Section 7.6 Double-angle and Half-angle Formulas Copyright © 2013 Pearson Education, Inc. All rights reserved 2 3π If cosθ = − , π < θ < , find the exact value of: 5 2 2 (a) sin ( 2θ ) (b) cos ( 2θ ) y= 5 2 − 2 = 21 ⎛ 21 ⎞ ⎛ 2 ⎞ 4 21 (a) sin 2θ = 2sin θ cos θ = 2 ⎜⎜ − ⎟⎟ ⎜ − ⎟ = 25 ⎝ 5 ⎠ ⎝ 5 ⎠ y 2 x −2 −1 1 2 3 (b) cos2θ = cos2 θ − sin 2 θ −1 21 −2 5 −3 −4 −5 2 2 21 ⎞ 4 21 17 ⎛ 2 ⎞ ⎛ = ⎜ − ⎟ − ⎜⎜ − − =− ⎟⎟ = 25 ⎝ 5 ⎠ ⎝ 5 ⎠ 25 25 1 Solve the equation: cos 2θ cos θ − sin 2θ sin θ = 2 1 cos 2θ cos θ − sin 2θ sin θ = cos ( 2θ + θ ) = cos3θ = 2 1 cos 2θ cos θ − sin 2θ sin θ = cos ( 2θ + θ ) = cos3θ = 2 π 2π 3θ = + 2kπ or 3θ = + 2 kπ 3 3 π 2kπ 2π 2kπ θ= + or θ = + 9 3 9 3 Use a Half-angle Formula to find the exact value of: (a) sin 22.5° (b) cos 5π 12 2 1− 45° 1 − cos 45° 2 (a) sin 22.5° = sin = = 2 2 2 5π 5π 1 + cos 5π 6 (b) cos = cos 6 = 12 2 2 3 1− 2 = 2 2− 3 2− 3 = = 4 2 2− 2 = 4 2− 2 = 2 1 π If cos α = − , < α < π , find the exact value of: 5 2 ⎛ 1 ⎞ α 3 3 15 1 − ⎜ − ⎟ (a) sin = 1 − cos α = = = 5 ⎝ ⎠ 2 = 5 5 2 5 2 ⎛ 1 ⎞ α 2 2 10 1 + ⎜ − ⎟ (b) cos = 1 + cos α = = = 5 ⎝ ⎠ 2 = 5 5 2 5 2 15 α sin α 15 150 5 6 6 5 2 (c) tan = = = = = = 2 α 10 10 2 10 10 cos 2 5 π 2 < α < π , so π 4 < α 2 < π 2 so α 2 is in quadrant I
© Copyright 2026 Paperzz