Review for Fall Final Exam 1. Find the degree measure of the angle with the given radian measure. a. b. 2. 11 3 2 15 660 degrees -24 degrees A woman standing on a hill sees a flagpole that she knows is 60 ft tall. The angle of depression to the o o bottom of the pole is 14 , and the angle of elevation to the top of the pole is 18 . Find her distance from the pole. 104.5 feet 3. Find the reference angle of the given angles. 330o o b. 199 11 c. 3 5 d. 7 30 degrees 19 degrees a. 4. π/3 2π/7 e. Factor the Trinomial. a. 6 y 2 11y 21 (y+3)(6y-7) b. 3x 2 8 3x 2 12 2 5. 6. Factor out the common factor. a. y y 6 9 y 6 (y-6)(y+9) b. 2 x2 y 6 xy 2 3xy xy(2x-6y+3) Factor expression by grouping terms. a. x3 4 x2 x 4 b. 2 x x 6 x 3 Perform the operation and simplify. 3 7. 2 2 x 2 3x 2 x2 1 a. 2 x2 5x 2 x2 x 2 x 2 b. 2 x 1 x 1 8. (3x+8)(3x+4) (x2 +1)(x+4) (x2 -3)(2x+1) (x-2)/(x+1) (3x+2)/(x+1)2 A cork floating in a lake is bobbing in simple harmonic motion. Its displacement above the bottom of the lake is modeled by y 0.2cos 20 t 8 where y is measured in meters and t is measured in minutes. a. Find the frequency of the motion of the cork. 10 seconds b. Sketch the graph of y. y x c. 9. Find the maximum displacement of the cork above the lake bottom. 8.2 m A mass is suspended on a spring. The spring is compressed so that the mass is located 7 cm above its rest position. The mass is released at time t=0 and allowed to oscillate. It is observed that the mass reaches its lowest point ½ seconds after it is released. Find an equation that describes the motion of the mass. y = 7cos2πt 10. Sketch each triangle and then solve the triangle using the Law of Sines. a. A 50o , B 68o , c 230 Angle C = 62 degrees a = 200 b = 242 b. A 22o , B 95o , a 420 Angle C = 63 degrees b = 1116.9 c = 999.0 c. a 50, b 100, A 50o No such triangle (no solution) d. a 26, c 15, C 29o Angle A1 = 57.2 degrees Angle A2 = 122.8 degrees Angle B1 = 98.8 degrees Angle B2 = 28.2 degrees b1=30.9 b2=14.6 11. Solve triangle ABC. a. a 20, b 25, c 22 Angle A = 49.9 degrees Angle B = 72.9 degrees Angle C = 57.2 degrees b. a 3.0, b 4.0, C 53o c = 3.2 Angle B = 79 degrees 12. Graph the functions. a. f ( x) 1 cos x y x b. f ( x) 3sin x y x c. 1 f ( x) 10sin x 2 y x d. f ( x) 4 tan x y x e. f ( x) 2sec x y x Angle A = 48 Degrees 13. Simplify completely the trigonometric expression. sec x cos x = tan x b. tan x cos x csc x = 1 csc x c. = cos x cot x a. sin x 1 sec x 14. Prove the following identities. a. cot x sec x 1 csc x (Cos x /sin x )(1/cosx)(sin x) = 1 1 =1 b. sin B cos B cot B csc B sinB + cosB(CosB/sinB) = cscB (sin2B + cos2B)/sinB = cscB 1/sinB = cscB cscB = cscB c. cos x sin x 1 sec x csc x Cos2x + sin2x =1 1=1 d. tan 2 x sin 2 x tan 2 x sin 2 x = tan2x (1-cos2x) = tan2x – ( sin2x/cos2x)cos2x = tan2x – sin2x 15. Use addition and subtraction formulas to prove the expression. a. sin( x ) sin x sinxcosπ – cosxsinπ = sinx(-1) – cosx(0) = -sinx b. cos x sin x 0 6 3 cosx (cosπ/6) - sinx (sinπ/6) + sinx(cosπ/3) - cosx(sinπ/3) = 0 √3/2 cosx - 1/2 sinx + 1/2 sin x - √3/2 cosx = 0 0=0 c. sin( x y) sin( x y) 2cos x sin y Sinx cosy + coxsiny – (sinxcoxy – cosxsiny) = 2cosxsiny 16. Find the exact value of the expression, if it is defined. a. cos cos1 5 not defined 1 b. tan sin 1 2 3 c. cos sin 1 2 4 d. tan sin 1 5 7 e. csc cos 1 25 √3/3 1/2 4/3 25/24 17. Find all the solutions to the equation. a. 2sin x 1 0 π/6 + 2πk ; 5π/6 + 2πk 3csc2 x 4 0 b. π/3 + k π ; 2π/3 + k π c. tan x 3 cos x 2 0 d. cos x sin x 2cos x 0 e. 2sin x sin x 1 0 -π/3 + πk π/2 + πk 2 7π/6 + 2πk ; 11π/6 + 2πk ; π/2 + 2πk 18. Sketch the graph of the polar equation. a. r 1 2cos y x r 3 b. y x r 2cos3 c. y x 19. Find the modulus of the following complex numbers. a. 4i b. 1 =4 3 3 = (2√3)/3 20. Write z1 and z 2 in polar form and then find the product z1 z2 and the quotients a. z1 3 i; z2 1 3i z1 = 2(cos30 + isin30) z2 = 2(cos60 + isin60) z1z2 = 4(cos90 + isin90) z1/z2 = cos30 - isin30 1/z1 omit 21. Write the complex number in polar form with argument √2(cos(π/4) + isin (π/4) = 4(cos0 +isin0) = 3(cos(3π/2) + isin(3π/2)) a. 1 i = b. 4 between 0 and 2 . c. -3i 22. Express the vector with initial point P and terminal point Q in component form. a. P(3, 2), Q(8,9) <5,7> b. P(8, 6), Q(1, 1) <7,5> 23. Find 2u, -3v, u+v, and 3u-4v for the given vectors u and v. a. u 2,7 , v 3,1 2u = <4,14> -3v = <-9,-3> u+v=<5,8> 3u-4v = <-6, 17> 24. Find the indicated quantity, assuming u i 3 j and v 3i 4 j a. (u v) (u v) = -15 25. Find u v and the angle between them. a. u 2,7 , v 3,1 13; 55.6 degrees b. u 3, 2 , v 1, 2 -1, 97.1 degrees 26. Determine whether the given vectors are orthogonal. a. b. u 6, 4 , v 2,3 Yes u 2,6 , v 4, 2 No z1 z2 and 1 z1 .
© Copyright 2026 Paperzz