Power efficiency of AM-DSB-TC = total side band power / total power m2 = 2 + m2 Total power of AM-DSB-TC = Carrier power + Upper side band power + Lower side band power Power of a sine wave = k Amplitude2 Carrier power = k Ac2 Upper side band power = Lower side band power = k ⎛⎜ Ac m ⎞⎟ ⎝ 2 2 ⎠ f = 1/T ω = 2πf −A A A m max min = m= +A A A c max min 1 1 cos( A + B ) + cos( A − B ) 2 2 1 1 sin ( A) sin (B ) = cos( A + B ) − cos( A − B ) 2 2 1 1 cos( A)sin (B ) = sin ( A + B ) − sin ( A − B ) 2 2 1 1 sin ( A) cos(B ) = sin ( A + B ) + sin ( A − B ) 2 2 sin (at ) cos(at ) ( ) ( ) cos sin = = − at dt at dt ∫ ∫ a a cos( A) cos(B ) = cos(A+B) = cosAcosB – sinAsinB cos(A-B) = cosAcosB + sinAsinB sin(A+B) = sinAcosB + cosAsinB sin(A-B) = sinAcosB – cosAsinB sin2A = 2sinAcosA cos2A = cos2A – sin2A cos2A = 1 – 2sin2A cos2A = 2cos2A – 1 sin(-A) = -sinA cos(-A) = cosA tan(-A) = -tanA cos(90º - Θ) = sin Θ sin(90º - Θ) = cos Θ General form of an FM signal: ⎛ cos⎜⎜ 2πf c t ⎝ s(t ) = Ac Instantaneous phase = t ⎞ 0 ⎠ + 2πf d ∫ m(τ )dτ ⎟⎟ θ (t ) = carrier phase + phase deviation Instantaneous frequency = carrier frequency + frequency deviation 1 dθ (t ) 2π dt Δf = Am f d = Am k f f (t ) = Instantaneous frequency = Peak frequency deviation in Hz = Δf fm Modulation index of an FM signal = β= Bandwidth of an FM signal in Hz = 2nf m Carson’s Rule: Bandwidth in Hz = 2Δf + 2 f m Table of Symbols used in Electronic Communication Systems Symbol Ac Am term Carrier amplitude Units volts Message signal amplitude volts Amax Maximum peak-to-peak voltgage volts of the AM signal envelope Amin Maximum peak-to-peak voltgage volts of the AM signal envelope fc Carrier frequency Hz fd Frequency deviation sensitivity Hz/volt fm Message signal frequency Hz ∆f Peak frequency deviation Hz k Constant of proportionality kf Frequency deviation sensitivity Hz/volt n Number of significant sidebands No units Table of Bessel Functions
© Copyright 2026 Paperzz