Lesson Study Lesson Proposal – Decoding De Moivre “DecodingDeMoivre” YearGroup:TransitionYearHigherLevel Topic:ComplexNumbers–DeMoivre’sTheorem LessonStudyandResearchGroup: DavidCrowdleandPaudgeBrennan,teachersinLoretoSS,Wexford,developedthislessonproposal. Paudgetaughtthelessonon10thFebruary2017with17studentsfromhisTransitionYearclass. Briefdescriptionofthelesson: Theresearchlessonisthesecondstructuredproblemsolvingclassesleadingthestudentstoappreciateand developanunderstandingofpolarmultiplicationandraisinganumbertoapower(DeMoivre’sTheorem) intermsofthemoduliandargumentsofthenumbers.Studentswillengagewithaproblemworkingout the value of a given complex number raised to the power of 5. Together they will present approaches leadingtoanunderstandingofdeMoivre’sTheoremandtheneedforit. 1 Lesson Study Lesson Proposal – Decoding De Moivre AimsoftheLesson: Shorttermaim:Studentswill: • appreciatethattherearedifferentcorrectapproachestoexpandingacomplexnumber, • seetheadvantagestousingthe“Modulus-argument”formofacomplexnumberwhenitcomesto multiplying, • developaconceptualunderstandtheprincipleofdeMoivre’stheorem“toexpandanumberraised toapoweryouraisethemodulustothatpowerandmultiplytheargumentbythepower.”1 Longtermaims:Wewouldlikeourstudents: • togainconfidenceindealingwithabstractconcepts, • tobecomeindependentlearnersthroughstructuredproblemsolving, • toconnectandreviewtheconceptsthatwehavestudiedalready, • todeveloptheirliteracyandnumeracyskillsthroughdiscussingideas.1 • todevelopkeyskillssuchas“ManagingInformation&Thinking:Thinkingcreativelyandcritically”,2 LearningOutcomes: Asaresultofstudyingthistopicstudentswillbeableto: • Understandindifferentwaysthemeaningofmultiplicationofwholenumbersandusethistomake senseofcomplexnumbermultiplicationandexpansion. • Understandandbeabletoexpressacomplexnumbersbothinrectangularformandintermsofits modulusandargument. • RecogniseanumberonanArganddiagramintermsofitsmodulusandargument • Developtheinsightthatwhennumbersaremultipliedtheirmoduliaremultipliedandtheir argumentsareaddedtogether. • Beabletomultiplynumbersgiventheirargumentsandmoduli. • Usethistodiscoverthatwhenanumberisraisedtoapoweritsmodulusisraisedtothatpower anditsargumentismultipliedbythatpowerandexperiencethatthisapproachismuchmore efficientthatusingrepeatedmultiplicationinrectangularform. BackgroundandRationale ThistopicwaschosenbecausestudentsfinddealingwiththepolarformofcomplexnumbersandDe Moivre’sTheoremachallengingpartoftheHigherLevelCourse.Itishopedthatthisapproachwillhelp studentsappreciatetheefficiencyofusingthepolarformformultiplicationandapplyingpowersto numbers. 1 Department of Education & Skills (2011). Literacy and Numeracy for Learning and Life: the National Strategy to Improve Literacy and Numeracy among Children and Young People 2011-2020. 2 NCCA (2015). Junior Cycle Key Skills: Managing Information and Thinking, http://www.juniorcycle.ie/NCCA_JuniorCycle/media/NCCA/Documents/Key/Managing-information-andthinking_April-2015.docx, Accessed 12 February 2017 2 Lesson Study Lesson Proposal – Decoding De Moivre Research • • • • • • • NCCA(2014).LeavingCertificateMathematicsSyllabus–Foundation,OrdinaryandHigherLevelfor Examinationfrom2015 (ProjectMathsDevelopmentTeam(2015).TeacherHandbook,SeniorCycleOrdinaryLevel. http://www.projectmaths.ie/documents/handbooks/LCOLHandbook2015.pdf (ProjectMathsDevelopmentTeam(2015).TeacherHandbook,SeniorCycleHigherLevel. http://www.projectmaths.ie/documents/handbooks/LCHLHandbook2015.pdf ToshiakiraFUJII(2013).TheCriticalRoleofTaskDesigninLessonStudy.ICMIStudy22:TaskDesign inMathematicsEducation MathsDevelopmentTeam,ReflectionsonPracticefromMathsCounts2016: http://www.projectmaths.ie/for-teachers/conferences/maths-counts-2016/ DepartmentofEducation&Skills(2011).LiteracyandNumeracyforLearningandLife:theNational StrategytoImproveLiteracyandNumeracyamongChildrenandYoungPeople2011-2020 NCCA,JuniorCycleKeySkills:ManagingInformationandThinking, http://www.juniorcycle.ie/NCCA_JuniorCycle/media/NCCA/Documents/Key/Managinginformation-and-thinking_April-2015.docx. 3 Lesson Study Lesson Proposal – Decoding De Moivre AbouttheUnitandtheLesson AccordingtothesyllabuswithregardtoComplexNumbersstudentsarerequiredto: ORDINARYLEVEL • Investigatetheoperationsofaddition,multiplication,subtractionanddivisionwithcomplexnumbersC inrectangularforma+ib. • IllustratecomplexnumbersonanArganddiagram. • InterpretthemodulusasdistancefromtheoriginonanArganddiagramandcalculatethecomplex conjugate. HIGHERLEVEL • Geometricallyconstructroot2androot3. • Calculateconjugatesofsumsandproductsofcomplexnumbers. • UsetheConjugateRootTheorem. • Workwithcomplexnumbersinrectangularandpolarformtosolvequadraticandotherequations. • UseDeMoivre’sTheorem. • ProveDeMoivre’sTheorembyinductionfornanelementofN. • Useapplicationssuchasnthrootsofunity,nanelementofN,andidentitiessuchasCos3θ=4Cos3θ –3Cosθ WiththisTransitionYeargrouponlytheOrdinaryLevelmaterialandaninformalapproachtothepolar formofacomplexnumberandrelatedmultiplicationanddeMoivre’sTheoremwillbecovered. FlowoftheUnit: No. Lesson Time 1 IntroductiontoComplexNumbersandtheArganddiagram 40min. 2,3 Additionandsubtractionofcomplexnumbers 40min. 4,5 ComplexMultiplication 40min. 6 Modulusofacomplexnumber 40min. 7,8 ComplexDivision 40min. 9 Expressingnumbersintermsofargumentandmodulus.Consider integermultiplicationintermsof“scalingandrotation.” 40min. 10 Multiplication(Structuredproblemsolvinglesson):considerscalingin termsofthemoduliandtherotationintermsofthearguments. (AppendixII) 40min. 11 ReserchLesson:“DecodingDeMoivre” 40min. 4 Lesson Study Lesson Proposal – Decoding De Moivre FlowoftheLesson 1.Introduction(5minutes) PriorKnowledge: Studentsarequestionedontheirunderstandingofprevious classesconcerning: a) Arganddiagram b) Rectangularformofacomplexnumber c) Describingtheargumentandmodulusofacomplex number d) Indices e) Multiplicationbyexpansion f) Multiplicationintermsofargumentsandmoduli 2.PosingtheTask(2minutes) Thetaskispresentedontheboard.Theyareinstructedtofind thevalueofz5in“asmanywaysasyoucan”in“15minutes”. Studentsarequestionedontheirunderstandingofthetask. Eachstudentisgiven3copiesofthehandoutpagewiththe questionandtheyareaskedto“explaintheirthinking” (AppendixI). 3.Individualproblemsolving(15minutes) AnticipatedStudentResponse1 Itisexpectedthatmoststudentswillrecognisethatthe rectangularformofz=√3+iandthentheymighttryto evaluate(√3+i)5byexpandingitinatraditionalway– repeatedmultiplication. AnticipatedStudentResponse2 Itishopedthatstudentsmighttrytodescribethemodulusand argumentofz.|z|=2andArg(z)=30o Theymightthendescribetheexpansionofz5intermsof repeatedmultiplication: |z5|=(2)(2)(2)(2)(2)=32 Arg(z5)=30o+30o+30o+30o+30o=150o 5 Lesson Study Lesson Proposal – Decoding De Moivre AnticipatedStudentResponse3 Studentsmightbuildon“AnticipatedResponse2”toexpress theexpansionofz5inamoreefficientway: |z5|=(2)5=32 Arg(z5)=5(30o) 4PresentingStudentResponsesandCeardaíocht Thestudentswillpresenttheirsolutionsandexplaintheir thinkingattheboard.Anystudentsmaybeaskedtore-explain whathasbeenpresented.Misconceptionswillbeaddressed. Thesolutionswillbepresentedintheinorderofthe AnticipatedResponses(outlinedabove). StudentswillseeonanArganddiagramhowtheRectangular formandtheArgument/Modulussolutionsfortheexpansion describethesamenumber. Itishopethatstudentsmightarticulate:“Averyefficientway ofraisinganumbertoapoweristoraisethemodulusbythe powerandmultiplytheargumentbythepower.” 5.Summingup Itwillbeexplainedthattheideasdiscussedintodaysclass relatetodeMoivre’sTheorem Studentswillbeaskedtowritedownwhettheylearnedin today’sclass. 6 Lesson Study Lesson Proposal – Decoding De Moivre PlanforObservingtheStudents Theteacherandtwoobserverswillbepresentfortheresearchlesson.Aseatingchartwillbeusedto identifystudentsandtheirresponses.Theteacherwilluseaclip-boardandrecordsheetthatidentifies whichstudentsattemptedandcompletedeachofthethreeanticipatedresponses.Acamerawillbeused torecordtheboardwork.Duringtheresearchlessontheteachersarepreparedtoconsiderthefollowing Post-LessonDiscussionquestions:Whathappenedthatyouexpected?Whathappenedthatyoudidn’t expect?Towhatdegreewerethegoalsofthelessonachieved? Introduction,posingthetask Canstudentsrecallpriorknowledgerelationtocomplexnumbers? Wasthetaskclear? Questionsaskedbystudents Individualwork Canstudentscorrectlydescribezinrectangularform? Canstudentscorrectlyexpandzinrectangularform? 5 Canstudentscorrectlyexpandz intermsofitsargumentandmodulus? 5 Canstudentcorrectlyexpandz intermsofitsargumentandmodulus? Whatproblemsdothestudentsencounter?Arepromptsrequired? Whatstrategiesdotheyemploywhendrawingcongruenttriangles? Whatkindofquestionsdostudentsask? Dotheypersistwiththetask? PresentationandDiscussion Arestudentsattentivetowhatishappeningontheboard? Areclarificationsneededtopresenters’boardwork? Didthediscussionandboardworkpromotestudentlearning? DuringeachpartoftheclassevidencewillberecordedonpaperandusingtheLessonNoteApp. Theanswersheetsusedbythestudentwillbecollectedalongwiththestudents’reflectiontheirown learningattheendofthelesson. 7 Lesson Study Lesson Proposal – Decoding De Moivre TheBoardPlan PlannedBoardwork ActualBoardwork 8 Lesson Study Lesson Proposal – Decoding De Moivre PostLessonReflection • • • • • 15studentscorrectlyinterpretedandwrotedowntherectangularformofz. 14studentstriedtoexpandz5usingrepeatedmultiplication,butnostudentcompletedthis correctly.Discussionaroundproblemsrelatingtothisexpansionsupportedthelearninginthe class. Anumberofstudentsintheireffortstocompletethismethodcorrectlydidnothavetimeto considerotherapproaches. 2studentshadthemisconceptionthat(√3+i)5=((√3)5+(i)5 Anumberofstudentsspenttimeworkingoutthemodulusandtheargumenteventhoughthis informationcouldbegleanedfromthediagram.Whenastudentpointedthisout,therewasa collective“Oooh!”fromtheclass. • • 4studentsusedthemodusandtheargumenttocorrectlyexpandz5. Thestudentswereabletoderiveandexplainallthreeanticipatedresponses.Although questioningwasusedtoleadstudentstowritethat30o+30o+30o+30o+30ocouldmore efficientlybedescribedas5(30o). • DuringCeardaíochtastudentasked:“Whatifthepowerisn’t5?”Otherstudentswereableto generalisehowtoapplytheprincipleofdeMoivre’sTheorem. Thelearninggoalsoftheclassseemedtobeachieved.10studentreflectionresponsesstatedin one-wayoranotherthat:“tomultiplycomplexnumbersyoumultiplythemoduliandaddthe arguments”orto“raiseacomplexnumberbyapoweryouraisethemodulusbythepowerand multiplytheargumentbythepower”. Manyexpressedanappreciationforthismethod:“Ilearnedthatapageofmathscouldjustas easilybesolvedinntwolines-|z5|=(2)5=32andArg(z5)=5x30o”orthat“itiseasierto multiplycomplexnumbersnow". • • 9 Lesson Study Lesson Proposal – Decoding De Moivre AppendixI–StudentHandoutwiththeProblem Student: This argand diagram shows the complex number z. Im (i) 2 z 1 -2 30o -1 1 √3 2 Re -1 -2 5 Work out the value of z . Explain your thinking... 10 Lesson Study Lesson Proposal – Decoding De Moivre AppendixII–StudentTasksPriortothisLesson 11
© Copyright 2026 Paperzz