Answers to HW4 problems Problem 1. (a) log4 (64) = 3 (b) 3log10 (10000) = 81 (c) 343log1000 (10) = 7 (d) log2048 (236 ) = 36 11 Problem 2. (a) x = 52 log4 (49) (b) x = 34 log3 (4)−1/2 −1 ln Problem 3. x = ln(7) ln( ln(3) ) ln(5) ln(2) Problem 4. a ≥ 1 and a ≤ −1 1 Problem 5. (g −1 )0 (3) = p √ 1 + 1 + a2 + a2 √ √ √ 2 2 1+a 1+ 1+a2 Problem 6. 90 degrees or π/2 radians 2 2 (3a + 2a2 )ea − (3a + 2a2 − a3 )e2a h00 (a) Problem 7. (h ) (2) = − 0 3 = − 3 h (a) (1 + (1 + a2 )ea2 ) −1 00 Problem 8. g 00 (x) = 30e−5x sin(3x) + 16e−5x cos(3x) Problem 9. f 0 (x) = 1 x log(x) log log(x) 8 d 2x4x8 4x8 −1 4x8 7 7 2x4x 2x + 2x log(x) 4x + 32x log(x) =x Problem 10. x dx √ Problem 11. tan(arccos(x)) = 1 − x2 , x cos(arctan(x)) = √ Problem 12. We see √ d 1 1 arcsin + arctan x2 − 1 =− q dx x x2 1 − + 1 x2 1 1 + x2 x √ (1 + (x2 − 1)) x2 − 1 1 1 + √ =0 = −√ 4 2 x −x x x2 − 1 which shows that the function is a constant C. Plugging in x = 1 gives C = π2 . 2
© Copyright 2025 Paperzz