Numerical Integration Computational Mathematics/Information Technology Dr Oliver Kerr 2009–10 Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Introduction In many problems we may want to find integrals like Z x=b f (x) dx x=a where we know or can calculate f (x), but cannot do the integration explicitly. What can we do? Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Introduction In many problems we may want to find integrals like Z x=b f (x) dx x=a where we know or can calculate f (x), but cannot do the integration explicitly. What can we do? We have already seen one thing in the work sheets — integrate a spline. Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Trapezium rule f(x) x0 x1 x2 x3 x4 x The area under the first line segment is Z x1 f (x0 ) + (x − x0 ) x0 (f (x1 ) − f (x0 )) f (x0 ) + f (x1 ) dx = (x1 − x0 ) (x1 − x0 ) 2 Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Apply this to our integral Z x=b f (x) dx x=a Let us divide the interval into N intervals. There will be a gap of h = (b − a)/N between our xs. So x0 = a, x1 = a + h, x2 = a + 2h, . . . , Dr Oliver Kerr xN = a + Nh = b Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Then our guess at the integral will be the Trapezium rule: Z x=b f (x) dx ≈ x=a = N−1 X h(f (a + nh) + f (a + (n + 1)h)/2 n=0 h (f (a) + 2f (a + h) + 2f (a + 2h) + · · · + 2f (b − h) + f (b)) 2 How accurate is this? Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Then our guess at the integral will be the Trapezium rule: Z x=b f (x) dx ≈ x=a = N−1 X h(f (a + nh) + f (a + (n + 1)h)/2 n=0 h (f (a) + 2f (a + h) + 2f (a + 2h) + · · · + 2f (b − h) + f (b)) 2 How accurate is this? It will depend on N. Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule We will look at an example where we can do the integration. We will integrate f (x) = sec2 (x) between x = 0 and x = 1 Z 1 sec2 x dx = tan 1 ≈ 1.557407725 0 We will see what happens as we increase N Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration N = 1, Introduction Trapezium Rule Simpson’s rule Estimate= 2.21275949, Dr Oliver Kerr Error= 0.655351758 Computational Mathematics/Information Technology Numerical Integration N = 2, Introduction Trapezium Rule Simpson’s rule Estimate= 1.75560296, Dr Oliver Kerr Error= 0.198195219 Computational Mathematics/Information Technology Numerical Integration N = 4, Introduction Trapezium Rule Simpson’s rule Estimate= 1.61106944, Dr Oliver Kerr Error= 0.0536617041 Computational Mathematics/Information Technology Numerical Integration N = 8, Introduction Trapezium Rule Simpson’s rule Estimate= 1.57117105, Dr Oliver Kerr Error= 0.0137633085 Computational Mathematics/Information Technology Numerical Integration N = 16, Introduction Trapezium Rule Simpson’s rule Estimate= 1.56087255, Dr Oliver Kerr Error= 0.003464818 Computational Mathematics/Information Technology Numerical Integration N = 32, Introduction Trapezium Rule Simpson’s rule Estimate= 1.55827546, Dr Oliver Kerr Error= 0.000867724419 Computational Mathematics/Information Technology Numerical Integration N = 64, Introduction Trapezium Rule Simpson’s rule Estimate= 1.55762482, Dr Oliver Kerr Error= 0.000217080116 Computational Mathematics/Information Technology Numerical Integration N = 128, Introduction Trapezium Rule Simpson’s rule Estimate= 1.5574621, Dr Oliver Kerr Error= 0.000054359436 Computational Mathematics/Information Technology Numerical Integration N = 256, Introduction Trapezium Rule Simpson’s rule Estimate= 1.5574218, Dr Oliver Kerr Error= 0.0000140666962 Computational Mathematics/Information Technology Numerical Integration N = 512, Introduction Trapezium Rule Simpson’s rule Estimate= 1.55741155, Dr Oliver Kerr Error= 0.00000381469727 Computational Mathematics/Information Technology Numerical Integration N 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 Estimate 2.21275949 1.75560296 1.61106944 1.57117105 1.56087255 1.55827546 1.55762482 1.55746210 1.55742180 1.55741155 1.55740809 1.55740845 1.55740631 1.55740643 Introduction Trapezium Rule Simpson’s rule Error 0.655351758 0.198195219 0.0536617041 0.0137633085 0.003464818 0.000867724419 0.000217080116 5.4359436E-05 1.40666962E-05 3.81469727E-06 3.57627869E-07 7.15255737E-07 -1.43051147E-06 -1.31130219E-06 Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule The error is roughly reduced by a factor of 4 each time we double N. Two questions: 1. Is this to be expected? 2. Can we do better? Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule To find the estimate of the error we look at the error in one segment from a to a + h. We will use the result f (a + x) = f (a) + xf 0 (a) + x 2 f 00 (a + θ(x)x)/2 for some 0 < θ(x) < 1. This means the second derivative is evaluated somewhere between a and a + x. Dr Oliver Kerr Computational Mathematics/Information Technology Introduction Trapezium Rule Simpson’s rule Numerical Integration If we integrate f (a + x) = f (a) + xf 0 (a) + x 2 f 00 (a + θ(x)x)/2 for x between 0 and h we get Z h Z f (a + x) dx = 0 h 0 Z f (a) + xf (a) dx + 0 h x 2 f 00 (a + θ(x)x)/2 dx 0 We need an estimate of f 0 (a), but we just use our result again. Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule f (a + h) = f (a) + hf 0 (a) + h2 f 00 (a + θ(h)h)/2 so f 0 (a) = Hence Z h f (a + h) − f (a) − hf 00 (a + θ(h)h)/2 h f (a) + xf 0 (a) dx = hf (a) + 0 h2 = hf (a) + 2 =h h2 0 f (a) 2 f (a + h) − f (a) − hf 00 (a + θ(h)h)/2 h f (a) + f (a + h) h3 00 − f (a + θ(h)h) 2 4 Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule We are left with Z h x 2 f 00 (a + θ(x)x)/2 dx 0 which is an integral we cannot do — but we can make an estimate. If 00 f (x) < M then Z 0 h for all Z x f (a + θ(x)x)/2 dx ≤ 2 00 h 0≤x ≤h x 2 f 00 (a + θ(x)x)/2 dx 0 Z < h x 2 M/2 dx = 0 Dr Oliver Kerr h3 M 6 Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Combining these results gives Z h f (a + x) dx = h 0 f (a) + f (a + h) + (various terms) × h3 2 If we add N terms like this then the error will be the sum of N terms all proportional to h3 . But h = (b − a)/N so Z x=b f (x) dx = x=a h (f (a)+2f (a+h)+2f (a+2h)+· · ·+2f (b−h)+f (b)) 2 +(various terms) × h2 Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Simpson’s rule How can we do better? Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Simpson’s rule How can we do better? Let In = h (f (a) + 2f (a + h) + 2f (a + 2h) + · · · + 2f (b − h) + f (b)), 2 where h = (b − a)/N. Then Z x=b f (x) dx = IN + A/N 2 + smaller terms x=a Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Introduction Trapezium Rule Simpson’s rule Simpson’s rule How can we do better? Let In = h (f (a) + 2f (a + h) + 2f (a + 2h) + · · · + 2f (b − h) + f (b)), 2 where h = (b − a)/N. Then Z x=b f (x) dx = IN + A/N 2 + smaller terms x=a Z x=b f (x) dx = I2N + A/(2N)2 + smaller terms x=a Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Z Introduction Trapezium Rule Simpson’s rule x=b f (x) dx = IN + A/N 2 + smaller terms x=a Z x=b f (x) dx = I2N + A/(2N)2 + smaller terms x=a Take 4 times the bottom equation and subtract off the top one to get rid of the A terms: Z x=b f (x) dx = 4I2N − IN + smaller terms 3 x=a Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration Z Introduction Trapezium Rule Simpson’s rule x=b f (x) dx = IN + A/N 2 + smaller terms x=a Z x=b f (x) dx = I2N + A/(2N)2 + smaller terms x=a Take 4 times the bottom equation and subtract off the top one to get rid of the A terms: Z x=b f (x) dx = 4I2N − IN + smaller terms 3 x=a This should be more accurate as the 1/N 2 error terms have gone. Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration We now have Z Introduction Trapezium Rule Simpson’s rule x=b f (x) dx ≈ 4I2N − IN 3 x=a This can be written as Z x=b f (x) dx x=a = h (f (a) + 4f (a + h) + 2f (a + 2h) + 4f (a + 3h) + 2f (a + 4h) + · · · 3 · · · + 2f (b − 2h) + 4f (b − h) + f (b)) This is Simpson’s rule. Dr Oliver Kerr Computational Mathematics/Information Technology Numerical Integration N 2 4 8 16 32 64 128 256 512 1024 Estimate 1.60321748 1.56289148 1.55787134 1.55743992 1.55740976 1.55740821 1.55740786 1.55740786 1.55740798 1.55740702 Introduction Trapezium Rule Simpson’s rule Error 0.0458097458 0.00548374653 0.000463604927 3.21865082E-05 2.02655792E-06 4.76837158E-07 1.1920929E-07 1.1920929E-07 2.38418579E-07 -7.15255737E-07 Dr Oliver Kerr Computational Mathematics/Information Technology
© Copyright 2026 Paperzz