INDIAN SCHOOL AL WADI AL KABIR
Dept. of Mathematics
HOLIDAY HOME WORK
Class XI(2016-17)
Questions
Section A(1 mark)
S.No
Answers
1.
2.
π
3.
Find the general solution of πππ (π₯ + 4 ) = 0.
4.
Express
5.
If the ordered pairs (π, β1) and (5, π) belong to {(π₯, π¦): π¦ = 2π₯ β 3},
π 2 +π 4 +π 6 +π 7
1+π 2 +π 3
.
Find the values of π and π.
Section B(Long Answer )
1
6.
Prove: πππ 200 πππ 400 πππ 600 πππ 800 =
7.
Prove that tan 70° = tan 20° + 2 tan 50°
8.
Prove that π πππΌ + sin (πΌ +
9.
Prove that πππ 2 π΄ + πππ 2 (π΄ + 240°) + πππ 2 (π΄ β 240°) = 2
10.
11.
2π
3
16
) + sin (πΌ +
4π
3
) = 0.
3
Prove:
Cos 8A Cos 5A β Cos 12A Cos 9A
= tan 4 A
Sin 8a Cos 5A + Cos 12A Sin 9A
In any βABC, prove that:
a sin(B β C) + bsin(C β A) + c sin(A β B) = 0
12.
13.
14.
16.
Prove that ππππ π΄ + ππππ π΅ + ππππ πΆ = 2ππ πππ΅π πππΆ.
Prove βΆ
sin3x + sin5x + sin7x + sin9x
= tan 6x
cos3x + cos5x + cos7x + cos9x
1 | INDIAN SCHOOL AL WADI AL KABIR / Dept. of Mathematics / Class XI / Holiday Homework
17.
Show that π‘ππ3π₯π‘ππ2π₯π‘πππ₯ = π‘ππ3π₯ β π‘ππ2π₯ β π‘πππ₯.
18.
Prove:
19.
If (π₯) = 1βπ₯ , show that
20.
Prove that :
(πππ πβπππ 3π ) (πππ8π+π ππ2π)
=1
(π ππ5πβπ πππ ) (πππ 4πβπΆππ6π)
1+π₯
π(π₯)π(π₯ 2 )
1+[π(π₯)]2
1
=2.
πΌ+π½
πππ πΌ + πππ π½ + cos πΎ + πππ (πΌ + π½ + πΎ) = 4πππ (
21.
2
π½+πΎ
) πππ (
2
πΎ+πΌ
) πππ (
2
)
Is π = {(1,1) , (2,3), (3,5), (4,7)} a function? If this is described by the
formula π(π₯) = ππ₯ + π
Then what should be the values assigned to π and π.
22.
A college awarded 38 medals in football, 15 in basketball and 20 in
9
cricket. If these medals went to a total of 58 men and only three men
got medals in all the three sports .How many received medals in exactly
two of the three sports.
23.
Solve 2πππ 2 π₯ + 3π πππ₯ = 0
24.
In βπ΄π΅πΆ ,prove that π ππ
π
π΅βπΆ
2
=
πβπ
π
3π
π΄
πππ 2
5π
7π
1
25.
Prove that (1 + πππ 8 ) (1 + πππ
26.
Find the general solution of the following equation: β3 cos x- sin x= 1
) (1 + πππ
8
) (1 + πππ
8
)=8
8
π₯ = ππ ±
ππ ±
27.
In any triangle ABC, prove that a = b cosC + c cosB
28.
Solve the following trigonometric equation: 2π ππ2 π₯ + π ππ2 2π₯ = 2
29.
Find the general solution of the following equation:
3 tan x + cot x = 5 cosec x
30.
Evaluate|1βπ β 1+π|.
1+π
π
πππ
4
π₯ = ππ ±
ππ ±
π
,
2
π
,
2
π
, πππ
4
π
2nπ ± , π β π
3
1βπ
2 | INDIAN SCHOOL AL WADI AL KABIR / Dept. of Mathematics / Class XI / Holiday Homework
© Copyright 2026 Paperzz