Solid Oxide Electrolysis Cells

Downloaded from orbit.dtu.dk on: Jun 15, 2017
Solid Oxide Electrolysis Cells - High pressure operation
Ebbesen, Sune Dalgaard
Publication date:
2013
Link to publication
Citation (APA):
Ebbesen, S. D. (2013). Solid Oxide Electrolysis Cells - High pressure operation [Sound/Visual production
(digital)]. International Symposium on Water Electrolysis and Hydrogen as part of the future Renewable Energy
System, Copenhagen, Denmark, 10/05/2013
General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.
Solid Oxide Electrolysis Cells
-High pressure operation
Sune D Ebbesen
Department of Energy Conversion and Storage
Danish Technical University, DTU
SYMPOSIUM
Water electrolysis and hydrogen as part of the future Renewable Energy
System
Copenhagen, May 10-11 2012
The Solid Oxide Cell (SOC)
— Reversible, SOEC
SOFC
• Electrolysis Cell (SOEC)
H2O(cathode)  H2 (cathode) + ½ O2 (anode)
CO2(cathode)  CO (cathode) + ½ O2 (anode)
O2
O2

Oxygen electrode
2O2-  O2 + 4e-
• Fuel Cell (SOFC)
H2 (anode) + ½ O2 (cathode)  H2O (anode)
CO (anode) + ½ O2 (cathode)  CO2 (anode)
2O2Fuel electrode
2H2O + 4e-  2H2 + 2O22CO2 + 4e-  2CO + 2O2-

Oxygen electrode
O2 + 4e-  2O2-
2O2-

2H2O
2H2
2CO2
2CO
4 e-
Fuel electrode
2H2 + 2O2-  2H2O + 4e2CO + 2O2-  2CO2 + 4e-

2H2O
2H2
2CO2
2CO
4 e-
The Solid Oxide Cell (SOC)
— Reversible, SOEC
SOFC
• Electrolysis Cell (SOEC)
H2O(cathode)  H2 (cathode) + ½ O2 (anode)
CO2(cathode)  CO (cathode) + ½ O2 (anode)
O2
O2

Oxygen electrode
2O2-  O2 + 4e-
• Fuel Cell (SOFC)
H2 (anode) + ½ O2 (cathode)  H2O (anode)
CO (anode) + ½ O2 (cathode)  CO2 (anode)
2O2Fuel electrode
2H2O + 4e-  2H2 + 2O22CO2 + 4e-  2CO + 2O2-

Oxygen electrode
O2 + 4e-  2O2-
2O2-

2H2O
2H2
2CO2
2CO
4 e-
Fuel electrode
2H2 + 2O2-  2H2O + 4e2CO + 2O2-  2CO2 + 4e-

2H2O
2H2
2CO2
2CO
4 e-
One major advantage of SOECs is the possibility to
reduce CO2 to CO
Solid Oxide Electrolysis Cells
Oxygen electrode
2O2-  O2 + 4eFuel electrode
2H2O + 4e-  2H2 + 2O22CO2 + 4e-  2CO + 2O2-
O2

2O22H2O
2H2
2CO2
2CO

4 e-
Catalysis
CH4
CH3OH
Solid Oxide Electrolysis Cells
— Operation at high temperature
Gas
150
energy de
mand ( G
f)
1.04
0.78
100
0.52
and
Heat dem
50
(T S f )
0
0.26
0.00
0
100 200 300 400 500 600 700 800 900 1000
Temperature (ºC)
1.55
Total energy demand ( Hf )
Energy demand (KJ/mol)
Electrical
200
1.30
/ (n . F) · Energy demand (Volt)
11/(2·n·F)
250
Liquid
Energy demand (KJ/mol)
Total energy demand ( Hf )
CO2  CO + ½O2
300
1.55
250
1.30
Electric
al energ
y dema
200
nd ( G
f)
150
1.04
0.78
(T
emand
Heat d
100
S f)
0.52
50
0.26
0
0.00
0
100 200 300 400 500 600 700 800 900 1000
Temperature (ºC)
/ (n . F) · Energy demand (Volt)
11/(2·n·F)
H2O  H2 + ½O2
300
Vision
CO2
H2O
Released to the
atmosphere
in the
atmosphere
CO2 collection
Consumption
→
CO2 + 2 OH-(membrane) → H2O + CO32-(membrane)
Synthetic
petrol/diesel
Fuel synthesis
2 H2 + CO → –CH2– + H2O
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
Renewable
electricity
H2O
Vision
CO2
H2O
Released to the
atmosphere
in the
atmosphere
CO2 collection
Consumption
→
CO2 + 2 OH-(membrane) → H2O + CO32-(membrane)
Synthetic
petrol/diesel
Fuel synthesis
2 H2 + CO → –CH2– + H2O
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
Renewable
electricity
H2O
Vision
CO2
H2O
Released to the
atmosphere
in the
atmosphere
CO2 collection
Consumption
→
CO2 + 2 OH-(membrane) → H2O + CO32-(membrane)
Synthetic
petrol/diesel
Fuel synthesis
2 H2 + CO → –CH2– + H2O
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
Renewable
electricity
H2O
Vision
— Collection of CO2 from the atmosphere
CO2
H2O
Released to the
atmosphere
in the
atmosphere
CO2 collection
Consumption
→
CO2 + 2 OH-(membrane) → H2O + CO32-(membrane)
Synthetic
petrol/diesel
Fuel synthesis
2 H2 + CO → –CH2– + H2O
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
Renewable
electricity
H2O
Vision
— Collection of CO2 from industries
CO2
Released to the
H2O
Released to the
atmosphere
atmosphere
Consumption
Synthetic
petrol/diesel
Fuel synthesis
2 H2 + CO → –CH2– + H2O
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
(Renewable)
Electricity
H2O
Vision
— Collection of CO2 from power plants
CO2
Released to the
H2O
Released to the
atmosphere
atmosphere
Consumption
Synthetic
petrol/diesel
Fuel synthesis
2 H2 + CO → –CH2– + H2O
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
(Renewable)
Electricity
H2O
Vision
— Storing renewable electricity via Natural Gas
CO2
Released to the
H2O
Released to the
atmosphere
atmosphere
Storrage
and consumption
Natural gas burners
Consumption
Fuel synthesis
Fuel transport
H2 + CO → CH4
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
CO2
2O2-

4 e-
(Renewable)
Electricity
H2O
Vision
— Biogas upgrading
CO2
Released to the
H2O
Released to the
atmosphere
atmosphere
Storrage
and consumption
Natural gas burners
Consumption
Fuel synthesis
Fuel transport
CH4 + H2 + CO → CH4
CH4 + CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
CH4
H2O + CO2
2O2-

4 e-
(Renewable)
Electricity
H2O
Vision
• Production of synthetic fuels from renewable electricity (wind) and:
– CO2 from the atmosphere
– CO2 from the industry
– CO2 from biomass fired power plants
• Storage of renewable electricity via synthetic fuels and the natural gas grid
• Biogas upgrading
The Solid Oxide Cell (SOC)
— Reversible, SOEC
SOFC
• Electrolysis Cell (SOEC)
H2O(cathode)  H2 (cathode) + ½ O2 (anode)
• Fuel Cell (SOFC)
H2 (anode) + ½ O2 (cathode)  H2O (anode)
OCV
Cell voltage (mV)
1150
856
1050
853
950
850
850
750
650
-1.25
847
-1
-0.75
-0.5 -0.25
0
0.25 0.5
Current density (A/cm 2)
Conditions: 850ºC, 50% H2O – 50% H2
0.75
1
1.25
Temperature (ºC)
859
1250
Electrolysis durability at low current density
—Cleaned inlet gases and improved setup
1125
Cell voltage (mV)
1100
H2O electrolysis
1075
1050
1025
1000
CO2 electrolysis
975
950
Co - electrolysis
H2O + CO2
925
900
0
100
200
300
400
500
600
Electrolysis time (h)
Conditions:
Steam electrolysis: 850ºC, -0,50 A/cm2, 50% H2O – 50% H2
CO2 electrolysis: 850ºC, -0,25 A/cm2, 70% CO2 – 30% CO
Co-electrolysis: 850ºC, -0,25 A/cm2, 45% CO2 – 45% H2O – 10% H2
Electrolysis durability at low current density
—Cleaned inlet gases and improved setup
1125
Cell voltage (mV)
1100
H2O electrolysis
1075
1050
1025
1000
CO2 electrolysis
975
950
Co - electrolysis
H2O + CO2
925
900
0
100
200
300
400
500
600
Electrolysis time (h)
No degradation or even activation with clean inlet
gases and a setup without contaminants
Conditions:
Steam electrolysis: 850ºC, -0,50 A/cm2, 50% H2O – 50% H2
CO2 electrolysis: 850ºC, -0,25 A/cm2, 70% CO2 – 30% CO
Co-electrolysis: 850ºC, -0,25 A/cm2, 45% CO2 – 45% H2O – 10% H2
Electrolysis durability at high current density
Electrolysis durability at high current density
—Standard Ni-YSZ based cells with LSM O2 electrode
1800
Cell voltage (mV)
1700
1600
750°C
1500
1400
800°C
1300
1200
850°C
1100
0
100
200
300
Electrolysis time (h)
Conditions: -1,0 A/cm2, 45% CO2 – 45% H2O – 10% H2
400
500
B
-0.10
Z'' (W ·cm 2)
Electrolysis durability at high current density
— Today
-0.05
0h
100 h
200 h
285 h
400 h
500 h
0.00
0.05
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Z' (W ·cm 2)
Conditions: 850ºC, -1,0 A/cm2, 45% CO2 – 45% H2O – 10% H2
0.45
0.5
B
-0.10
Z'' (W ·cm 2)
Electrolysis durability at high current density
— Today
-0.05
0h
100 h
200 h
285 h
400 h
500 h
0.00
0.05
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Z' (W ·cm 2)
Structural degradation
Conditions: 850ºC, -1,0 A/cm2, 45% CO2 – 45% H2O – 10% H2
0.45
0.5
Electrolysis durability at high current density
— Today
DtZ'(f) / ln(f) (W ·cm 2)
D
0h
100 h
200 h
285 h
400 h
500 h
20
LSM/YSZ degradation
15
10
5
0
1
10
100
1000
Frequence (Hz)
10000
100000
Ni/YSZ degradation
(mainly untill ~400h)
Conditions: 850ºC, -1,0 A/cm2, 45% CO2 – 45% H2O – 10% H2
Electrolysis durability at high current density
— Today
Ni/YSZ electrode
Reference
Tested cell
LSM/YSZ electrode
Reference
Tested cell
Conditions: 850ºC, -1,0 A/cm2, 45% CO2 – 45% H2O – 10% H2
Electrolysis durability at high current density
— Today
LSM/YSZ electrode
Conditions: 850ºC, -1,0 A/cm2, 45% CO2 – 45% H2O – 10% H2
Vision
— Synthesis at increased pressure
CO2
H2O
Released to the
atmosphere
in the
atmosphere
CO2 collection
Consumption
→
CO2 + 2 OH-(membrane) → H2O + CO32-(membrane)
Synthetic
petrol/diesel
Fuel synthesis
2 H2 + CO → –CH2– + H2O
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
Renewable
electricity
H2O
Vision
— Synthesis at increased pressure
CO2
H2O
Released to the
atmosphere
in the
atmosphere
CO2 collection
1) Durable
stacks (proven up to -0.75 A/cm2)
Consumption
→
CO2 + 2 OH-(membrane) → H2O + CO32-(membrane)
Synthetic
petrol/diesel
2) Stacks operated at pressure up to 50 bar
Fuel synthesis
2 H2 + CO → –CH2– + H2O
3) Fuel synthesis (proven technology)
Fuel transport
CO + H2

Electrolysis cell
2H2O → 2H2 + O2
2CO2 → 2CO + O2
Concentrated
CO2
2O2-

4 e-
Renewable
electricity
H2O
Vision
— Synthesis at increased pressure
1bar
1250
10bar
Cell Voltage (mV)
1150
1050
950
850
750
650
-1.25
-1
-0.75 -0.5
550
-0.25 0
0.25
Current Density
0.5
0.75
(A/cm2 )
1
1.25
1.5
1.75
Summary
• The Solid Oxide Cells are fully reversible
Fuel cell operation
Electrolysis operation
• Degradation is more severe in electrolysis mode compared to fuel cell mode
• Degradation at mild conditions is related to impurities
This degradation can be avoided by cleaning for impurities
• At harsh conditions structural changes occur in the cells
Need cells with lower polarisation  lower degradation
• Cells can be operated safely at current densities up to -0.75 A/cm2 at 850ºC
• Operation at high pressure advantageous for system integration
• Solid Oxide Electrolysis cells may contribute to storage of renewable electricity
Acknowledgement
• The Danish National Advanced Technology Foundation’s advanced technology
platform
“Development of 2nd generation bioethanol process and technology”
• Danish Council for Strategic Research, via the Strategic Electrochemistry Research
Center
• European Commission via the project “Hi2H2”
• European Commission via the project “RelHy”
• EUDP via the project “Green Natural Gas”
• Danish PSO via the project “PlanSOEC”
• Danish PSO via the project “Durable solid oxide electrolysis cells and stacks”
• DTU Energy Conversion (Former Risø DTU) via the project SOECcell
• Topsoe Fuel Cell A/S (TOFC)