MATHEMATICS 201-BNK-05 Advanced Calculus Martin Huard Winter 2015 XIX - Triple Integrals in Cylindrical and Spherical Coordinates 1. Sketch the solid whose volume is given by the integral and evaluate the integral. a) c) 3 2 3 0 0 r 0 2sin 0 rdzd dr 4 r 1 r2 2 b) rdzdrd d) 4 2 2 0 0 4 0 4 0 2 sin d d d 2cos sec 2 sin d d d 2. Use cylindrical coordinates to find the volume of the solid S. a) S is enclosed by the paraboloid z x 2 y 2 and the plane z 16 . b) S lies inside the cylinder x 2 y 2 1 and the sphere x2 y 2 z 2 9 . c) S is bounded by cone x2 y 2 z 2 and the paraboloid z 5 4 x2 4 y 2 . d) S is the solid between the cylinders x 2 y 2 x and x 2 y 2 2 x , and bounded below by z 0 and above by y z 3 . 3. Use spherical coordinates to find the volume of the solid S a) S is enclosed by the sphere x2 y 2 z 2 16 and the cone z 3x 2 3 y 2 . b) S is the wedge cut from a sphere of radius a by two planes that intersect along a diameter at an angle of 4 . c) S is inside the hemisphere z 4 x 2 y 2 and outside the sphere x2 y 2 z 2 z . 4. Evaluate the following integrals using either Cartesian, cylindrical or spherical coordinates, whichever seems more appropriate. a) 9 x2 3 3 9 x 2 9 x2 y 2 xdzdydx 3 2 1 x 2 c) x 2 y 2 dV where S is the region that lies inside the cylinder x2 y 2 16 and 1 1 0 1 x 2 y 2 b) 0 e x2 y 2 z 2 dzdydx S between the planes z 4 and z 5 . d) x 2 y 2 z 2 dV where S is the region in the first octant bounded by the sphere S x2 y 2 z 2 25 , the cone z x 2 y 2 and the cone z 2 x 2 y 2 . Math BNK e) XIX - Triple Integrals in Cylindrical and Spherical Coordinates xdV where S is enclosed by the planes z 0 , x y z 3 and by the cylinders S x 2 y 2 4 and x 2 y 2 9 . f) sin x 2 y 2 z 2 dV where S is the solid within the sphere x2 y 2 z 2 49 , above S the xy-plane and below the cone z x 2 y 2 . 5. Find the centroid of S. a) S is the solid inside the sphere x2 y 2 z 2 2 and the cone z x 2 y 2 . b) S is the solid bounded by the paraboloid z 4 x 2 4 y 2 and the plane z a , a 0 . c) S is bounded by the xy-plane and the hemispheres y 9 x2 z 2 and y 16 x 2 z 2 . 6. Find the center of gravity for the solid S. a) S is enclosed by the sphere x2 y 2 z 2 4z and the density is x, y, z x 2 y 2 z 2 . b) S is the solid that is bounded by the cylinder x 2 y 2 1, the cone z x 2 y 2 , and the xy-plane if the density is x, y, z z . c) S is bounded above by the plane z y and below by the paraboloid z x 2 y 2 if the density is x, y, z x 2 y 2 . 7. Find the moments of inertia for the hollow cylinder a12 x 2 y 2 a22 , 0 z h , assuming a constant density x, y, z . 8. Find the moments of inertia for the solid lying between two concentric hemispheres of radii r and R, where r R , assuming a constant density x, y, z . 9. Evaluate the improper integrals, if they converge. a) e x2 y 2 z 2 dV 3 b) 1 x 2 S c) Winter 2015 2 4 x2 0 4 x 2 1 dV y2 z2 0 where S is the inside of the cone z x 2 y 2 1 dzdydx 1 x y2 z2 2 Martin Huard 2 Math BNK XIX - Triple Integrals in Cylindrical and Spherical Coordinates ANSWERS 1. a) 9 b) 2. a) 128 3. a) 128 3 32 32 b) 36 64 32 64 33 4. a) 0 e) 64 3 65 4 b) a3 b) f) 3 2 1 5. a) 0, 0, 8 16 6. a) 0, 0, 7 6 3 3e c) 134 329 c) 7 3 c) 31 6 d) d) c) 384 3 9 4 d) 500 5 625 2 2 14sin 7 47 cos 7 2 b) 0,0, 23a c) 525 0, 525 296 , 296 b) 0,0, 815 c) 0, 74 , 4924 7. I x 4h a24 a14 3h a22 a12 , I y 4h a24 a14 3h a22 a12 , I z 2h a24 a14 3 3 8. I x 815 R5 r 5 , I y 815 R5 r 5 , I z 815 R5 r 5 9. a) 8 Winter 2015 b) Diverges c) 2 2 Martin Huard 5 1 3
© Copyright 2026 Paperzz