cos1 r3 sin3 ˙r1 = r2˙ 2 sin 2 sin1 r3 cos3 ˙ 3 r2 2 cos2 or cos0° 4sin(12.504°) ˙r1 = 110sin60° sin0° 4 cos(12.504°) ˙3 110cos60° then 1 0.866 ˙r1 = 8.660 0 3.905 ˙ 3 5 or ˙r1 = 9.768 ˙ 1.280 3 Therefore, ˙ = ˙3 = 1.280 rad/sec, CW. Problem 5.3 In the mechanism shown, s˙ = 10 in/ s and s˙˙ = 0 for the position corresponding to = 60˚. Find ˙ and ˙˙ for that position using the loop equation approach. s 3 4 2 10 inches φ Solution The vector equation is r3 = r2 + r1 In component form, this equation becomes: r3 cos3 = r2 cos2 + r1 cos1 r3 sin3 = r2 sin2 + r1 sin1 - 180 - s r1 3 4 r3 2 r2 φ Substituting the constant values 1 = 0° and 2 = 90° gives r3 cos = r1 r3 sin = r2 The component equations for velocity are: r˙3 cos r3˙ sin = ˙r1 r˙3 sin + r3˙ cos = 0 The component equations for acceleration are: ˙r˙3 cos 2˙r3˙ sin r3˙˙sin r3˙ 2 cos = ˙r˙1 ˙˙ cos r3˙ 2 sin = 0 ˙r˙3 sin + 2˙r3˙ cos + r3 The known input information is: = 60° so r2 = 10 in ˙r1 = ˙s = 10 in / s r3 = r2 = 10 = 11.547 sin sin60° r1 = r3 cos = 11.547cos60° = 5.774 Solve the velocity equations: cos r3 sinr˙3 ˙r1 = sin r3 cos ˙ 0 or or then cos60° 11.547sin60° ˙r3 10 sin60° 11.547cos60° ˙ = 0 10 ˙r3 10 0.5 = 0.866 5.774˙ 0 ˙r3 5 ˙ = 0.75 Therefore ˙ = 0.75 rad/sec, CCW. - 181 - ˙r˙1 = ˙s˙ = 0 Solve the acceleration equations: cos r3 sin˙r˙3 ˙r˙1 + 2˙r3˙ sin + r3˙ 2 cos sin r3 cos ˙˙ = 2˙r3˙ cos + r3˙ 2 sin or or then cos60° 11.547sin60° ˙r˙3 2(5)(0.75)sin60° +11.5470.752 cos60° = sin60° 11.547cos60° ˙˙ 2(5)(0.75)cos60° +11.547 0.752 sin60° 10 ˙r˙3 3.248 0.5 0.866 5.774 ˙˙ = 9.375 ˙r˙3 6.495 ˙˙ = 0.650 Therefore ˙˙ = 0.650 rad / sec2 , CCW. Problem 5.4 In the mechanism in Problem 5.3 assume that ˙ is 10 rad/s CCW. Use the loop equation approach to determine the velocity of point B4 for the position defined by = 60˚. Solution B 4 r2 r1 3 r3 2 φ The vector equation is: r3 = r2 + r1 In component form, this equation becomes: r3 cos3 = r2 cos2 + r1 cos1 r3 sin3 = r2 sin2 + r1 sin1 Substituting the constant values 1 = 0 and 2 = 90° gives r3 cos = r1 r3 sin = r2 The component equations for velocity are: - 182 - 6 ˙r˙2 7.578 0.5 = 0.866 3.464 ˙˙ 16.875 then ˙r˙2 10.826 = ˙˙ 2.165 Therefore ˙˙ = 2.165 rad / min2 CCW. Problem 5.8 Use loop equations to determine the velocity and acceleration of point B on link 2 when 3 = 30˚. Make point A the origin of your reference coordinate system. 10 in. 2 y 3 B 1ω 4 = 1 rad sec 1α4 = 0 θ3 4 x A Solution y 2 B r3 3 θ3 r1 A The vector equation is: r3 = r1 + r2 In component form, this equation becomes: r3 cos3 = r1 cos1 + r2 cos2 r3 sin3 = r1 sin1 + r2 sin2 Substituting the constant values 1 = 0 and 2 = 90° gives - 188 - r2 x r3 cos3 = r1 r3 sin3 = r2 The component equations for velocity are: r˙3 cos3 r3˙ 3 sin3 = 0 r˙3 sin3 + r3˙3 cos3 = ˙r2 The component equations for acceleration are: ˙˙3 sin3 r3˙ 32 cos3 = 0 ˙r˙3 cos3 2˙r3˙ 3 sin3 r3 ˙˙3 cos3 r3˙ 32 sin3 = ˙r˙2 ˙r˙3 sin3 + 2˙r3˙ 3 cos˙ 3 + r3 The known input information is: so 3 = 30°; ˙ 3 = 4 = 1 rad/sec; ˙˙3 = 4 = 0; r1 = 10 inches; r1 = 10 = 11.547 cos3 cos30° r2 = r3 sin3 = 11.547sin30° = 5.774 r3 = To solve the velocities: ˙ r˙3 = r33 sin3 = 11.5471sin30° = 6.667 cos3 cos30° ˙ r˙2 = ˙r3 sin3 + r33 cos3 = 6.667sin30° + 11.5471 cos30° = 13.333 Therefore vB2 = ˙r2 = 13.333 in/sec. Solve for the accelerations: 2r˙3˙ 3 sin3 + r3˙˙3 sin3 + r3˙23 cos3 ˙r˙3 = cos3 2 6.6671sin30° + 11.54712 cos30° = 19.245 = cos30° ˙˙3 cos3 r3˙ 32 sin3 r˙˙2 = ˙r˙3 sin3 + 2˙r3˙ 3 cos3 + r3 = 19.245sin30° + 2 6.6671cos30° 11.54712 sin30° = 15.397 Therefore aB2 = ˙r˙2 = 15.397 in / sec2 . - 189 - 175 1.750 0 2.500 r˙3 = 0.819 1.750 = 437.5 = 143.4 in / sec 3.051 0.573 2.500 and 0.819 175 0.573 0 ˙ 3 = 0.819 1.750 = 100.28 = +32.87 rad / sec (CCW) 3.051 0.573 2.500 Now considering Point D, r˙D = (r2˙ 2 sin2 r4˙ 3 sin3)i + (r2˙ 2 cos2 + r3˙3 cos3 )j or rD = [1.75(100)sin90 5(32.87)sin(34.99)]i + [1.75(100)cos90 + 5(32.87)cos(34.99)]j = 80.78i +134.6 j = 156.98120.97˚ Therefore, and rD3 = 4.096 i-1.117 j = 4.246 -15.25˚ 1v D3 = -80.78 i + 134.6 j = 156.98 120.97˚ Problem 5.18 In the Scotch Yoke mechanism shown, 1 2 = 10 rad/s, 1 2 = 100 rad/s2 , and 2 = 60˚. Also, length O2 A = 20 inches. Determine 1 vA4 and 1 aA4 using loop equations. 3 A 2 ω2 θ2 O2 1 4 B - 209 - Solution 3 r2 2 A r3 θ2 O2 1 r1 4 B For the vector loop given, r2 = r1 + r3 and in component form r2 cos2 = r1 cos1 + r3 cos3 r2 sin2 = r1 sin1 + r3 sin3 We know that 1 = 0, 2 = 60˚, and 3 = 90˚ The variables are r1 , r3 , and 2 . Substituting in the know constants gives the following for the position equations. r2 cos2 = r1 r2 sin2 = r3 For the given input values (r2 = 20 and 2 = 60˚) it is clear that r1 = 10 and r3 = 17.32. The velocity equations are: r˙2 = ˙r1 + ˙r3 and r˙2 cos2 r2 ˙ 2 sin2 = ˙r1 r˙2 sin2 + r2˙ 2 cos2 = ˙r3 Simplifying: - 210 - r˙3 = r2˙ 2 cos2 = 20(10)cos60 = 100 in / sec r˙1 = r2˙ 2 sin2 = 20(10)sin60 = 173.2 in / sec The acceleration equations are: r˙˙2 = ˙r˙1 + ˙r˙3 and ˙r˙1 = r2˙˙2 sin2 r2˙ 22 cos2 ˙r˙3 = r2˙˙2 cos2 r2˙22 sin2 These equations simplify to: ˙˙2 sin2 r2˙ 22 cos2 = 20(100)sin60 20(10)2 cos60 = 2732 in / sec2 ˙r˙1 = r2 ˙r˙3 = r2˙˙2 cos2 r2˙22 sin2 = 20(100)cos60 20(10)2 sin60 = 732 in / sec2 1v = -173.2 in/s 1a -2732 in/s2 A4 A4 = Problem 5.19 Use loop equations to determine the velocity and acceleration of point B on link 4. The angular velocity of link 2 is constant at 10 rad/s counterclockwise. 4 r1 = 10 cm φ = 30˚ θ 2 = 60˚ B r2 φ θ3 θ2 1ω2 r3 O2 O3 r1 Solution Position Analysis The basic vector loop equation is r1 + r3 = r2 and - 211 -
© Copyright 2026 Paperzz