MCR3UI
Solve each system of equations.
a) π¦ + 25 = 0
b) π¦ = 2π₯
2
π₯ +π¦ = 0
π¦ β π₯2 = 0
d)
π¦ = 4π₯ 2
e) π₯ + π¦ = 4
c)
π¦ = π₯2 + 3
3π₯ + π¦ = 1
f)
π¦ = π₯2 + 5
1
π¦ = 2 π₯2
12π₯ β π¦ β 9 = 0
π₯+π¦=2
g)
2π¦ β π₯ 2 = 0
2π₯ + π¦ = β2
h)
π₯ + 4 = (π¦ β 1) 2
π¦+π₯ +1 =0
i)
π₯+π¦=6
π¦ = π₯ 2 β 8π₯ β 2
j)
π¦ = β3π₯ + 5
π¦ = β2π₯ 2 + 4π₯ β 1
k)
2π₯ β π¦ β 10 = 0
π¦ = π₯ 2 β 8π₯ + 20
l)
π¦ = 5π₯ 2 β 20π₯ + 23
π¦ = βπ₯ 2 + 4π₯ + 5
2 2
1e) (π₯, π¦) β { (β4, 8) , (2, 2) } 1f) (π₯, π¦) β { }
3 1
1j) (π₯, π¦) β α (2, β1) , α , αα
1k) (π₯, π¦) β {β¬}
Answers
1a) (π₯, π¦) β {(5, β25) , ( β5, β25) }
1g) (π₯, π¦) β {( β2, 2) } 1h) (π₯, π¦) β {(0, β1) , (β3, 2)}
1l) (π₯, π¦) β {(3, 8) , (1, 8) }
1b) (π₯, π¦) β { (0, 0), (2, 4) }
1c) (π₯, π¦) β {( β2, 7) , (β1, 4)) }
1i) (π₯, π¦) β {(8, β2) , (β1, 7) }
2
3
1d) (π₯, π¦) β αα , 9αα
1.
Solving Linear-Quadratic Systems Algebraically
© Copyright 2026 Paperzz