Summer break-Holiday Homework 2016-17

INDIAN SCHOOL AL WADI AL KABIR
Dept. of Mathematics
HOLIDAY HOME WORK
Class XI(2016-17)
Questions
Section A(1 mark)
S.No
Answers
1.
2.
πœ‹
3.
Find the general solution of π‘π‘œπ‘  (π‘₯ + 4 ) = 0.
4.
Express
5.
If the ordered pairs (π‘Ž, βˆ’1) and (5, 𝑏) belong to {(π‘₯, 𝑦): 𝑦 = 2π‘₯ βˆ’ 3},
𝑖 2 +𝑖 4 +𝑖 6 +𝑖 7
1+𝑖 2 +𝑖 3
.
Find the values of π‘Ž and 𝑏.
Section B(Long Answer )
1
6.
Prove: π‘π‘œπ‘ 200 π‘π‘œπ‘ 400 π‘π‘œπ‘ 600 π‘π‘œπ‘ 800 =
7.
Prove that tan 70° = tan 20° + 2 tan 50°
8.
Prove that 𝑠𝑖𝑛𝛼 + sin (𝛼 +
9.
Prove that π‘π‘œπ‘  2 𝐴 + π‘π‘œπ‘  2 (𝐴 + 240°) + π‘π‘œπ‘  2 (𝐴 βˆ’ 240°) = 2
10.
11.
2πœ‹
3
16
) + sin (𝛼 +
4πœ‹
3
) = 0.
3
Prove:
Cos 8A Cos 5A βˆ’ Cos 12A Cos 9A
= tan 4 A
Sin 8a Cos 5A + Cos 12A Sin 9A
In any βˆ†ABC, prove that:
a sin(B βˆ’ C) + bsin(C βˆ’ A) + c sin(A βˆ’ B) = 0
12.
13.
14.
16.
Prove that π‘Žπ‘π‘œπ‘ π΄ + π‘π‘π‘œπ‘ π΅ + π‘π‘π‘œπ‘ πΆ = 2π‘Žπ‘ π‘–π‘›π΅π‘ π‘–π‘›πΆ.
Prove ∢
sin3x + sin5x + sin7x + sin9x
= tan 6x
cos3x + cos5x + cos7x + cos9x
1 | INDIAN SCHOOL AL WADI AL KABIR / Dept. of Mathematics / Class XI / Holiday Homework
17.
Show that π‘‘π‘Žπ‘›3π‘₯π‘‘π‘Žπ‘›2π‘₯π‘‘π‘Žπ‘›π‘₯ = π‘‘π‘Žπ‘›3π‘₯ βˆ’ π‘‘π‘Žπ‘›2π‘₯ βˆ’ π‘‘π‘Žπ‘›π‘₯.
18.
Prove:
19.
If (π‘₯) = 1βˆ’π‘₯ , show that
20.
Prove that :
(π‘π‘œπ‘ πœƒβˆ’π‘π‘œπ‘ 3πœƒ ) (𝑆𝑖𝑛8πœƒ+𝑠𝑖𝑛2πœƒ)
=1
(𝑠𝑖𝑛5πœƒβˆ’π‘ π‘–π‘›πœƒ ) (π‘π‘œπ‘ 4πœƒβˆ’πΆπ‘‚π‘†6πœƒ)
1+π‘₯
𝑓(π‘₯)𝑓(π‘₯ 2 )
1+[𝑓(π‘₯)]2
1
=2.
𝛼+𝛽
π‘π‘œπ‘ π›Ό + π‘π‘œπ‘ π›½ + cos 𝛾 + π‘π‘œπ‘ (𝛼 + 𝛽 + 𝛾) = 4π‘π‘œπ‘  (
21.
2
𝛽+𝛾
) π‘π‘œπ‘  (
2
𝛾+𝛼
) π‘π‘œπ‘  (
2
)
Is 𝑔 = {(1,1) , (2,3), (3,5), (4,7)} a function? If this is described by the
formula 𝑔(π‘₯) = π‘Žπ‘₯ + 𝑏
Then what should be the values assigned to π‘Ž and 𝑏.
22.
A college awarded 38 medals in football, 15 in basketball and 20 in
9
cricket. If these medals went to a total of 58 men and only three men
got medals in all the three sports .How many received medals in exactly
two of the three sports.
23.
Solve 2π‘π‘œπ‘  2 π‘₯ + 3𝑠𝑖𝑛π‘₯ = 0
24.
In βˆ†π΄π΅πΆ ,prove that 𝑠𝑖𝑛
πœ‹
π΅βˆ’πΆ
2
=
π‘βˆ’π‘
π‘Ž
3πœ‹
𝐴
π‘π‘œπ‘  2
5πœ‹
7πœ‹
1
25.
Prove that (1 + π‘π‘œπ‘  8 ) (1 + π‘π‘œπ‘ 
26.
Find the general solution of the following equation: √3 cos x- sin x= 1
) (1 + π‘π‘œπ‘ 
8
) (1 + π‘π‘œπ‘ 
8
)=8
8
π‘₯ = π‘›πœ‹ ±
π‘›πœ‹ ±
27.
In any triangle ABC, prove that a = b cosC + c cosB
28.
Solve the following trigonometric equation: 2𝑠𝑖𝑛2 π‘₯ + 𝑠𝑖𝑛2 2π‘₯ = 2
29.
Find the general solution of the following equation:
3 tan x + cot x = 5 cosec x
30.
Evaluate|1βˆ’π‘– βˆ’ 1+𝑖|.
1+𝑖
πœ‹
π‘›πœ–π‘
4
π‘₯ = π‘›πœ‹ ±
π‘›πœ‹ ±
πœ‹
,
2
πœ‹
,
2
πœ‹
, π‘›πœ–π‘
4
πœ‹
2nπœ‹ ± , 𝑛 ∈ 𝑍
3
1βˆ’π‘–
2 | INDIAN SCHOOL AL WADI AL KABIR / Dept. of Mathematics / Class XI / Holiday Homework