrouve. Aust. J. Chem.
49 (1996) 413-424.
3. Jeffrey, G. A.; Kim, H. S.: The Crystal and Molecular Structure of Epiinositol. Acta Crystallogr. B27 (1971) 1812-1817.
4. Bonnet, A.; Jones, W.; Motherwell, W. D. S.: allo-Inositol. Acta
Crystallogr. E62 (2006) o2578-o2579.
5. Angyal, S. J.; Craig, D. C.: The unusually stable crystal structure of neoinositol. Carbohydr. Res. 263 (1994) 149-154.
6. Khan, U.; Qureshi, R. A.; Saeed, S.; Bond, A. D.: An orthorhombic
polymorph of myo-inositol. Acta Crystallogr. E63 (2007) o530-o532.
7. Craig, D. C.; James, V. J.: 1,2,4,5-3,6-cyclohexanehexol (muco-inositol),
C6H12O6. Cryst. Struct. Commun. 8 (1979) 629-633.
8. Jeffrey, G. A.; Yeon, Y.: The crystal structure of L-chiro-inositol.
Carbohydr. Res. 159 (1987) 211-216.
9. Day, G. M.; van de Streek, J.; Bonnet, A.; Burley, J. C.; Jones, W.;
Motherwell, W. D. S.: Polymorphism of Scyllo-Inositol: Joining Crystal
Structure Prediction with Experiment to Elucidate the Structures of Two
Polymorphs. Cryst. Growth Des. 6 (2006) 2301-2307.
10. Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
11. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal
Structures. University of Göttingen, Germany 1997.
Unauthenticated
Download Date | 6/15/17 5:25 PM