USE OF KCL REFERENCE SAMPLES TO CALIBRATE THE EFFICIENCY OF A GROSS ALPHA/BETA COUNTING SYSTEM MPC 2000 MARIAN ROMEO CǍLIN1, ALEXANDRU ERMINIU DRUKER2 1 Horia Hulubei National Institute of Physics and Nuclear Engineering IFIN-HH, Bucharest-Magurele, POB MG-6, Romania, e-mail: [email protected] 2 National Institute of Metrology, Bucharest Received November 26, 2009 Several methods were used for the efficiency calibration of a counting system ORTEC PROTEAN MPC-2000-DP by using KCl reference samples (reference sources of naturally radioactive potassium chloride), along with 241Am and 90(Sr-Y) radioactive sources. The operations were part of gross alpha and beta counts in various samples at the IFIN-HH SALMROM Laboratory specializing in the spectroscopic survey of the environment and radioactive materials. Key words: gross alpha and beta counter, calibration, gross alpha/beta counts. 1. INTRODUCTION The equipment we used was a low-background gross alpha/beta counter ORTEC PROTEAN, MPC-2000-DP, with the following setup: a ZnS scintillation detector - dual phosphorus detector (zinc sulfide and plastic), model MPC-2000DP, high voltage supply (for the detector); signal processing modules; preamplifier; amplifier; counter; display module; operation and display control board equipped with LCD display; mechanical sample feeder; PC interface (RS 485/RS 232), special device to download data acquired and processed by the MPC 2000 (PIC Communicator - Protean Instrument Corporation). For calibration sources, we used sets of 241Am alpha punctual sources and 90(Sr-Y) beta punctual sources, as well as alpha and beta calibration sources (reference samples) made at two chemical labs. 2. SCOPE AND METHOD We used a fixed geometry in metallic sample trays, in the MPC 2000 lead shield, directly facing the detector probe; two counting geometries were used: Rom. Journ. Phys., Vol. 56, Nos. 3–4, P. 373–387, Bucharest, 2011 374 Marian Romeo Cǎlin, Alexandru Druker 2 • Counting geometry I – counting routine: Gross α - β manual count; tray geometry 8 mm below the probe/detector; and • Counting geometry I – counting routine: ALFA+BETA SUS manual count; tray geometry 3 mm below the probe/detector. Reference conditions were as follows: temperature: (20 ± 2)0 C, pressure: 1013.25 hPa, while ambient conditions were: temperature: (22 ± 0.1)0 C, pressure: 1002 ± 0.2 hPa and humidity: 35%. The settings of the MPC 2000 measuring system were done in conformity with the following procedures: “The measuring of sample activity with the global alfa/beta MPC 2000 system” and „The efficient calibration of the measuring system of samples with the global alfa/beta MPC 2000 system.” For the initial calibration and standardization of MPC 2000 system we used radioactive sources of: 241Am si 90(Sr-Y) and reference samples of KCl (Potassium Chloride) prepared in the laboratory in two sets, each containing 7 samples (Set 1 – CPR si Set 2 – DFVM) – ethalon samples of natural radioactive KCl. The weight of the KCl samples was between 0.4 g and 1 g as it can be seen in Table 1, bearing 4 decimals. The ethalon samples were meassured with the MPC 2000 system in 6 intervals of 5 minutes, resulting a total measuring time of 30 minutes. The best set of ethalon samples was choosen having the smallest measuring errors(Set 2 – DFVM, as it can be observed in Table 6). In addition to this, we performed a measurement with the empty tray in the same work procedure, visible on line 15 of Table 1. The data showing the weight of the work samples and their measuring errors are shown in Table 1. Table1 The weight of refernce KCI samples No. SAMPLE SAMPLE CODE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sample 1 - CPR sample 2 - CPR sample 3 - CPR sample 4 - CPR sample 5 - CPR sample 6 - CPR sample 7 - CPR sample 1 - DFVM sample 2 - DFVM sample 3 - DFVM sample 4 - DFVM sample 5 - DFVM sample 6 - DFVM sample 7 - DFVM empty tray KCl 0.4 A - carrier 1 KCl 0.5 A - carrier 2 KCl 0.6 A - carrier 3 KCl 0.7 A - carrier 4 KCl 0.8 A - carrier 5 KCl 0.9 A - carrier 6 KCl 1.0 A - carrier 7 KCl 0.4 B - carrier 8 KCl 0.5 B - carrier 9 KCl 0.6 B - carrier 10 KCl 0.7 B - carrier 11 KCl 0.8 B - carrier 12 KCl 0.9 B - carrier 13 KCl 1.0 B - carrier 14 empty tray - carrier 15 WEIGHT (g) 0.4004 0.5003 0.6002 0.7004 0.8003 0.9000 1.0000 0.4028 0.5028 0.6028 0.7028 0.8028 0.9028 1.0028 0.0000 ERROR ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0000 3 A gross alpha/beta counting system MPC 2000 1. 375 EXPERIMENTAL RESULTS The samples were measured, and the characteristic calibration curve of the detector was drawn (Graphs 1 and 2) with the help of the PICPLAT_KCl01 (PICPLAT_KCl_GRAPH) file from the “calibration” folder of the measuring system. The graphs were made with the EXCEL software, according to table 2 (x axis – the power tension of the detector; y axis – registered the events). Thus we obtained: Table 2 Counts = f (U) DP Detector Plateau Data VOLTS (V) 705 720 735 750 765 780 795 810 825 840 855 870 885 900 915 930 945 960 975 990 1005 1020 1035 1050 1065 1080 PIC MPC2000BDP COUNTS 1 8 22 58 138 317 541 947 1548 2222 3009 4053 5140 6341 7753 8996 10252 12432 14127 16620 19581 22276 25093 27722 28698 29495 SLOPE(%/100 volts) 0 0 0 0 0 97.54 83.09 71.57 62.53 55.23 49.22 44.43 40.49 36.7 33.37 31.39 29.47 28.33 27.33 25.88 24.62 22.96 20.56 17.65 13.3 8.32 MPC-2000 BDP Plat Voltage Range 705 to 1290 volts in 15 volt increments Umber 1 Detector Plateau Data MPC-2000BDP Plat 376 Marian Romeo Cǎlin, Alexandru Druker 4 Table 2 (continued) 1095 1110 1125 1140 1155 1170 1185 1200 1215 1230 1245 1260 1275 1290 29585 29914 29587 29578 29884 30138 30078 29808 30126 30463 30211 30077 30329 30439 4.16 0.37 0.57 1.55 2.98 1.37 0.34 1.44 1.85 1.29 0.04 0.15 0 0 COUNTS 35000 30000 25000 20000 15000 10000 5000 0 700 800 900 1000 1100 1200 1300 Graph 1 Plateau curve in concordance to the tension. SLOPE 28 23 18 13 8 3 -2 1000 1050 1100 1150 1200 Graph 2 Plateau curve interest zone beta. 1250 1300 5 A gross alpha/beta counting system MPC 2000 377 The point-like sources of 241Am and 90(Sr-Y) were also measured and then the file of mesuring data was established: PICDATA_KCL01_FINAL “ULTERIOR PROCESSING OF MEASUREMENTS DONE FOR STANDARDIATION/ CALIBRATION” (table 8) from the “calibration” folder of the measuring system. This folder containing the data got by the specialized software PIC Comunicator carries all the characteristic parameters of the system and it was the source of the experimental data used in the standardization report and in the report regarding the validation of the word procedure. The measuring data was studied in conformity with the folder PICDATA_KCL01_FINAL (PICDATA_KCL01, KCL_BETA – Weight of the made ethalon sample-1, sample-2, sample-3: The influence of the sample’s weight – The autoabsorbtion correction and the influence of the operator who is preparing the refence samples. The experimental data obtained in this way are in conformity with the technical data and the specifications of the system and the detection eficiency for the alfa, beta and Spillover factor Xtalk were calculated with the formulas below and are present in Table 3 and 4. εβ = εα = CPM β − FondCPM β DPM β × 100; for the beta radiation; CPM α − Fond CPM α × 100; for the alpha radiation; DPM α X talk = CPM β − FondCPM β CPM α − FondCPM α × 100; For the measuring of the samples and the radiation sources the two methods of work were used: Measuring geometry I • the measuring rutine Gross α - β manual count; • in the tray geometry, at the level of 8 mm under the detector probe; • conversion to Bq coefficient in conformity to the ISO 7503-1/1998; • without backscattering; • does not include the absorption correction in the samples; • the beta and alpha source with ∅ 22 mm; • measuring time: 30 minutes; For this geometry we obtained the detection efficiencies presented in Table 3. 378 Marian Romeo Cǎlin, Alexandru Druker 6 Table 3 Detection efficiencies in measure I geometrics SURCE/Radionucleid SI (imp/s)/Bq= (imp/min)/(dez/min)= (CPM)/(DPM) Beta Surce 90(Sr-Y) 0,89872 ± 0,0138 imp/(β in 2π) 0,44936 ± 0,0069 0,62730 ± 0,0050 imp/(α in 2π) 0,31365 ± 0,0025 εα = 31,365 ± 0,25 0,2559 ± 0,0050 25,59 ± 0,50 (max. beta en. 546+2260keV medium beta en. 565,5 keV) Alfa Source 241Am (alfa en. 5,39...5,49 MeV; medium alfa en. 5,4774 MeV) Xtalk Detection efficiences (% )MPC2000 εβ = 44,936 ± 0,69 Measuring geometry II • the measuring rutine ALFA+BETA SUS manual count; • in the tray geometry, at the level of 8 mm under the detector probe; • conversion to Bq coefficient in conformity to the ISO 7503-1/1998; • without backscattering; • does not include the absorption correction in the samples; • the beta and alpha source with ∅ 22 mm; • measuring time: 30 minutes. For this geometry we obtained the detection efficiencies presented in Table 4. Table 4 Detection efficiencies in measure II geometrics SOURCE/Radionucleid SI (imp/s)/Bq = (imp/min)/(dez/min)= (CPM)/ (DPM) Beta Source 90(Sr-Y) 0,89872 ± 0,0138 imp/(β în 2π) 0,4853 ± 0,0074 0,80574 ± 0,0142 imp/(β in 2π) 0.40287± 40,287±0,71 0,7246 ± 0,0058 imp/(α in 2π) 0,3623 ± 0,0029 εα = 36,23 ± 0,29 0,3108 ± 0,006 31,08 ± 0,60 (max.beta en. 546+2260keV medium beta en. 565,5 keV) Sources/ KCl reference samples Alfa Source 241Am (alfa en. 5,39...5,49 MeV; medium alfa en. 5,4774 MeV ) Xtalk Detection efficiences (% )MPC2000 εβ = 48,53 ± 0,74 7 A gross alpha/beta counting system MPC 2000 379 As to the influence of the operator preparing the reference samples, we can state that the reference potassium chloride (KCl) standard sample sets have been prepared by two different operators (Operator 1 – CPR and Operator 2 – DFVM) and their influence in the preparation of the standard samples is shown in Table 6 (standardization file PICDATA_KCL01_FINAL/probe 3). The relative maximum and minimum errors and beta efficiences in BEFF (%) for every KCl sample have also been calculated, for each of the two operators. The resulting data (experimental results) is shown in the standardization file: PICDATA_KCL01_FINAL/KCL_BETA, and the resulting second degree fitting curve is: y = 5.4799x2 - 18.064x + 50.044 MAX ERR [%] -4.316 MIN ERR [%] 4.190 y = 5.4799x2 – 18.064x + 50.044 Coefficients fitare: 5.4799 -18.064 50.044 The EXCEL file – Weight of realised Standard/Errors for Potassium Chloride (Table 7) was used to facilitate de measuring of the reference KCl standard samples. This file allows the determination of the mass acivity in (Bq/g) of a standard sample, for different inserted masses of KCl, etc. Observation: The reference for the data is: “Halbwertszeiten und PhotonenEmissionswahrscheinlichkeiten von häufig verwendeten Radionukliden”-2005 eiwerterte und korrigierte Auflage von Ulrich Schötzig und Heinrich Schrader Physikalisch-Technische Bundesanstalt (PTB), Braunschweig [1]. The influence of the sample mass and the autoabsorbtion correction on the measurements is also set out in the EXCEL standardization file: PICDATA_KCL01_FINAL/probe 2. The general medium error (% relative), maximum error (% relative), minimum error (% relative), maximum error for the neglection of the autoabsorbtion correction – for averages and maximum error for the neglection of the autoabsorbtion correction for all points have also been calculated (as shown in Table 6). 380 Marian Romeo Cǎlin, Alexandru Druker 8 The repetability of the measurements/tests is shown/calculated/demonstrated in the PICDATA_KCL01_FINAL/probe 1 file (on 7 x 2 KCl sample sets), to which was added an empty tray measurement. The AVERAGE, S[n-1], S[n-1] (%), S[AVERAGE], S[AVERAGE] (%), and also the efficiency/efficacy - BEFF to beta radiation (%), BEFF-2S(n-1), BEFF+2S(n-1), BEFF-2S[AVERAGE], BEFF+2S[AVERAGE] and AVERAGE (%) and S[POISSON], were measured and are shown for each measurement/test (Table 8). The minimum detectable activity (MDA) was determined through repeated measurements and takes the form: MDA= 3 Sfond/Eff; For KCl standard samples and for 241Am si 90(Sr-Y) standard samples, the MDA is: MDA/alfa = 0.0747 Bq and MDA/beta = 0.371 Bq. The resulting MDAs are in concordance with the data in the technical specifications of the system. As for the time range error, the rootmean square error for a singular measurement for the time range is smaller than 0,0001 % (as shown in Table 8). 4. COMPARING THE RESULTS The validation of the calibrating in efficiency method was accomplished by organizing a comparison attended by the SALMROM (DFVM) and LAS (STDR) laboratories. The unknown radiation standard sources were: 90(Sr-Y) and 241Am, with the characteristics described in the Standard Certificates. The SALMROM tests were done in accordance with the working procedures and the SR EN ISO/CEI 17025: 2005 [2] referential, and the activity values measured by the two laboratories are comparable, with small departures from the conventionally true values. The measured data is shown in Table 5. Table 5 RADIOACTIVE SOURCE/ Characteristics 1. 2. Detectable beta activity, „ALFA + BETA SUS” routine 90 (Sr-Y) SEB 7-4673 Source/ MPC 2000 System Routine detectable alfa activity „ALFA + BETA SUS” 241 Am SEA 4-1 Source/ MPC 2000 System Results Activity [Bq] Measurement uncertainty SALMROM LAS SALMROM LAS Uncertaint y[Bq] 7.01x103 6.78 x103 Err (%)= -0.17% 251 1.38x104 1.43 x104 Err (%)=-11.53% 425 ELEME NT H A B ATOMIC MASS 0 Table 7 0.672 4.190 -4.316 -1.104 1.339 -3.528 -2.403 -1.410 -1.710 0.323 3.119 0.217 1.029 3.113 REL. ERR towards FIT [%] 0.4004 g KCl / Sample== g KCl / 0.0001 SAMPLE== ERROR MASUREM ENT MASS -4.316 -4.316 -4.316 -4.316 -4.316 -4.316 -4.316 MAX ERR [%] OPERATOR 2 = DFVM 10 g KCl / Sample== 50 g KCl / Sample== 100 g KCl / sample== The weight of the made ethalon ATOMIC MASS PERCENT 0 INTRODUCES VALUE MASS===> NR.de ATOMI KCl 43.690 42.378 41.176 40.080 39.097 38.225 37.460 REL. ERR towards FIT [%] OPERATOR 1= CPR The weight of the made ethalon/Errors for the Potassyum Chloride 43.074 41.654 41.309 41.330 39.182 38.618 38.626 OPERATOR 2 = DFVM BEFF CURVE [%] FIT gr.2 POTASSYUM CHLORIDE AVERAGE======== > 43.983 44.154 39.399 39.638 39.621 36.876 36.560 FORMULA====> SUBSTANCE MASS 0.400 0.500 0.600 0.700 0.800 0.900 1.000 BEFF [%] OPERATOR 1= CPR The influence of the operator whi is preparing the reference samples Table 6 Yield BETA 40-K 89.33 % 4.190 4.190 4.190 4.190 4.190 4.190 4.190 MIN ERR. [%] Table 7 (continued) QUANTITY K [ g ] AT THE WEIGHT OF ETHALON K 39.102 39.0983 1 39.102 0.52447 SOURCE 0.47552 Cl 35.453 35.4527 1 35.453 8 5.24472 g O 0 0 26.2236 g MOLECULAR MASS = reference A=> 74.555 52.4472 g DIFERENCE BETWEEN THEM=====> 0.00537% 0.21 g MOLECULAR MASS = reference B=> 74.551 ACTIVITY K-40 [ Bq ] AT THE WEIGHT OF ETHALON SOURCE 162.167 Bq MASS VALUE ERROR 810.834 Bq ACTIVITY K-40 30.92 0.22 Bq/g K-nat 1621.67 Bq ERROR READS VALUE 0.71% ACTIVITY===> 6.49315 Bq 0.74% 348. REFERENCE: 02 DPM “Halbwertszeiten und Photonen-Emissionswahrscheinlichkeiten von häufig verwendeten Radionukliden”-2005 eiwerterte und korrigierte Auflage von Ulrich Schötzig und Heinrich Schrader Physikalisch-Technische Bundesanstalt (PTB), Braunschweig. 0.5003 0.5003 0.6002 0.6002 0.6002 0.6002 0.6002 0.6002 0.7004 0.7004 0.7004 0.7004 0.7004 0.7004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 434.8513 434.8513 521.6825 521.6825 521.6825 521.6825 521.6825 521.6825 608.7744 608.7744 608.7744 608.7744 608.7744 608.7744 0.737% 0.737% 0.734% 0.734% 0.734% 0.734% 0.734% 0.734% 0.731% 0.731% 0.731% 0.731% 0.731% 0.731% 45.434 45.756 38.255 38.907 39.175 40.057 40.095 39.904 40.306 39.156 37.185 40.568 39.977 40.634 1.649 1.654 1.382 1.389 1.393 1.408 1.407 1.405 1.294 1.277 1.249 1.298 1.288 1.298 12.77 13.57 -5.04 -3.43 -2.76 -0.57 -0.48 -0.95 0.05 -2.81 -7.70 0.70 -0.77 0.86 BEFF_ERR MASS ERR_MASS ACTIVITY ERR_ACT BEFF Gen Avg ERR _absolut [g] [g] [DPM] [%] [%] [% relativ] [%] 0.4004 0.0001 348.0201 0.742% 44.989 1.872 11.67 0.4004 0.0001 348.0201 0.742% 44.701 1.865 10.96 0.4004 0.0001 348.0201 0.742% 41.828 1.816 3.82 0.4004 0.0001 348.0201 0.742% 43.610 1.848 8.25 0.4004 0.0001 348.0201 0.742% 44.587 1.866 10.67 0.4004 0.0001 348.0201 0.742% 44.184 1.856 9.67 0.5003 0.0001 434.8513 0.737% 43.088 1.612 6.95 0.5003 0.0001 434.8513 0.737% 42.398 1.602 5.24 0.5003 0.0001 434.8513 0.737% 44.054 1.627 9.35 0.5003 0.0001 434.8513 0.737% 44.192 1.629 9.69 1.20 39.399 0.7447414 1.89 0.3040394 0.77 39.638 1.3168505 3.32 0.537602 1.36 S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> 44.154 AVERAGE ======== > 1.2987282 S[n-1]========> 2.94 S[n-1]===[%]===> 0.5302036 S[AVERAGE]=====> 43.983 AVERAGE ======== > 1.1589448 S[n-1]========> 2.63 S[n-1]===[%]===> 0.4731372 S[AVERAGE]=====> 1.08 S[AVERAGE]=[%]==> 1.07 1.15 1.18 1.29 [% relative] S[POISSON] Further processing for standardization/calibration after measurement Table 8 -1.61 -2.21 9.60 9.17 ERR med gen [% relativ] ERROR ACTIVITY AVERAGE ON MED=40.287 S[n-1]=2.391073 S[n-1]=[%]=5.94 S[AVERAGE]=0.639041 S[AVERAGE][%]=1.586 S[n-1] = 2.612765 S[n-1] [%]=6.49 S[AVERAGE]=0.285076 S[AVERAGE] [%] =0.71 AVERAGE =40.28 0.8003 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.4028 0.4028 0.4028 0.4028 0.4028 0.4028 0.5028 0.5028 0.5028 0.5028 0.5028 0.5028 0.8003 0.8003 0.8003 0.8003 0.8003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 695.6056 782.2630 782.2630 782.2630 782.2630 782.2630 782.2630 869.1811 869.1811 869.1811 869.1811 869.1811 869.1811 350.1061 350.1061 350.1061 350.1061 350.1061 350.1061 437.0242 437.0242 437.0242 437.0242 437.0242 437.0242 695.6056 695.6056 695.6056 695.6056 695.6056 0.729% 0.728% 0.728% 0.728% 0.728% 0.728% 0.728% 0.727% 0.727% 0.727% 0.727% 0.727% 0.727% 0.742% 0.742% 0.742% 0.742% 0.742% 0.742% 0.737% 0.737% 0.737% 0.737% 0.737% 0.737% 0.729% 0.729% 0.729% 0.729% 0.729% 39.731 36.608 35.790 37.784 36.071 37.656 37.349 37.963 38.447 36.076 35.708 35.225 35.938 39.122 44.035 42.778 44.949 40.094 47.463 41.135 41.089 42.188 41.089 42.691 41.730 39.932 40.565 40.220 37.661 39.616 1.195 1.080 1.069 1.096 1.072 1.095 1.090 1.039 1.045 1.014 1.008 1.002 1.012 1.764 1.849 1.828 1.863 1.783 1.906 1.577 1.576 1.593 1.576 1.601 1.586 1.198 1.206 1.203 1.166 1.193 -1.38 -9.13 -11.16 -6.21 -10.47 -6.53 -7.29 -5.77 -4.57 -10.45 -11.37 -12.57 -10.79 -2.89 9.30 6.18 11.57 -0.48 17.81 2.10 1.99 4.72 1.99 5.97 3.58 -0.88 0.69 -0.17 -6.52 -1.67 AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[VAVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> 39.621 1.0198493 2.57 0.4163517 1.05 36.876 0.8434348 2.29 0.3443308 0.93 36.560 1.3157308 3.60 0.5371449 1.47 43.074 3.1076325 7.21 1.2686857 2.95 41.654 0.6742501 1.62 0.2752615 0.66 3.39 6.92 -9.25 -8.47 -1.65 Table 8 (continued) 1.01 0.99 0.95 1.29 1.20 0.6028 0.6028 0.6028 0.6028 0.6028 0.6028 0.7028 0.7028 0.7028 0.7028 0.7028 0.7028 0.8028 0.8028 0.8028 0.8028 0.8028 0.8028 0.9028 0.9028 0.9028 0.9028 0.9028 0.9028 1.0028 1.0028 1.0028 1.0028 1.0028 1.0028 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 523.9424 523.9424 523.9424 523.9424 523.9424 523.9424 610.8605 610.8605 610.8605 610.8605 610.8605 610.8605 697.7786 697.7786 697.7786 697.7786 697.7786 697.7786 784.6967 784.6967 784.6967 784.6967 784.6967 784.6967 871.6148 871.6148 871.6148 871.6148 871.6148 871.6148 0.733% 0.733% 0.733% 0.733% 0.733% 0.733% 0.731% 0.731% 0.731% 0.731% 0.731% 0.731% 0.729% 0.729% 0.729% 0.729% 0.729% 0.729% 0.728% 0.728% 0.728% 0.728% 0.728% 0.728% 0.727% 0.727% 0.727% 0.727% 0.727% 0.727% 40.266 41.640 40.953 43.091 39.693 42.213 41.085 40.397 40.070 42.362 42.427 41.641 39.578 38.260 40.754 38.317 39.034 39.149 36.673 39.018 40.394 38.610 38.431 38.584 39.464 38.775 38.018 37.788 38.890 38.821 1.408 1.428 1.418 1.450 1.397 1.436 1.302 1.293 1.288 1.320 1.322 1.311 1.190 1.173 1.206 1.173 1.183 1.184 1.079 1.110 1.129 1.106 1.103 1.104 1.056 1.047 1.038 1.036 1.049 1.048 -0.05 3.36 1.65 6.96 -1.47 4.78 1.98 0.27 -0.54 5.15 5.31 3.36 -1.76 -5.03 1.16 -4.89 -3.11 -2.83 -8.97 -3.15 0.26 -4.16 -4.61 -4.23 -2.04 -3.75 -5.63 -6.20 -3.47 -3.64 41.309 1.2590249 3.05 0.5139948 1.24 41.330 0.9882595 2.39 0.4034553 0.98 39.182 0.9217383 2.35 0.3762981 0.96 38.618 1.1944575 3.09 0.4876352 1.26 38.626 0.6168569 1.60 0.2518308 0.65 AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> AVERAGE ======= > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> 0.93 0.97 1.02 1.05 1.12 -4.12 -4.14 -2.74 2.59 2.54 Table 8 (continued) 0.001 0.001 0.001 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.8692 0.8692 0.8692 0.8692 0.8692 0.8692 1.072E-01 1.072E-01 1.072E-01 1.072E-01 1.072E-01 1.072E-01 210.543 387.721 348.604 663.843 111.599 -95.492 -347.111 384.065 -339.493 392.190 399.654 -320.892 AVERAGE======== > S[n-1]========> S[n-1]===[%]===> S[AVERAGE]=====> S[AVERAGE]=[%]==> 84.754 383.49508 452.48 156.56121 184.72 Table 8 (continued) 2.60 15 A gross alpha/beta counting system MPC 2000 387 5. CONCLUSIONS The results which were obtained in the SALMROM laboratory from the measuring/ testing/rating and comparison data validate the use of the measuring method, pointing out that the MPC 2000 system is correctly calibrated in efficiency, while observing the processed testing geometries. The system can be used for: • Measuring radioactive alfa and beta concentrations in a wide range of different samples: solid, liquid, filtres, aerosoles etc.; • Monitoring radioactive alfa and beta concentrations in the environment, biological and food samples, mineral and geological samples, radioactive waste, materials used in the nuclear industry and its applications; • Characterization of the content of total alfa and beta radionucleids in different samples and screening for the selection of special samples, etc. REFERENCES 1. Halbwertszeiten und Photonen-Emissionswahrscheinlichkeiten von häufig verwendeten Radionukliden”2005 eiwerterte und korrigierte Auflage von Ulrich Schötzig und Heinrich Schrader PhysikalischTechnische Bundesanstalt (PTB), Braunschweig. 2. SR EN ISO/CEI 17025: 2005 – Cerinţe generale pentru competenţa laboratoarelor de încercări şi etalonări. 3. Legea 111/1996 privind desfăşurarea în siguranţă a activităţilor nucleare, republicată, cu modificările şi completările ulterioare. 4. Manualul Calitatii al IFIN-HH, MC-00-00, ediţia în vigoare. 5. Manualul Calitatii al SALMROM, MC-FVM-100, Rev. 1, 2009, ediţia în vigoare. 6. Manualele de operare, documentaţia tehnică – Sistem de masură a radioactivităţii alfa şi beta globale în fond scăzut model MPC – 2000. 7. Precedures manual, Environmental Measurements Laboratory, HASL - 300, U S Department of Energy, 1992. 8. Raport de Etalonare al sistemului MPC 2000, nr. 2/2008, Cod: RE-FVM-101B, Nr. 2/2009. 9. IAEA - Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications, Volume 1: Recommended Decay Data, High Energy Gamma Ray Standards and Angular Correlation Coefficients, 2007. 10. IAEA - Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications, Volume 2: Data selection, Assessment and Evaluation Procedures, 2007.
© Copyright 2026 Paperzz