(x y) D . 6 X .3 A B .ABC f(x) a b x y z yz + xz + xy = 1: X Y

1991 ‘‰Œ‰‚ '”…˜” ™"’ ˜’…Œ „—‰ˆŽšŽ„ šƒ€‰”މŒ…€
10
‰€š„ ‰™ ‰Ž‰‰—šŽ™ Š‹ ‰Ž‰‰— (
5
‘‰‘) š……™ š…˜”‘
‰ ‰ŽŒ™ ‰˜”‘Ž „Ž‹
.1
:‰€„
5
,
3
.
€‰„ „ š‰’–Ž€„ „˜”‘„ .€
ˆŒ‡…Ž„ …‹˜’ €…„ „…˜‡€„… „…™€˜„ „˜”‘„ ‰ ™˜”„„ .
‰Ž‰‰—Ž„ ‰ŽŒ™ ‰˜”‘Ž Œ™
(x; y)
š…‚…†„ Œ‹ š€ €–Ž
.2
x(5y ; 7) = y + 2:
2
Œ™ š…ƒ…— ‚…† Œ‹ ‰ ‰˜‰Ž„ —‡˜Ž„ €…„
?
‰€š …Œ‰€ ,‹ €
`
„€˜„ .
1
Œ’
A
?
D
p
D 3d
.˜…™‰Ž „™Œ‹ š…ƒ…—
…‰……™ ‹š‰ €„ .
6
‰‹ ‡‹…„ .‰˜’†Ž„ —‡˜Ž„
„ƒ…— „…š š‡€ „ƒ…— Š˜ƒ ‰˜…’„ ˜…™‰Ž ‰˜™‰ „™…Œ™ „
Œ™ š…‰Ž‰”„ š…‰…†„ ‰–…‡ …‰„‰
` ;` ;`
1
2
3 -™
Š‹
`
3
Œ’
C `
-…
2
Œ’
B
x
1
-…
2
3
š…ƒ…— €…–ŽŒ š‰ Љ€
ABC
f (x)
.5
; f (1) = 3 (i)
a; b
(ii)
.
‰‹ …š .‰Œ…‰–˜
X .3
d X
` ; ` ; ` .4
Œ™ „–…— €‰„
Œ‹ ˜…’ š˜ƒ‚…Ž
‰‰Œ…‰–˜
™Œ…™Ž„
„‰–—…”„
Œ‹ ˜…’
f (a + b) + f (a ; b) = 2[f (a) + f (b)]:
f (x)
.
š€ €–Ž
š…€……™Ž„ š‹˜’Ž š€ ˜…š”
3(x + 1) = 4(y + 1) = 5(z + 1)
x
y
z
yz + xz + xy = 1:
2
:Ž—Œƒ‹
2
Z = FY (X )
90
…’™„ ‰‚…‡Ž ……‹ ƒ‚
.6
2
‰˜‰ƒ‚Ž ˜…™‰Ž
X; Y
Y X
Œ™ š‰…† ‰…š‘Ž ™…
25
š…ƒ…— ‰š™ Œ‹ ˜…’
-Œ
-Ž ‰Žƒ—šŽ
(i)
.7
1.9
Y Z = XY
.
Z
˜™€‹ ,
˜‰ƒ‚ šŽ‰…‘Ž
P
0
-Œ ‰’‰‚Ž™ ƒ’ ™ƒ‡„ ……‹
Y
(ii)
A; B; C; D
-Ž ‰Žƒ—šŽ
„ƒ…— ˜…’ .˜…™‰Ž š…ƒ…— ’˜€ „
P = FA (P ); P = FB (P ); P = FC (P ); P = FD (P ):
1
0
2
1
3
2
4
3
:‰‹ ‡‹…„ .š…ƒ‹ŒšŽ
.…Œ „……™…
.š…ƒ‹ŒšŽ
P
4
-…
P
0
‰‹ Œ—
P
26
0
BD
P P
4 -…
-Œ А…€Ž
0
‰‹ …š
AC (i)
(ii)
„ƒ…—„ Œ™ š˜‡€ „˜‰‡ Œ‹ ˜…’