l`ivphet mr sxb ewewnd ewd oia yxtd oi`yk dxew dfe ,zqt`zn zihpiwd dibxp`d xy`k zqt`zn sebd zexidn .` .'fe '` ,zecewp izya dxew df .l`ivphetd sxbl dcewpa dxew dfe ,ilniqwn dibxp`d sxbl ewewnd ewd oia yxtddyk zilniqwn sebd zexidn .a .'d .'de,'c,'ba dxew dfe ,zqt`zn l`ivphetd zxfbpyk qt`zn gekd .b .dpini gekd zilily `idyke ,dl`ny gekd ,ziaeig `id xy`k .zxfbpd ici lr rawp gekd oeeik .c .'dl 'c oiae 'bl '` oia dl`ny gekde ,'fl 'd oiae 'cl 'b oia dpini gekd ,eply dxwna okl ,)miizy iwlg dqn ick cr( ,l`ivphetd sxbl eweewnd ewd oia yxtdl deey reaixa zexidnd .d :scd z` jetdl jixv heyt .xeyw lelqna `ed okle ,seqpi` qepinl e` seqpi`l repl leki `l sebd .e 1 zlhehn ly l`ivphet okle drepzd oeeikl avip cinz hend ly gekd .hend ly gekde ,caekd gek ,zegek ipy milret sebd lr .` mgh . l`ivphet mr ,oaenk xnyn caekd gek .dcear dyer `l mcew xgap xy`k ,zieefa zelzk sebd daeb z` `hap . mgh xen`k `id zil`ivphetd dibxp`d .a :lawp dixhnepebixhn .sebd ly dkenp ikd dcewpa zeidl 0d daeb z` zizexixy dxeva h = l(1 − cos θ) U (θ) = mgh = mgl(1 − cos θ) .b .gekd oeeik z` mibivn minec`d mivgd .c θ = 2πn + 1a . mbe θ = 2πna mb ,(0 l`ivphetd retiy xy`k) lwyn ieeiy zecewp yi .d zizgza `vnp sebd xy`k zecewpd dl` .zeaivi ode , menipina od ( θ = 2πn) zekenpd zecewpd dpeilrd dcewpa `vnp sebd mda miavnd dl` .zeaivi `l ode ,meniqwna od zedeabd zecewpd .lbrnd .lbrna ipy oia mi`vnp mixeywd milelqnd .mixeyw `l milelqn ode mixeyw milelqn od rval leki sebd .e mi`vnp mixeyw `ld milelqnd .aeye jeld zcpcpzn zlhehnd ea avna xaecn .l`ivphetd ly miwit .oeeik eze`l miaeaiqd lk xy`k zilbrn drepz rvan seb dl` milelqnae ,l`ivphetd ly miwitd lrn .oeeik dpyn `l la` ,ick jez ui`ne hi`n `edy oaenk -hetd ly meniqwnl menipind oia z`vnp zllekd zipknd dibxp`d xy`k eygxzi mixeyw miavn .f ,mzxgay qt`d zcewpa miielz zeniqwnde zenipind mbe ,zllekd zipknd dibxp`dy al eniy .l`ivp :eply dxwna .zepexztd lka ddf zeidl aiig lbrnd zizgza zihpiwd dibxp`d megzy oaenk la` Umin < K0 + U0 < Umax U0 = U (0) = 0 Umin = U (0) = 0 Umax = U (π) = 2mgl 0 < K0 < 2mgl 1 xnqne heg okle drepzl zavip cinz zegiznd epiptly diraa .zegiznde caekd wx md dqnd lr milretd zegekd h = 0) qt`d daeb z` rawp dlgzdd zcewpa ( 0 .zipkn dibxp` xeniy yi ,ok m` .dcear dyer dpi` `id :`id dlgzda dibxp`d .drepzd ly Ei = Ki + Ui = 0 :daeba `vnp sebd , α zieefa hegdyk L h1 = (cos α − 1) 2 :`id seqa zipknd dibxp`d okl Ef = Kf + Uf = mv12 L + mg (cos α − 1) 2 2 :lawpe ,zxnyp dibxp`d okle zxg` dcear ziyrp `l mcew epxn`y enk Ei = Ef 0= mv12 L + mg (cos α − 1) 2 2 2 v1 = gL(1 − cos α) deey zeidl dkixv zil`icxd dve`zd ,dl`yd ly dfd wlga .zegiznd iabl mil`ey `ad sirqa :l v2 v2 v2 ar = = =2 r L/2 L :md il`icxd aikxa zegekd T + mg cos α :okle T + mg cos α = 2m v2 L T v2 = 2 − g cos α = 2g(1 − cos α) − g cos α = g(2 − 3 cos α) m L zegizndyky milawn epgp` o`kn .mcewd wxta ep`vny `hz zieefa zexidnd z` jxca epavd xy`k . 1 2 deey qepiqewd ,zqt`zn 3
© Copyright 2026 Paperzz