Name Date 7.1 – 7.3 Practice Test For 1 – 5, simplify the trig expression 1. sin2 cot2 + sin2 2. 1 - 2 csc2x + csc4x 3. cos x 1 sin x 1 sin x cos x sin 2 x cos2 x 4. sin 2 x sin x cos x 5. csc3 x – csc2 x – csc x + 1 For 6-10, verify the given trig expressions. 6. sin3 x + sin x cos2 x = sin x 7. sin x tan( x) cot( x) = -csc x 2 8. sec4 - tan4 = 1 + 2tan2 9. 10. cos x 1 sin x 1 sin x cos x 1 sec( x) csc x sin( x) tan( x) 11. Find the exact values of each of the following: a. Sin 75 = sin( 30 + 45) = sin(30)cos(45) + sin(45)cos(30) = (1/2)(√2/2) + (√2/2)(√3/2) = (√2 + √6)/4 b. Cos 75 = cos(30 + 45) = cos(30)cos(45) – sin(30)sin(45) = (√3/2)(√2/2) – (1/2)(√2/2) = √6/4 - √2/4 = (√6 - √2)/4 c. Tan 75 = (√2 + √6)/4/((√6 - √2)/4) = (√2 + √6)/ (√6 - √2) 12. Given sin u = 12/13 and cos u is positive; cos v = -4/5 and tan v is positive, find the following: using triangles; cos(u) = 5/13; sin(v) = -3/5 a. Sin (u + v) = sin(u)cos(v) + sin(v)cos(u) = (12/13)(-4/5) + (-3/5)(5/13) = -48/65 – 15/65 = -63/65 b. Cos (u – v) = cos(u)cos(v) + sin(u)sin(v) = (5/13)(-4/5) + (12/13)(-3/5) = -20/65 – 36/65 = -56/65 c. Tan (v – u); tan(v) = ¾; tan(u) = 12/5 = (3/4 – 12/5)/(1 + (3/4 * 12/5)) = (-33/20)/(56/20) = -33/56 13. Given the sin w is –5/13 and w is in quadrant 3, find each of the following: d. sin(2w); using triangles, cos(w) = -12/13; 2sin(w)cos(w) = (-5/13)(-12/13) = 2(60/169) = 120/169 e. cos(2w) = 1 – 2sin2(w) = 1 – 2(-5/13)2 = 1 – 2(25/169) = 1 – 50/169 = 119/169 f. tan(2w) = (tanv – tanu)/(1 + tanvtanu) = (3/4 – 12/5)/(1 + ¾ x 12/5) = (-33/20)/(56/20) = -33/56 Cofunction Identities cos x sin x 2 csc x sec x 2 cot x tan x 2 sin x cos x 2 sec x csc x 2 tan x cot x 2 Period Identities sin (x + 2) = sin x cos (x + 2) = cos x tan (x + ) = tan x csc (x + 2) = csc x sec (x + 2) = sec x cot (x + ) = cot x Odd/Even Identities sin (-x) = - sin x cos (-x) = cos x tan (-x) = -tan x csc (-x) = - csc x sec (-x) = sec x cot (-x) = - cot x Pythagorean Identities sin2 x + cos2 x = 1 tan2 x + 1 = sec2 x 1 + cot2 x = csc2 x Double Angle Identities sin 2x = 2 sin x cos x tan 2 x 2 tan x 1 tan 2 x cos 2x = cos2 x – sin2 x or or Sum and difference formulas sin(x + y) = sin x cos y + cos x sin y sin(x – y) = sin x cos y – cos x sin y tan( x y ) tan x tan y 1 tan x tan y 2 cos2 x – 1 1 – 2 sin2 x cos(x + y) = cos x cos y – sin x sin y cos(x – y) = cos x cos y + sin x sin y tan( x y) tan x tan y 1 tan x tan y Pledge:__________________________________________________________________
© Copyright 2026 Paperzz