MATH 136 Cscx and Cotx 1. Derive the derivatives of y = csc x = 1 = (sin x)−1 sin x Then, € dy cos x 1 cos x = −(sin x)−2 × cos x = − 2 = − × = −csc x cot x dx sin x sin x sin x Thus, € € d(csc x) = −csc x cot x dx y = cot x = cos x sin x Then, € dy −sin x × sin x − cos x × cos x sin 2 x + cos2 x 1 = = − = − 2 = −csc 2 x 2 2 dx sin x sin x sin x Thus, € d(cot x) = −csc 2 x dx € 2. Evaluate f ′(x) : (a) f (x) = ln( csc x ) € f ′(x) = € € csc x 1 × × (−csc x cot x) = −cot x csc x csc x (b) f (x) = cot 2 (4 π x) ( ) f ′(x) = 2(cot(4 π x)) × −csc 2 (4 π x) × 4π € = −8π cot(4 π x) csc 2 (4 π x) € (c) f (x) = cot(3 x) × csc(3x) f ′(x) = −csc 2 (3x) × 3 × csc(3x) + cot(3x) × (−csc(3x)cot(3x)) × 3 € = −3csc 3 (3x) − 3cot 2 (3x) csc(3x) € (d) f (x) = € f ′(x) = cot 4 (2x) csc 2 (2x) ( ) 4 cot 3 (2x) × −csc 2 (2x) × 2 × csc 2 (2x) − cot 4 (2x) × 2csc(2x)(−csc(2x)cot(2x)) × 2 = −8cot 3 (2x) + csc 4 (2x) 4 cot 5 (2x) csc 2 (2x) (Can also simplify and re-write the original function as cos2 (2x) × cot 2 (2x) ) € €
© Copyright 2026 Paperzz