MCR3UI Solving Linear-Quadratic Systems Algebraically 1. Solve

MCR3UI
Solve each system of equations.
a) 𝑦 + 25 = 0
b) 𝑦 = 2π‘₯
2
π‘₯ +𝑦 = 0
𝑦 βˆ’ π‘₯2 = 0
d)
𝑦 = 4π‘₯ 2
e) π‘₯ + 𝑦 = 4
c)
𝑦 = π‘₯2 + 3
3π‘₯ + 𝑦 = 1
f)
𝑦 = π‘₯2 + 5
1
𝑦 = 2 π‘₯2
12π‘₯ βˆ’ 𝑦 βˆ’ 9 = 0
π‘₯+𝑦=2
g)
2𝑦 βˆ’ π‘₯ 2 = 0
2π‘₯ + 𝑦 = βˆ’2
h)
π‘₯ + 4 = (𝑦 βˆ’ 1) 2
𝑦+π‘₯ +1 =0
i)
π‘₯+𝑦=6
𝑦 = π‘₯ 2 βˆ’ 8π‘₯ βˆ’ 2
j)
𝑦 = βˆ’3π‘₯ + 5
𝑦 = βˆ’2π‘₯ 2 + 4π‘₯ βˆ’ 1
k)
2π‘₯ βˆ’ 𝑦 βˆ’ 10 = 0
𝑦 = π‘₯ 2 βˆ’ 8π‘₯ + 20
l)
𝑦 = 5π‘₯ 2 βˆ’ 20π‘₯ + 23
𝑦 = βˆ’π‘₯ 2 + 4π‘₯ + 5
2 2
1e) (π‘₯, 𝑦) ∈ { (βˆ’4, 8) , (2, 2) } 1f) (π‘₯, 𝑦) ∈ { }
3 1
1j) (π‘₯, 𝑦) ∈ ቄ (2, βˆ’1) , ቀ , ቁቅ 1k) (π‘₯, 𝑦) ∈ {⬚}
Answers
1a) (π‘₯, 𝑦) ∈ {(5, βˆ’25) , ( βˆ’5, βˆ’25) }
1g) (π‘₯, 𝑦) ∈ {( βˆ’2, 2) } 1h) (π‘₯, 𝑦) ∈ {(0, βˆ’1) , (βˆ’3, 2)}
1l) (π‘₯, 𝑦) ∈ {(3, 8) , (1, 8) }
1b) (π‘₯, 𝑦) ∈ { (0, 0), (2, 4) }
1c) (π‘₯, 𝑦) ∈ {( βˆ’2, 7) , (βˆ’1, 4)) }
1i) (π‘₯, 𝑦) ∈ {(8, βˆ’2) , (βˆ’1, 7) }
2
3
1d) (π‘₯, 𝑦) ∈ ቄቀ , 9ቁቅ
1.
Solving Linear-Quadratic Systems Algebraically