5/9/2009 Generalized Generator Model b1 Induction Generator a2 a1 b2 c2 c1 Conversion from Fixed to Rotating Frame q Blondel Transformation b d s s a c 1 5/9/2009 Stator to dq0 frames 1 1 1 2 3 cos sin 1⁄2 cos sin 2 3 cos sin 1⁄2 cos sin 120 120 cos sin 1⁄2 Stator to dq0 frames 120 120 1⁄2 120 120 cos sin 1⁄2 1 cos 1 120 120 120 120 1 1⁄2 sin cos cos 1 1 1 1 Rotating to Rotating Frame sin sin 120 120 cos 2 cos 2 cos 2 120 120 1 1 1 Rotor to dq0 frames q ∆ b d s ∆ 2 2 2 2 cos sin 3 1⁄2 ωs cos sin 120 120 1⁄2 cos sin 120 120 1⁄2 2 2 2 a ωs cos cos cos 120 120 sin sin sin 120 120 1 1 1 c 2 5/9/2009 q Actual to dq0 frames 1 cos 1 2 2 cos 1 sin 1 sin 2 2 All Frames b2 b1 d For balanced system, vo=0. Hence, 1 1 2 cos 2 cos s s 1 sin 2 sin c2 a1 a2 c1 Stator plus Rotor 1 1 1 2 System Inductances 2 2 cos sin 2 1⁄2 0 3 0 0 cos sin 120 120 1⁄2 0 0 0 cos sin 120 120 1⁄2 0 0 0 0 0 0 cos sin 1⁄2 0 0 0 cos sin 0 0 0 120 120 1⁄2 cos sin 1 1 120 120 1⁄2 1 2 2 2 3 5/9/2009 Voltage Equation Variable inductance ℓ 1 1 1 2 2 2 ℓ ℓ ℓ ℓ ℓ ℓ 1 1 1 ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ 1 1 1 ℓ ℓ ℓ ℓ ℓ ℓ 1 1 1 2 2 2 Variable inductances are hard to use ℓ ℓ ℓ ℓ ℓ ℓ 2 2 2 ℓ ℓ ℓ ℓ ℓ ℓ 1 1 1 2 2 2 2 2 2 , Problems: 1) Full matrix; 2) inductances are time varying Blondel Transformation of Inductances , Inductances on dqo Frames 2 , 1 , 2 , 1 , 11 0 12 0 12 0 12 11 0 12 0 0 22 3⁄2 0 1 12 1 0 2 22 2 11 1 1 22 2 2 Inductances are now constants and independent of the rotor position 4 5/9/2009 Objective • To write the induction machine equation in the standard state space model form Induction Machine Model X: State (system) variables vector A: Model matrix U: Control and disturbance vector B: Control and disturbance matrix Y: System observation vector H: Observation matrix Basic Steps • • • • Voltage Equations Find voltage‐current relationships Add power equation Add torque equation Add rotor dynamics 5 5/9/2009 Voltage Equation with winding Resistances Voltage Equations 0 1 0 0 1 2 2 0 0 0 0 1 1 1 0 1 2 2 2 1 0 0 0 0 0 0 1 0 0 2 0 0 0 0 1 2 2 1 2 0 0 0 0 0 0 0 0 1 1 2 2 2 Voltage Equation with winding Resistances Parks Equations Transformer voltage 1 1 2 2 1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1 1 1 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 1 1 2 2 0 0 1 0 2 Speed voltage 1 0 0 0 0 0 0 1 0 0 2 0 0 0 0 1 2 2 1 2 1 2 0 0 0 0 0 0 0 0 1 1 2 2 1 1 2 2 11 0 12 0 0 12 11 0 12 0 0 22 0 1 12 1 0 2 22 2 Speed voltage is normally much higher than the transformer voltage plus resistance drop 6 5/9/2009 Voltage‐Current Relationship‐ Rearrangement Voltage‐Current Relationship 1 1 0 0 0 1 2 2 0 1 0 0 0 0 2 0 0 0 1 1 1 1 2 2 2 2 2 0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 1 2 2 0 1 2 0 11 11 12 12 11 11 12 12 12 12 22 22 12 12 22 0 0 1 0 11 2 0 2 0 12 0 22 Voltage‐Current Relationship 0 11 0 1 12 0 12 12 0 0 0 11 0 12 0 11 12 0 0 22 0 0 0 12 11 0 12 0 0 22 1 1 12 11 0 22 0 12 1 0 11 1 12 12 0 2 22 1 0 2 22 2 1 0 2 22 2 2 0 0 22 2 1 2 2 2 2 0 22 0 22 0 0 22 2 12 12 0 12 0 12 0 11 0 11 11 22 1 1 1 12 1 12 12 1 1 12 1 0 22 12 1 0 12 2 12 0 0 12 0 11 0 2 0 22 2 0 Voltage‐Current Relationship 1 11 12 1 22 22 0 11 0 0 0 1 12 12 12 12 1 0 11 11 1 22 11 22 1 22 1 12 11 12 1 22 0 12 0 11 12 1 0 22 0 12 2 12 11 22 2 12 12 0 11 0 1 0 1 12 1 12 1 0 11 2 12 12 22 2 2 12 2 11 11 22 1 12 22 1 2 12 2 12 11 22 2 11 1 1 2 2 2 7 5/9/2009 Voltage‐Current Relationship 1 State Space Equations A 1 2 1 22 1 2 12 2 12 1 12 22 0 12 0 0 22 0 12 2 12 1 22 12 22 11 12 2 11 11 12 1 Model 2 1 12 12 0 1 12 1 0 11 0 2 1 2 12 1 2 11 22 11 22 0 12 22 X= 2 11 Observation 2 2 11 1 1 1 1 2 2 2 2 B 1 1 1 1 1 1 2 2 2 2 2 2 Output Power Equation Electric Torque Equation While the machine is running, the speed voltage Is much higher than the transformer voltage, hence 2 1 3 2 1 1 1 1 1 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 8 5/9/2009 Electric Torque Equation 11 0 1 0 2 12 0 1 0 2 3 2 11 12 12 0 1 12 1 22 0 2 22 2 0 0 Rotor Dynamics 1 1 12 1 22 2 2 12 1 22 2 2 3 2 12 1 22 2 2 12 1 1 22 2 2 Non‐Linear Model • Issues: Linearized Model – The state variable equation is a function of the speed, which is one of the states – The torque equation is a nonlinear function of the currents • Problems: – The model is difficult to analyize 9 5/9/2009 Linearized Model Linearization Process • Objective: Original Non‐linear System –M Make the model linear in a narrow range of variations k h d l li i f i i – Update the system variables if the operating conditions changes Linearized System ∆ • Advantage: ∆ ∆ – Speed up the computation • Disadvantage: – Accuracy is determined by how often the model is updated ∆ Linearized Model Δ Δ Δ Δ Linearized Power and Torque 3 2 Δ 1 1 1Δ Δ 1 1 1Δ 1 Δ 1 1 1 2 2 2 2 12 1 22 2 12 1 1 12 22 0 12 0 2 12 1 22 12 22 11 12 11 12 1 ∆ 2 11 1 12 0 22 0 12 12 0 11 0 0 12 0 11 11 22 Δ Δ Δ Δ 12 22 2 12 11 22 2 11 2 12 1 2 12 1 11 12 11 12 12 22 12 22 1 1 2 2 11 22 11 22 2 2 Δ Δ Δ Δ Δ 1 Δ 1 2 2 Δ 2 3 2 2 1 1 Δ Δ Δ 3 2 12 12 1 12 Δ 1 22 22 1 2 2 Δ 2 22 Δ 2 2 12 12 2 1 1 12 Δ 22 22 1 2 2 Δ 2 22 Δ 2 2 10 5/9/2009 Linearized Rotor Dynamics 3 2 Δ 12 12 2 1 Δ 12 2 Δ 12 1 Δ Δ Δ Δ Δ Δ 1 Complete Model (Torque) 1 1 2 Δ Δ Δ Δ Δ 2 1 1 2 2 3 2 0 12 0 0 3 2 2 0 Δ Δ 1 Δ Δ Δ 12 3 2 2 Δ Δ Δ Δ Δ 3 12 1 12 2 1 1 3 2 2 22 0 1 1 1 2 0 22 2 3 12 0 12 0 0 12 0 0 0 0 11 2 2 12 2 11 1 12 12 12 0 12 0 11 0 3 2 0 Δ 0 Δ 0 Δ 0 Δ Δ 2 11 22 11 22 12 2 12 1 2 12 1 12 22 12 22 11 12 11 12 2 2 12 1 22 1 12 1 1 2 12 1 22 2 12 Δ 11 12 2 11 3 1 2 12 11 12 1 12 22 12 22 2 2 11 22 1 11 22 1 2 2 Δ Δ Δ Δ Δ 1 1 2 2 1 1 2 2 2 Complete Model (Power) Δ Δ Δ Δ Δ 1 1 2 2 12 2 1 22 2 12 1 22 2 1 2 11 1 12 3 22 0 12 0 0 2 1 1 12 12 2 0 22 0 3 12 2 12 0 11 12 0 0 0 2 0 12 0 11 0 3 0 0 0 0 1 2 11 1 3 12 2 2 1 2 1 1 12 2 Δ Δ Δ Δ Δ 2 2 12 1 1 1 1 2 2 2 2 Δ Δ Δ Δ Δ 1 1 1 12 11 2 2 12 22 11 22 1 2 1 2 2 11 5/9/2009 Initial Conditions Initial Conditions • The model is a function of the initial currents, voltages, torques and speeds lt t d d • These initial conditions are the steady state values before a disturbance or an input is changed. The initial conditions are computed using the • The initial conditions are computed using the steady state model Steady State Voltage and Current of Stator cos 1 1 1 1 1 1 1 Blondel Relationships 1 cos cos 120 120 cos 1 cos cos 1 1 1 120 120 1 1 sin cos cos cos 120 120 sin sin 120 120 1 1 1 1 1 1 e electrical angular speed Φ is the phase shift angle 12 5/9/2009 Steady State Voltage: Stator Steady State Current: Stator 1 1 1 1 1 1 sin cos 1 cos cos 120 120 sin sin 120 120 1 1 1 1 cos cos cos 120 120 2 3 1 cos sin 1⁄2 cos sin 120 120 cos sin 1⁄2 cos 120 120 cos cos 1⁄2 1 1 1 120 120 1 Keep in mind that when the machine is two pole, Keep in mind that when the machine is two pole, 1 1 2 3 1 cos sin 1⁄2 cos sin 120 120 cos sin 1⁄2 cos 120 120 cos cos 1⁄2 120 120 Steady State Variables: Stator Steady State Voltage: Rotor For balanced system, the zero sequence component is zero Hence, Hence 1 1 1 1 0 1 1 cos sin 1 2 2 2 cos cos 120 120 cos 2 2 1 cos 2 2 2 cos cos 2 2 2 120 120 1 Keep in mind that the rotor frequency is Sf 13 5/9/2009 Blondal Relationship: Rotor 2 cos cos 2 2 cos 120 120 sin sin sin 1 1 1 120 120 Steady State Voltage: Rotor 2 2 2 2 2 2 2 3 2 2 2 2 cos cos cos 120 120 sin sin sin 120 120 1 1 1 1 2 cos sin 1⁄ 2 cos sin 120 120 1⁄ 2 cos sin cos 120 120 cos cos 1⁄ 2 120 120 cos cos cos 120 120 Steady State Current: Rotor Keep in mind that when the machine is two pole Steady State variables: Rotor 2 2 2 2 2 1 0 2 2 3 2 cos sin 1⁄2 cos sin 120 120 1⁄2 cos sin 120 120 1⁄2 cos cos cos 2 2 2 120 120 2 2 2 cos sin 2 2 14 5/9/2009 Steady State Variables: Stator+Rotor 1 1 0 2 2 0 1 cos sin cos 2 2 sin 1 1 2 2 RMS Quantities 2 1 1 1 1 2 2 Blondel Transformation RMS Quantities 1 1 cos 1 1 1 cos 2 2 cos 2 2 cos 1 1 2 cos sin sin 2 1 1 1 1 √2 √2 sin 1 1 cos √2 cos 1 cos 90 cos 90 Hence, sin 1 0 1 1 sin 1 1 √2 1 1 90 1 1 1 √2 1 1 √2 15 5/9/2009 System RMS Equations Since the dynamic model is, 1 1 0 0 0 1 1 1 1 2 2 0 0 0 1 0 0 2 2 1 1 1 2 2 1 2 2 0 1 2 0 2 2 0 0 0 0 0 0 0 0 12 0 the steady state model in RMS is 1 1 2 2 1 0 0 0 0 1 0 0 0 0 2 0 0 0 1 2 2 0 0 11 0 12 12 11 22 12 1 1 2 0 12 0 0 12 0 22 12 1 22 2 0 2 2 22 0 22 0 1 12 1 0 2 22 2 2 1 1 1 1 1 11 1 1 22 2 2 22 2 2 12 2 2 1 0 0 1 RMS Relationships 1 11 0 0 0 0 1 12 12 12 12 11 2 0 11 11 2 2 2 2 2 2 2 2 12 12 1 1 1 1 16 5/9/2009 Define, 11 11 22 22 Hence, 1 1 1 1 1 11 1 1 2 11 1 1 1 1 2 12 1 1 2 2 1 11 1 2 2 1 1 1 2 22 And 2 2 2 2 2 2 2 1 2 1 2 22 2 2 1 1 1 1 2 x1 x2 Im 2 r2(1‐S)/S Ia2 Va1 2 r2 Ia1 2 1 Steady State Model r1 2 1 11 1 2 Va2/S xm Output power 3 1 1 cos 1 For motor, the power is positive, for generator it is negative. When output power is negative, the current is negative. i.e. the armature current reverses 17 5/9/2009 Generator Steady State Model Power Equation √3 x1 r1 x2 r2 Im Ia1 Va1 r2(1‐S)/S cos 1 0 1 cos √3 Ia2 1 ⁄√3 Va2/S xm 1 90 12 2 1 Power Equations 2 1 2 90 1 3 12 3 1 3 2 2 √2 2 2 2 2 2 3 12 1 18
© Copyright 2026 Paperzz