TheRelationshipbetweenland-coverandaquaticmacroinvertebratecommunities offourwaterbodiesinWesternMontana,USA AnastassiaRyan UNDERCWest2016 Abstract Thehealthandbiodiversityofstreamsisinvaluablefrombothlandmanagement andwildlifepreservationperspectives.Wesampled5river,creek,andmanmade ditchsitesinwesternMontanatoassesswaterqualityandrelatemacroinvertebrate communitydiversitytoadjacentlandcover.Inthisstudywequantitativelyand qualitativelydescribedthebenthicmacroinvertebratecommunitiesoffourdifferent loticsystems.DiversityindexeswerecalculatedincludingSimpsons(asthebaseline responsevariable),richness,andPercentModelAffinity(PMA)alongwithseveral othersandusedinastepwiseregressiontodeterminethebestmodeltopredict Simpson’sDiversity.AquaticmacroinvertebraterichnessandPMAwerethebest predictorsofSimpson’sDiversitybasedonp-ValuesandtheAIC.Futurestudies shouldinvestigatebothlandcoverandthephysicalandchemicalcharacteristicsin thewaterbodiesstudied. Introduction Streams are the blood vessels of the terrestrial ecosystem. Streams play a role in nutrient cycling and decomposition of plant material, and provide habitat to a variety of species of fish and macroinvertebrates. Streams are an important source of biodiversity within different landscapes, and benthic macroinvertebrates contribute to this biodiversity (Tonkin 2014). Biodiversity of streams provides an important food source for terrestrial animals, such as mink, which feed on freshwater mussels and crayfish, and bears, which prey on salmonid fish. A large portion of fish diet consists of macroinvertebrates, as different kinds of fish feed on various kinds of aquatic invertebrates. There is an evident biological cascade that depends on the large diversity provided a healthy stream ecosystem and good water quality. From headwaters to lower reaches, different communities of benthic macroinvertebrates exist (e.g., shredders such as stoneflies in headwaters, or caddisfly collector-gatherers in mid- and lower reaches). These communities contribute to the processing and downstream transport of dissolved organic matter (DOM) and fine particulate organic matter (FPOM) (Vannote et al. 1980) contributing to the cleanliness and health of the stream environment. TheMoieseValleyisalargeagriculturalcommunityinWesternMontanaon theFlatheadReservationwherelikeeverywhereinthewesternUnitedStatesis concernedaboutwaterqualityinthecurrentenvironmentalclimate.The agricultureintheareaislargelyindustrialcattle,wheat,andhayallofwhichrequire largesumsofwatertoproduce(Vorosmartyetal.2000).Theseindustriesalsohave astresseffectonthelocalwaterqualityduetothenutrientloadingproducedfrom runoffoffertilizersormanureintostreamsorbodiesofwater.Today’sindustrial agricultureusesavarietyofharmfulmethodsintryingtomaximizetheiryieldsand profits.Pesticidesareintendedtokillinsectsindiscriminately,herbicidesintended tokillweedsmayalsodamagethediversityofthenativeflora,andfungicidesare useddirectlyinwaterways.Alloftheseindustrialagriculturemeasuresareharmful totheadjoinedaquaticsystems. Agoodindicatorofecologicalhealthisthediversityofspeciesthatthe ecosystemhouses.Whentoomanystressorsenteraripariansystemthewater qualitygoesdownandthesensitivemacroinvertebratescannotsurviveinthe systemanylonger(Palmeretal.2010).AccordingtotheHilsenhoffBioticIndex (Barbouretal.)caddisfy’sandstonefly’saresensitivetopollution,right-handed snailsandcrawlingwaterbeetlesarefacultative,andleft-handedsnailsandworms arepollutiontolerant.Thereareseveralbiodiversityindexesorequationsmeantto calculatewaterqualitywitharatingsystemsuchasHilsenhoff’s(HIB),thereisalso percentEphemeroptera,Plecoptera,Trichoptera(EPT)(DeWaltetal.1999)percent modelaffinity(PMA)(Novak&Bode1992),percentChironomidae,abundance,and richness. Anotherpossibleindicatorofstreamhealthistheadjacentlandcover.Along thesamelinesasthediversityoftaxawithinthestreamindicatinggoodquality water,thediversityoffloraabuttingastreamwouldbeasignalofahealthyriparian ecosystem.Wesampledfiveriver,creek,andmanmadeditchsitesinwestern Montanatoassesswaterqualityandrelatemacroinvertebratecommunitydiversity toadjacentland-cover(Weigeletal.1999).Theassessmentconsistedofa quantitativeandqualitativestudydescribingthebenthicmacroinvertebrate communitiesinfourdifferentloticsystems.Usingthequantitativedatadifferent metricswerecalculated(suchastheHBI,EPT,richness,etc.).Alongwithourdataa land-coverdatabaseprovidedbytheMontanaStateGovernmentwebsitewasused toassesstherelationshipbetweenwaterqualitywithinthesystemandthe borderingenvironment. Methods SamplingSites: Fivelocationswithina15-kilometerradiusofTheNationalBisonRange weresampledwiththekicknetmethod.Thelocationswerechosentorepresent variouslevelsofwaterqualitywithdistinctadjacentlandcover.Threeofthesites arelocatedintwoofthetributariestotheFlatheadRiver,theMissionRiverandthe JockoRiver.Theothertwositesaremanmadeeitheracanaloraditchusedfor agriculturalirrigation. TheNinepipelocationisthenorthernmostlocationitisawetland conservationsiteusedasfloodcontrol.ThereisacanaloriginatingfromThe NinepipeWildlifeNationalRefugeusedforirrigationintheMoieseagricultural valley.Thisisamanmadecanalwherethesubstrateissiltandvegetation,andthe adjacentland-coveriscompletelygrassland. TheMissionRiversiteselectedisrightunderwheretheMoieseWetland Restorationsiteemptiesintotheriver.Therestorationconsistsofseveralwetlands meanttotakewastewaterfromtheMoieseValleyindustrialagriculturalditchesand filteroutthepollution.Thisparticularlocationisofinterestforthepeopleofthe FlatheadReservationbecauseoftheinvestmentmadetobuildthewetland restorationsiteandthequalityoftheirwater.TheMissionsiteislargestriver sampledwithvarioussizedcoblesubstrateandtheadjacentland-coverishalf grasslandandhalfriparianwoodlandandshurbland. TheJockoRiverwassampledattwospots,theUpperJockositeisan upstream-isolated-bradedlocationandtheLowerJockositeisdownstreaminmore developedarea.TheregioninWesternMontanawheretheJockorunsismostly agriculturalandthereareirrigationditchesthatenterandexitbetweenthetwo selectedsamplingsites.Theadjacentland-covertotheUpperJockoisgrassland, openeddeveloped,andriparianwoodlandandshrublandwhiletheland-coveron theLowerJockoisclassifiedasmajorroads,andriparianwoodlandandshrubland. Jerry’sDitchisasitethatrunsthougharanchingpropertyinDixion, Montana.Theassumptionforthissiteisthatthewaterqualityisimpaireddueto thenutrientloadingproducedbythecattleontheproperty.ThesubstrateinJerry’s DitchissimilartoNinepipe,entirelycomposedofsiltandvegetation.Theland-cover adjacenttotheditchisclassifiedaslowintensityresidentialandcultivatedcrops. Alltheland-covertypeclassificationscanbeseenonthemapintheappendix(figure 1). SamplingMethods: Eachofthefivesitesweresampledthreetimesondifferentdates:27June 2016,5July2016,and20July2016.Everysamplingeventconsistedofthreekick netsweepswitha150meshkicknet.TheJockolocationswheretherewasdiverse substrateadditionalsamplesweretaken.Threekicknetsweepsweretakenina riffle,run,andpoolontheJockoRiverateithertheupperorlowerlocationtoget comprehensivesamplesoftheentireriversystem.Eachsamplewasstrainedand preservedin%95ReagentAlcohol.Eachsamplewasprocessedunder magnification;everymacroinvertebratewithinthesedimentandvegetative materialwascollected,identifiedtoorderaccordingtoDr.J.ReeseVoshell,Jr.’s‘A GuideToCommonFreshwaterInvertebratesofNorthAmerica’andcountedas presentwiththestreamthesamplewastakenfrom(Table2,Figures2-6). StatisticalAnalysis: GPScoordinatestakenateachsamplinglocationwereusedinArcMap(Esri 2013)alongwithland-coverclassificationdataobtainedfromtheMontana Governmentwebsite.Thebuffertoolwasusedtocreatea15-meterradiusbuffer aroundthesamplingsites.Thentheland-coverclassificationlayerwasclippedto justthe15-meterradiustoobtainthepercentageofland-covertypedirectly adjacenttoeachsamplingsite.Thereweresevenland-covertypesforallfiveofthe samplinglocations:Type1isNorthernRockyMountainlowermontaneriparian woolandandshrubland,Type2isRockyMountainlowermontanefoothillandvalley grassland,Type3iscultivatedcrops,Type4isopenwater,Type5ismajorroads, Type6lowintensityresidential,andType7isopendeveloped. Severalmetricswerecalculatedpriortostatisticalanalysisfromtheraw macroinvertebratecountdata.Allthemetricsarediversityindexesintendedto relatethequalityofthewaterorthestreamhealthtothediversityandabundance ofpresentmacroinvertebrates.ThebaselinemetricusedwasSimpsonsindexbut alsocalculatedforcomparison:HBI,EPT,PMA,percentChironomidae,abundance, andrichness. Thetypeland-coverpercentagesandeachofthemetricsareusedtopreform aforwardstepwiseregressionanalysisinSystatVersion13toobtaintheAkaike InformationCriterion(AIC)valuesgiveninTable1.UsingSimpsonsdiversityindex asourstandardforgoodqualitywaterandahealthystreamhabitat,wecompared boththeland-covertypesandthecalculatedmetricsagainstitasourinitialanalysis. Asfollowupanalysiswetookland-covertypeandcalculatedmetricsasindividual categoriesandpreformedtheforwardstepwiseregressiononthemindividually.A principlecomponentsanalysiswasalsopreformedinSystatVersion13tovisualize therelationshipsamongallofthevariables(figure8).InRpackage“mvabund” (Wangetal.2016)wepreformedanordinationandageneralizedlinearmodelon therawmacroinvertebratecountdatatovisualizethesimilaritiesbygroupings (figure9).Becausethisisabundancedata,whichistypicallynon-normal“mvabund” takesthatintoaccountandisabletosortthroughthenon-normalcyaccordingly. Results TheordinationraninRshowscleargroupingsbasedonsimilaritiesinthe rawcountdata.Eachsitehaddistincttaxanomicgroupsandvaryingabundance.The dominantfamilyintheorderDipteraintheLowerJocko,UpperJocko,andinJerry’s DitchwastheChironomidae.Jerry’sDitchhadtheleasttotalabundancewithonly 70specimenscollected,theUpperJockohadthemostabundancewith1067 specimenscollected.TheMissionsitewasthesecondmostabundantwith735 collectedspecimenswiththedominantorderbeingTrichoptera. Thestepwiseregressionusingallofthefactors(land-covertypeandthe calculatedmetrics)gavePMAandrichnessastheleadingpredictorvariablesin determiningwaterquality(Simpsonsdiversity)(Table1). Thenwewantedtoseewhattheleadingpredictorvariablewouldbeifwe lookedateachcategoryindividually,land-covertypeandcalculatedmetrics.When takingonlythecalculatedmetricsforstepwiseregressionagainsttheSimpsons responsevariablebothrichnesswithap-Valueof0.00andaPMAp-Valueof0.048 gaveusthelowestAICvalueof-71.177.Whentakingland-covertypeastheonly predictorvariables,Type1isthestrongestpredictorvariablewithap-Valueof 0.004andanAICvalueof-49.771.ThePCAshowsaclearrelationshipbetween Simpsons,richness,abundance,Type1,andType7. Discussion ThereisaclearpositiverelationshipbetweenSimpsons,richness,andType1 land-cover.ThismeansthattheNorthernRockyMountainlowermontaneriparian woodlandandshrublandland-covertypeispositivelycorrelatedwithhigher diversityofmacroinvertebratepopulation.ThehighertheSimpsonsdiversityvalue orrichnessofspeciesinastreamsystemwouldindicategoodwaterqualityanda healthyaquaticecology. ItisnaturalthatwhenanalyzingallofthefactorsagainsttheSimpsons responsevariabletherichnessandPMAaretheleadingpredictorvariables.When analyzingonlythecalculatedmetricsagainstSimpsonsitmakessensethatrichness andPMAwouldalsobethestrongestpredictorvariables.Thefactthatrichnessgot ap-Valueof0.00whencomparedwithSimpsonsdiversityindexmeansthatbecause richnessisafactorincalculatingSimpsonsindexyouwouldexpecttheretobea directrelationshipbetweenthetwometrics.Sincethetwo,Simpsonsandrichness aresosimilaronecoulduserichnessinplaceofSimpsonsasaquickestimateofthe healthofastreamandinturnwaterqualityinthestreamsystem(McGuire2006). ThePrincipalComponentsAnalysisalsoshowsthattherearesimilaritiesin Simpsons,richness,PMA,andType1butsuggeststhatType7,abundance,EPT,and Chiromayalsobegoodindicatorsofdiversityandwaterquality(figure8).While theordinationconfirmsthatthemacroinvertebratepopulationsareconsistent withineachsamplinglocationduringthethreeseparatesamplingevents. UpperJockoprovedtobethemostabundantsiteandthisislikelybecause thereweredistinctsubstrateareassampledseparatelybutwechosetoincludethe samplesinourstatisticalmodelstoenhancethestrengthoftheanalysisbyutilizing allofthedatawecollected.Thustherewasavarietyofmicrohabitatsthatcouldbe utilizedbyadiverseassemblageofbenthicinvertebrates.TheMissionhadalarge numberofTrichoptera,whichareasensitivetaxa.TheUpperJockoandMissionhad thehighestSimpsonsscoresrespectively(Table2).TheUpperJockohadtheleast alteredland-coverandwasinanareaclassifiedasNorthernRockyMountainlower montaneriparianwoodlandandshurblandwhichwastheland-covertypefoundto havethemostinfluenceonthemacroinvertebratediversity.TheMissionsitewasin anareathathadbeendevelopedasawetlandrestorationsitesothefactthatithas thesecondbestSimpsonsscoresandahighnumberofthesensitivetaxa Trichopterasuggeststhatthewaterqualitythereisbetterthanateitheragricultural site(Jerry’sDitchandNinepipe). Clearlythereisarelationshipbetweenland-covertypeandthehealthofa loticsystem(Wangetal.2011).Whenchoosingoursiteswewentoutphysicallyand lookedfordifferenttypesofloticsystemstocompare.Infuturestudiesitwouldbe interestingtofindmultiplelocationswithacertainland-coverclassificationanddo replicatesandthencomparewithotherland-covertypereplicates.Alsowewerenot ablecollectothermetricssuchasvelocity,temperature,dissolvedoxygen,etc.that wouldbeimportantintellingthewholestoryofwhatisgoingoninariversystem. Acknowledgements IwouldliketothankmyMentorKathrineBarrettforteachingmeeverything Iknowaboutmacroinvertebratesandforherinfectiousenthusiasm.Iwouldliketo thankDr.GaryBelovskyandJenifferBelovskyforgivingmethiswonderful opportunityandexperience.DavidFlagelformakingallthearrangementstogetthis projectdone.TotheUniversityofNotreDameforhavingsuchagreatprogramfor studentstoliveandlearninthefield. References Barbour,M.T.,Graves,C.G.,Plafkin,J.L.,Wisseman,R.W.andBradley,B.P.1992. EvaluationofEPA'srapidbioassessmentbenthicmetrics:Metricredundancyand variabilityamongreferencestreamsites.EnvironmentalToxicologyandChemistry 11:437–449. DeWalt,R.E.,Webb,D.W.Webb,Harris,M.A.1999.SummerEphemeroptera, Plecoptera,andTrichoptera(EPT)speciesrichnessandcommunitystructureinthe lowerIllinoisRiverbasinofIllinois.GreatLakesEntomologist3:115-132. McGuireD.L.2007.ClarkForkRiverBiomonitoringMacroinvertebrateCommunity Assessments.UnitedStatesEnvironmentalProtectionAgencyRegion8. Novak,M.A.,Bode,R.W.1992.Percentmodelaffinity:anewmeasureof macroinvertebratecommunitycomposition.JournaloftheNorthAmerican BenthologicalSociety11:80-85. Palmer,M.A.,Menninger,H.L.,Bernhardt,E.2010.RiverRestoration,habitat heterogeneityandbiodiversity:afailureoftheoryorpractice.FreshwaterBiology 55:205-222. Tonkin,J.D.2014.Driversofmacroinvertebratecommunitystructureinunmodified streams.PeerJ2:e465;DOI10.7717/peerj.465. Vannote,R.L.,G.W.Minshall,K.W.Cummins,J.R.Sedell,ANDC.E.Gushing.1980. TheRiverContinuumConcept.Can.J.Fish.Aquat.Sci.37:130-137. Vorosmarty,C.J.,Green,P.,Salisbury,S.,Lammers,R.B.2000.GlobalWater Resouces:VulnerabilityfromClimateChangeandPopulationGrowth.Science 5477:284-288. Voshell,J.R.2002.AGuideToCommonFreshwaterInvertebratesofNorthAmerica. DepartmentofEntomologyCollegeofAgricultureandLiveSciencesVirginiaTech. Wang,L.,Lyons,J.,Kanehl,P.,Gatti,R.2011.InfluencesofWatershedLandUseon HabitatQualityandBioticIntegrityinWisconsinStreams.Fisheries22:2-12. Wang,Y.,Naumann,U.,Wright,S.,Eddelbuettel,D.,Warton,D.2016.Statistical MethodsforAnalysingMultivariateAbundanceData.3.11.9. Weigel,B.M.,Lyons,J.,Palne,L.K.,Dodson,S.I.,Undersander,D.J.1999.Using StreamMacroinvertebratestoCompareRiparianLandUsePracticesonCattle FarmsinSouthwesternWisconsin.JournalofFreshwaterEcology15:93-106. Tables Table1:ThistablegivestheresultsofeachforwardstepwiseregressiondonewiththeSimpson’s DiversityIndexastheresponsevariableandLand-coverTypes[Type1-NorthernRockyMountain lowermontaneriparianwoolandandshrubland,Type2-RockyMountainlowermontanefoothilland valleygrassland,Type3-cultivatedcrops,Type4-openwater,Type5-majorroads,Type6-low intensityresidential,Type7-opendeveloped]andCalculatedMetrics[EPT,PMA,HBI,percent Chironomidae,abundance,andrichness]asthepredictorvariables. Table2:Showsthenumberofeachmajorfamilyofmacroinvertebratecountedateachlocation. Thesenumberswereusedtomakethepiecharts(figures1-5).TherangeofSimpsonsvaluesare given,theSimpsonsDiversityIndexwascalculatedindividuallyforeachofthethreesamplingevents ateachlocation. Figures Figure1:Mapofsamplingsiteswithland-covertypesateachsite. LowerJocko Chironomidae Coleoptera Diptera Ephemeroptera Plecoptera Trichoptera Worm UpperJocko Chironomidae Coleoptera Diptera Ephemeroptera Plecoptera Trichoptera Worm Jerry'sDitch Chironomidae Coleoptera Diptera Ephemeroptera Plecoptera Trichoptera Ninepipe Chironomidae Coleoptera Diptera Ephemeroptera Plecoptera Trichoptera Worm Scud Mission Chironomidae Coleoptera Diptera Ephemeroptera Plecoptera Trichoptera Worm Scud Figures2-6:Anindividualpiechartforthemostabundantfamiliesfoundateachsite.TheJocko RiverandJerry’sditcharesimilarinthatthemostabundantmacroinvertebratefoundatthosesites aretheChironomidaewhicharemostlyfacultative.AtNinepipethedominatingmacroinvertebrate areScudswhicharealsomostlyfacultative.InMissionTrichopteraarethedominanttaxawhichare sensitivetopollution. Figure7:Theresultoftheforwardstepwiseregressionwithinputsofallthefactorsi.e.land-cover typeandcalculatedmetrics,showingthatrichnessandPMAarethestrongestpredictorvariablesin determiningSimpsonsdiversity. Figure8:PrincipleComponentsAnalysispreformedinSystat.Thisgraphshowsthattherearestrong similartiesbetweenSimpsons,Type1land-cover,andrichnessatoursitesbutthereseemstobea weakeryetstillpresentrelationshipbetweenthepreviousmentionedmetricsandEPTandPMA. Figure9:InRpackage“mvabund”wepreformedanordinationandageneralizedlinearmodelon therawmacroinvertebratecountdatatovisualizethesimilaritiesbygrouping.Thesitesarecolor coded:Mission-grey,Ninepipe-red,JockoUpper-green,Jerry’sDitch-purple,JockoLower-blue. Therearespatialdistinctionsfromeachsamplecollectedateachsite.Themacroinvertebrate communitiesremainedconstantthroughoutthesamplingperiod(lateJunetolateJuly2016).
© Copyright 2026 Paperzz