The future of human-computer interaction: overview of input devices Fabrizio Fornari School of Computer Science Háskólinn ı́ Reykjavı́k - Reykjavı́k University Reykjavı́k, Iceland November, 2012 Abstract We are in 2012 and we are still using the mouse and the keyboard to interact with a computer. We have seen a lot of changes in the world of Computer Science, relating to: performance, design and the way we interact with the computer. Different input devices have been developed around the computer, starting from the most recent touchscreens, continuing with webcams, microphones, and arriving to the oldest mice and keyboards. The aim of this research is to let the reader imagine a new way to interact with the computer. To reach our purpose, we introduce advanced technologies such as: Speech and Voice Recognition, Electronic Perception, Eye Tracking and Brain Computer Interfaces. We propose examples of the cited technologies that may change the paradigm that saw, until now, keyboard and mouse as leaders of the input devices. 1 1 Introduction From the computer’s birth1 , we saw a lot of changes in the world of Computer Science. Changes relating to: performance, design and human-computer interaction [49]. A few years ago, the words “input device” evoked in our mind only two specific objects: the keyboard and the mouse - the main instruments used to provide data to a personal computer. Keyboard and mouse are, in fact, two of the first input devices in the history of computer. Nowadays, with the evolution of computers, we have a large set of input devices that changed the way we interact with the computer. For example we have: touch-screens, that allow users to interact with a computer using only their hands; webcams and microphones, used together to make video-calls and many others. Although we introduced other input devices we are still using mouse and keyboard, why? We want to provide an overview of input devices to let the reader imagine a world without mice and keyboards. We start with the definition of input device and the histories of mouse and keyboard to continue introducing instruments and technologies that may replace the usage of mouse and keyboard such as: the Electronic Perception Technology [70] - the ability of electronic components to form a 3-D map of their surroundings and see what their users are doing. We also refer to Eye Tracking [47] - the ability of a computer to keep track of eye movements of users for developing tasks like the movement of the pointer on a screen or the scroll of a page at the same time that the user reads. We describe a new technology called “Tobii Gaze” [38] - an example of Eye Tracking compatible with the new release of Windows 8 [69]. Other technologies that we discuss are Speech and Voice Recognition [58, 59], the abilities that allow a computer to understand speech and to recognize who is the speaker. We introduce one of the most popular software package for Speech and Voice recognition called 1 With the term computer, we refer to a Personal Computer (desktop, laptop, etc.) 2 Dragon NaturallySpeaking [32] and we focus on pros and cons of using our own voice to communicate with a computer. At the end we analyze a different approach to improve the humancomputer interaction called Brain Computer Interface (BCI) [35]. The BCI consist in a collaboration between a brain and a device that enables signals from the brain to direct some external activities, such as the control of a cursor. We describe the different types of BCI: Invasive, Partially invasive and Non-invasive focusing on an example of Non-invasive Brain Computer Interface called Emotiv EPOC [14] (winner of the 2012 Advance Global Australian Award for Information and Communication Technologies [11]). For each cited technology, we provide a definition and an example that may bring the reader to discover new ways to interact with the computer. 3 2 Background In this section we provide the definition of input device and describe the history of the keyboard and the mouse to give the reader the opportunity to learn more about these 2 devices. 2.1 Input Device From Wikipedia: “An input device is any peripheral - piece of computer hardware equipment - that we use to provide data and control signals to an information processing system such as a computer or other information appliance.” [50] In our case we refer to an input device as a device that converts the user’s actions and analog data (sound, graphics, pictures) into digital electronic signals that can be processed by a computer. Are the input devices that let a user to control a computer, to interact with it and to take advantage of the calculation power for which the computer is well-known; a computer without input devices would not allow the interaction with an user. 2.2 Keyboard and Mouse Since the birth of the computer, the input devices have increasingly evolved; nowadays we are used to different types of input devices. Despite of the variety of available input devices, the most used ones until now are the keyboard and the mouse. 4 2.2.1 The Keyboard One of the first developed input devices for computer is the keyboard. A keyboard is a typewriter-style device, which uses an arrangement of buttons or keys to input letters or numbers into a computer device [43]. The first keyboards were really different from the idea of keyboard that we have nowadays. It derives largely from two devices: teleprinters [62] and keypunches [51]. It was from such devices that modern computer keyboards inherited their layouts. From the 1940s until the late 1960s, typewriters were the main means of data entry for computing, becoming integrated into what were known as computer terminals [44]. The keyboard remained the primary, most integrated computer peripheral well into the era of personal computing until the introduction of the mouse as a consumer device in 1984. However, keyboards remain central to human-computer interaction to the present day. Indeed even mobile personal computing devices such as smartphones [57] and tablets [60] adopt the keyboard as an optional virtual, touchscreen-based [63], means of data entry. Nowadays we can see different kind of physical keyboards: Standard, Laptop-size, Thumb-sized, Software-Keyboard, Foldable-Keyboard and Optical Keyboard [43]. Studies such as the one presented in [33] have demonstrated that a keyboard is a place where bacteria tend to accumulate. An article by the BBC [31] underlines the danger of using a keyboard. From the sanitary point of view, in a hospital a keyboard can be custodian of very dangerous bacteria because different people touch the same keyboard, even people that have been in touch with dangerous bacteria. This can be a good motivation for trying to find a replacement for the keyboard. 5 2.2.2 The Mouse We introduce the definition and history of mouse taken from Wikipedia [54]. In computing, a mouse is a pointing device that functions by detecting two-dimensional motion relative to its supporting surface. Physically, a mouse consists of an object held under one of the user’s hands, with one or more buttons. The mouse sometimes features other elements, such as “wheels”, which allow the user to perform various system-dependent operations, or extra buttons or features that can add more control or dimensional input. The mouse’s motion typically translates into the motion of a pointer on a display, which allows for fine control of a Graphical User Interface (GUI) [48]. The computer mouse has been invented by Douglas Engelbart of Stanford Research Center in 1964 and was originally called “X-Y Position Indicator” for a display system. Made of wood and featuring a bright red push button, the mouse was more like a matchbox than computer device. Still, the “mouse” (so named because the cord looked like a tail) took off, and new versions popped up in Research and Development labs and in stores as the PC and computing itself became more mainstream. Whereas today’s mice are sleek and curved, early models were blocky and bulky. Many companies, including Microsoft, Apple, Hewlett-Packard, and Logitech, produced innovative models from the 1980s until now and the mouse has become even more efficient and comfortable. The types of mice vary by technology as much as color: mechanical mice, gyroscopic mice, 3D mice, optical mice, tactile mice, and most recently, wireless mice and touch mice. During the years, as the mouse evolved, studies have been done to find mouse-related health problems [4, 12, 18, 20, 25]. The results obtained from the studies show how the use of mouse can cause traumas such as Carpal Tunnel Syndrome [22], Tendonitis [1] or Bursitis [2]. If the computer mouse can cause this kind of problems, why do we still use it? 6 3 The Alternatives We want to enlighten the reader on the world of input devices, focusing on devices that we think are the most quoted to replace the use of mouse and keyboard. We start from well-known devices such as touchscreens, microphones and webcams to continue with new technologies such as: Electronic Perception Technology and Brain Computer Interface. 3.1 Touchscreen A touchscreen [63] is an electronic visual display that can detect the presence and location of a touch within the display area. The term generally refers to touching the display of the device with a finger or hand. Touchscreens can also sense other passive objects, such as a stylus. Touchscreens are common in devices such as game consoles, all-in-one computers, tablet computers, and smartphones. Fig.1 Example of touchscreen tablet with virtual keyboard To the recent diffusion of tablets and smartphones corresponds the diffusion of touchscreens. Tablets and smartphones adopt this technology that combined with virtual keyboards, let touchscreens being the main competitors of physical mouse and keyboard. However, until now we haven’t seen a complete replacement of mouse and keyboard. People that use the computer to work, generally prefer to use a physical keyboard or a physical mouse instead of moving their hands and arms across the screen, specially if 7 it is located vertically, like Forlines C. points out in [10]. Furthermore, it is difficult, using a touchscreen, to accurately point at objects that are smaller than one’s finger. 3.2 Microphone A microphone [53] is an acoustic-to-electric transducer [64] or sensor [56] that converts sound into an electrical signal. We refer to a microphone that we can attach to a computer and can be used for applications such as: teleconferencing [61] , video conferencing [65], digital dictation [46] , in-game chat and music recording [9]. The microphone plays a fundamental role in the Speech and Voice Recognitions - the abilities that allow a computer to understand the speech and to recognize who is the speaker. It allows to transform the voice in a digital format that a computer can process. We want to introduce, as example, one of the most popular software package for speech recognition: Dragon NaturallySpeaking [32]. • Dragon NaturallySpeaking is a software package developed by the Nuance company that allows an user to “talk” to a computer for providing action such as the execution of vocal commands or the translation of the speech in digital format. Moreover it implements a text-to speech function that allows the user to review the words by listening them spoken by the computer. Advantages of using Dragon NaturallySpeaking are: the possibility to work without physically being in front of a computer, the avoidance of traumas provided by a long use of keyboard and mouse and also the possibility to control the computer while you are doing other things. Studies [27] demonstrated that professional typists can type, with Dragon NaturallySpeaking, more words per minute then using a keyboard. 8 Disadvantages of using Dragon NaturallySpeaking are: the difficulty and the long required time, for a new user, to practice with Dragon NaturallySpeaking to reach the same performance that the user has with the combination keyboard-mouse; the user requires an environment without other speakers and without noise that may disturb the dictation; the software is not 100% accurate. We can find a brief review of the latest version of Dragon NaturallySpeaking on TopTen Reviews [41] - a website specialized in software reviews. 3.3 Webcam A webcam [66] is a video camera that feeds its images in real time to a computer or computer network, often via USB , ethernet, or Wi-Fi. Webcams are used to establish video links permitting computers to act as videophones or videoconference stations. The webcam took its name from its common use as a video camera for the World Wide Web. Other popular uses include security surveillance, computer vision [45], video broadcasting and the recording of social videos. We know that the webcam is strictly linked with Computer Vision Technology. An important task within computer vision is object tracking - the ability of a computer to recognize predetermined objects (i.e. this techinque is used in automation to identify defective products) or human parts to provide tasks. This technology is largely used to provide software that allows disabled people to interact with a computer. The most popular free software tools allow the user to control the movement of the pointer on a screen by using the movements of their head; an example is Enable Viacam (eViacam) [29]. 9 • Enable Viacam is an open source software for head tracking. It allows to move the pointer on a screen as the user moves his head. It works on standard PCs and it requires only a webcam. It won the Second prize in “VI Premio Vodafone a la Innovación en Telecomunicaciones (2012)” [17]. Companies are also developing software and hardware that allow users to control the movements of a pointer by using the movement of their own eyes. This technique is called Eye Tracking. We can see an example of Eye Tracking with a new technology called Tobii Gaze. • Tobii Gaze is an interface, produced by the Tobii company [37], that makes it possible for users to use their eyes to point to the screen and interact with a standard computer. It was demonstrated on a Windows 8 computer and it won a 2012 Microsoft Award. For using Tobii Gaze, a computer requires two additional hardware components: a Tobii IS20 Eye Tracker [40] and a Tobii Gaze Interaction Device [39]. In this subsection, we introduced Enable Viacam and Tobii Gaze, two ways to interact with a computer using the object tracking technique. They let an user to move a pointer on the screen in a relative easy way. Relative, because for a normal user is easier to use a common mouse instead of moving the head all the time to move a pointer on the screen (with a reduced accuracy); for a user with disabilities (i.e. a user that can’t move his own hands) it can be a useful way to interact with a computer. In particular the use of a virtual keyboard combined with head or eye tracking is a good way for people with disabilities to communicate with others, while for common users it is a more tricky way then using a physical keyboard. 10 3.4 Electronic Perception Technology A good definition of EPT is provided by the wisegeek website [70]: “The Electronic Perception Technology (EPT) is a low-cost, single-chip imagining technology that enables electronic components to form a 3-D map of their surroundings and see what their users are doing. One of the first applications is a “virtual keyboard”, a system that projects a laser keyboard onto a table and detects which keys the user is pressing by watching their hands and sensing which spots on the table their fingers are touching. EPT systems can determine depth by sending out pulses of light and timing how long it takes for the reflection to return to the sensor. This is rather different from the way the human brain determines depth, but still effective. EPT systems can accurately determine brightness and distinguish objects from one another”. Two example of electronic perception technology are the evoMouse [5] and the Magic Cube [6] two products made by a company called Celluon [8]. • The evoMouse wants to be the evolution of the computer mouse. The evoMouse allows a user to use his fingers like a mouse to interact with a computer device, without actually using a physical one. The evoMouse works on nearly any flat surface and requires little space. It tracks the user’s finger movements to move a pointer on the screen and provides actions like the zooming and the scrolling of pages. The evoMouse aims to reduce Carpal Tunnel Syndrome that is one of the traumas, which a user can suffer with a traditional mouse. 11 Fig.2 Example of evoMouse. • The Magic Cube provides a projection keyboard and multi-touch mouse. It connects to any Bluetooth HID devices [19], including the latest iPhone, iPad and Android devices. A user can also plug-andplay the Magic Cube with Windows and Mac OS devices via USB connection. The Magic Cube connects wirelessly with a mobile device and it has small dimensions. It can be a solution for the usage of keyboards in hospitals where keyboards may accumulate dangerous bacteria. It is for this purpose that the Celluon developed a mini version of the Magic Cube dedicated for its usage in hospitals called Medical Keyboard [7]. Fig.3 Example of a Magic Cube projecting a virtual keyboard. 12 The devices previously cited want to replace the physical use of mice and keyboards with a projected keyboard and with the use of the user’s hand like a mouse. From the health aspect they can prevent the human contact with bacteria accumulated on physical mouse and keyboard. But also the evoMouse and the Magic Cube remain conceptually linked with the oldest input devices: keyboard and mouse. This may be seen like a not real innovation but it has the pro factor of not changing drastically the humancomputer interaction. Moreover we think that this kind of product may remain a valid option for people who will want to remain linked to mouse and keyboard even when they will be replaced. 3.5 More Natural User Interfaces In the last years we saw other types of devices, based on Electronic Perception, taking place in the market aiming to reach a better Natural User Interface [55] - a concept of human-machine interface that see the user using its own “natural” ways to communicate like speech or gestures. Two successful devices are: the Nintendo Wii [67] and the Microsoft’s Xbox Kinect [52]. Essentially, the Nintendo Wii allows the user to interact with the Wii console waving a Wii Remote [68] while the Microsoft’s Xbox Kinect allows the user to interact with a Xbox without a controller. We don’t want to discuss more about these devices but we want to introduce a device that has been presented such as: “The Kinect-killer” [23] or in a more ambitious way “The mouse killer” [26]. The device is called Leap [30]. 13 Fig.4 Example of Leap used with a common laptop. • Leap Motion technology use: camera sensors to map out a 3D workspace, touch-free motion sensing and motion control software. As reported on the Leap official website [30]: “The Leap senses your individual hand and finger movements independently, as well as items like a pen. In fact, it’s 200x more sensitive than existing touch-free products and technologies. It’s the difference between sensing an arm swiping through the air and being able to create a precise digital signature with a fingertip or pen.” The simplest thing the Leap can do is simulate a touch screen, so the user can interact with any display as if they were touch-enabled. Developers will be able to create any sort of application: some may improve remote surgery, others may allow easier navigation through complex models and data, and others might put the user in the middle of a first-person shooter. For now, the possibilities appear to be limited only by the imagination. As every new product it claims to be the best one. We need only to check the first rows of the official website under section “about” to read: “Say goodbye to your mouse and keyboard...it’s more accurate than a mouse, as reliable as a keyboard and more sensitive than a touchscreen.” However, because the Leap will ship in 2013 we don’t have enough information to properly judge it. 14 3.6 Brain Computer Interface A Brain-Computer Interface (BCI) [34] is a direct interface between a brain and a computer not requiring any motor output from the user. Neural impulses in the brain are intercepted and used to control an electronic device. BCIs are often directed at assisting, augmenting, or repairing human cognitive or sensory-motor functions [42]. There are three types of Brain Computer Interface [34]: • Invasive BCIs are implemented by implanting chips directly into the grey matter of the brain during neurosurgery. As they rest in the grey matter, invasive devices produce the highest quality signals of BCI devices but are prone to scar-tissue build-up, causing the signal to become weaker or even lost as the body reacts to a foreign object in the brain. • Partially invasive BCI devices are implanted inside the skull but rest outside the brain rather than amidst the grey matter. They produce better resolution signals than non-invasive BCIs where the bone tissue of the cranium deflects and deforms signals and have a lower risk of forming scar-tissue in the brain than fully-invasive BCIs. • Non-invasive implants are easy to wear and produce poor signal resolution because the skull dampens signals, dispersing and blurring the electromagnetic waves created by the neurons. More details about Brain Computer Interfaces can be found in [24, 36] Because of we aim to find an alternative to mouse and keyboard that doesn’t require any kind of “surgical operation”, we focus on a recent noninvasive Brain Computer Interface that won the 2012 Advance Global Australian Award for Information and Communication Technologies: the Emotiv EPOC produced by the Emotiv company [16]. 15 • The Emotiv EPOC [15] is based on the latest developments in neurotechnology. It is a high resolution neuro-signal acquisition and processing wireless neuroheadset. It uses a set of sensors to tune into electric signals produced by the brain to detect user thoughts, feelings and expressions and connects wirelessly to most PCs. Fig.5 Example of a Emotiv EPOC We know about the community of researchers that is using the Emotiv EPOC to develop software that may change the human-computer interaction and not only that. An example is the project called “BrainDriver” [28] that involves the AutoNOMOS Labs - a part of the Artificial Intelligence Group of the Freie Universität Berlin. BrainDriver tests the possibility to maneuver a particular research car, named “MadeInGermany”, with the use of the brain-power. 16 Discussion We want to provide a personal consideration on a psychological aspect of the computer user mind: the “Fear of Change”. The Fear of Change can be seen in a severe form in people who are scared about any kind of change: from the simple change in a weekly schedule to massive life changes such as a move to another place. As Joseph Burgo says in [3]: “There’s no guaranty that change will be for the better; you don’t know for sure how you’re going to feel when your world changes. For this reason, many people have a strong fear of change; they cling to the familiar, even if it’s not especially satisfying.” We want to focus, not on the Fear of Change like a real pathology but, on that kind of conservative status that may bring an user to make the choice to not replace his commonly used tools until a truly better replacement is provided (sometimes neither in that case). Let’s think about people who spend 8 hours or more in front of a computer, we find it difficult to imagine all this people changing their way to work. They don’t want to move their hands all the time, nevertheless they don’t want to move their head to point on a screen and moreover they don’t want to speak all the time to interact with a computer. A common user, wants an input device that is easy to install, easy to use, that requires less energy as possible to be used, with high performance and with a low price. The mouse and the keyboard are the right compromise to everyone of these aspects. Moreover, we are used to interact with a computer using mouse and keyboard. The only way to replace them is to develop an input device better in all the fields, cited before, or so much better in only one or more of them to let the user chose the new product; until now we didn’t see any device capable of such a thing. However, we may find that solution not in a single device or software but in a combination of them that may let a user to: speak with a computer, point on a screen with his own eyes, manipulate virtual object with his own hands, 17 and maybe use a mouse or a keyboard for more specific tasks. We may also see a brain computer interface that allows to completely control a computer, only with the power of the mind. Nowadays this kind of technology is still young: it has a high price (i.e. Emotiv EPOC $299.00) and it is not accurate as mouse and keyboard, but we are sure that studies in this field will lead to big changes in the human-computer interaction. Related Work Several studies have been made about Human-computer interaction. Franck Dernoncourt in the article: “Replacing the computer mouse” [13] provides a brief overview of input devices that may be used to replace the mouse. He makes a distinction from devices that replace the movement of a mouse cursor to devices that replace the click function of the mouse. Also an interesting overview of input and output techniques is provided by Thomas Hahn in [21]. The author focuses on multi-touch devices, video recognition and voice recognition. He provides examples of these technologies introducing the concept of multi-modal interfaces - the combination of several input methods to interact with the computer. Acknowledgements We want to thank the professor Luca Aceto from the University of Reykjavik for his suggestions and his really interesting course in Research Methodology. We thank also the professor Kristin Sainani from the University of Stanford for her suggestions in the online course “Writing in the Science”. The integration of these two courses has allowed us to understand fundamental concepts and rules to follow during the writing of a scientific paper. Moreover we want to thank our colleague Paolo Rovelli with whom, sharing opinions has been a pleasure. 18 Conclusion and Future Work We focused our research to illustrate different ways to communicate with a computer (instead of using a physical mouse and keyboard) to let the reader imagine a future in which the human-computer interaction will not happen with the use of an intermediate device that requires practice or particular efforts. However, for some of the technologies that we introduced, we can’t establish a priori if they may replace mouse and keyboard such as: the Leap motion, which will ship in 2013, the Brain Computer Interface, which is still in a developing phase, and the speech recognition that maintains lacks for a general purpose use. The evoMouse and the virtual keyboard should be compared with the physical mouse and keyboard to see which are more productive and healthy. At the end we are sure that all the introduced technologies will contribute to change our computer-human interaction paradigm that until few years ago showed mouse and keyboard leaders of the input devices. We think that the physical mouse and keyboard, for common use, will tend to disappear even more. They will remain only for specific purpose like: game playing (at the beginning), interaction with other machines that don’t support the new technologies or that require to much time or money to be upgraded with new technologies and for people that want to use the oldest devices only for the pleasure of using them or for the “Fear of change”. Finally we hope to have the possibility to try at least some of the cited devices such as: the Leap and the Emotiv EPOC, to verify ourself the state of the art comparing their performance with those of mouse and keyboard. We want to discover if they really may lead the human-computer interaction to a higher level. 19 References [1] Chris Adams. What Is Tendonitis? About.com Guide. About.com Guide. http://ergonomics.about.com/od/tendonitis/a/tendonitis.htm. [2] Chris Adams. Whati is Bursitis? http://ergonomics.about.com/od/carpaltunnelsyndrome/a/bursitis.htm. [3] Joseph Burgo. The Fear of Change. http://www.afterpsychotherapy.com/the-fearof-change/. [4] Sungwon Changa Catherine Cooka, Robin Burgess-Limerickb. The prevalence of neck and upper extremity musculoskeletal symptoms in computer mouse users. International Journal of Industrial Ergonomics, 2000. [5] Celluon. evo Mouse. http://celluon.com/products em overview.php. [6] Celluon. Magic Cube. http://celluon.com/products.php. [7] Celluon. Medical Keyboard. http://celluon.com/products medic overview.php. [8] Celluon. Official website. http://celluon.com/. [9] Shanika Chapman. Definition of a Computer Microphone. http://www.ehow.com/facts 5062680 definition-computer-microphone.html. [10] Chia Shen1 Ravin Balakrishnan Clifton Forlines, Daniel Wigdor. Direct-Touch vs. Mouse Input for Tabletop Displays, 2007. [11] Australia’s Global Community. Advance Global Australian Award. http://advance.org/articles/advance-global-australian-awards-winners-2012. [12] Smith Sharit Czaja. Aging, Motor Control, and the Performance of Computer Mouse Tasks, 1999. [13] F. Dernoncourt. Replacing the computer mouse, 2012. [14] Emotiv. Emotiv Epoc. http://www.emotiv.com/index.php. [15] Emotiv. Emotiv EPOC. http://www.emotiv.com/apps/epoc/299/. [16] Emotiv. Official website. http://emotiv.com/. [17] Fundación Vodafone Espańa. Vi Premio Vodafone a la Innovación en Telecomunicaciones. http://fundacion.vodafone.es/fundacion/es/conocenos/difusion/v-premiovodafone-a-la-innovacion-en/. [18] Brogmus G. Fogleman M. Computer mouse use and cumulative trauma disorders of the upper extremities, 1995. 20 [19] Bluetooth Special Interest Group. Human Interface Device Profile (HID). http://www.bluetooth.org/Building/HowTechnologyWorks/ProfilesAndProtocols/HID.htm. [20] Aasa U. Jensen B.R. Sandfeld J. Lyskov E. Richter H. and Crenshaw A.G. THE IMPACT OF COMPUTER MOUSE WORK WITH DIFFERENT SIZE OBJECTS ON SUBJECTIVE PERCEPTION OF FATIGUE AND PERFORMANCE, 2007. [21] Thomas Hahn. Future Human Computer Interaction with special focus on input and output techniques, 2010. [22] PubMed Health. Carpal tunnel syndrome. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001469/, 2007. [23] Danish Technological Institute. The Kinect killer? http://robot.dti.dk/en/news/thekinect-killer.aspx. [24] Brian Y. Hwang B.A. Geoffrey Appelboom M.D. Christopher P. Kellner M.D. Ivan S. Kotchetkov, B.A. and M.D. E. Sander Connolly Jr. Brain-computer interfaces: military, neurosurgical, and ethical perspective. [25] Finsen L Hansen K Juul-Kristensen B Christensen H. Jensen C, Borg V. Job demands, muscle activity and musculoskeletal symptoms in relation to work with the computer mouse. Scand J Work Environ Health, 1998. [26] Alex Kahney. The Leap 3d Motion Sensor Is Not A Kinect Killer, It’s Going To Kill Your Mouse Instead [Exclusive Hands-On]. [27] Halverson C. Horn D. & Karat-J. Karat, C. M. Patterns of entry and correction in large vocabulary continuous speech recognition systems. In Proceedings of the SIGCHI conference on Human factors in computing systems: the CHI is the limit (pp. 568-575). 1999. [28] AutoNOMOS Labs. BrainDriver. http://autonomos.inf.fu-berlin.de/. [29] Cesar Mauri Loba. Enable Viacam. http://eviacam.sourceforge.net/index.php. [30] Leap Motion. Leap. https://leapmotion.com/about. [31] BBC NEWS. Keyboards ’dirtier than a toilet’. http://news.bbc.co.uk/2/hi/7377002.stm. [32] Nuance. Dragon NaturallySpeaking. http://www.nuance.com/dragon/index.htm. [33] Linda Dailey Paulson. Does Your Workstation Make You Sick? magazine (vol. 35 no.7), July 2002. [34] Santosh Kumar Ram. Brain Computer Interface. 2006. 21 IEEE computer [35] Margaret Rouse. brain-computer interface (BCI). http://whatis.techtarget.com/definition/brain-computer-interface-BCI. [36] Guido Widman Michael Schroder-Jeremy Hill Wolfgang Rosenstiel Christian E. Elger Bernhard Schölkopf Niels Birbaumer Thomas Navin Lal, Thilo Hinterberger. Methods Towards Invasive Human Brain Computer Interfaces, 2005. [37] Tobii. Official website. http://www.tobii.com. [38] Tobii. Tobii Gaze. http://www.tobii.com/en/group/news-and-events/press- releases/tobii-gaze-interface-for-windows-8/. [39] Tobii. Tobii Gaze Interaction Device. http://www.tobii.com/en/gaze- interaction/global/products-services/hardware-dev-kits/tobii-gaze-interactiondevice/. [40] Tobii. Tobii IS20 Eye Tracker. http://www.tobii.com/en/gaze- interaction/global/products-services/hardware-dev-kits/tobii-is20-eye-tracker/. [41] TopTenREVIEWS. Dragon NaturallySpeaking Premium 11 Edition. http://voicerecognition-software-review.toptenreviews.com/dragon-naturally-speakingreview.html. [42] Wikipedia. Brain-computer interface. http://en.wikipedia.org/wiki/Brain– computer interface. [43] Wikipedia. Computer keyboard. http://en.wikipedia.org/wiki/Computer keyboard. [44] Wikipedia. Computer terminal. http://en.wikipedia.org/wiki/Computer terminal. [45] Wikipedia. Computer vision. http://en.wikipedia.org/wiki/Computer vision. [46] Wikipedia. Digital dictation. http://en.wikipedia.org/wiki/Digital dictation. [47] Wikipedia. Eye tracking. http://en.wikipedia.org/wiki/Eye tracking. [48] Wikipedia. Graphical uer interface. http://en.wikipedia.org/wiki/Graphical user interface. [49] Wikipedia. Human-computer interaction. http://en.wikipedia.org/wiki/Human- computer interaction. [50] Wikipedia. Input device. http://en.wikipedia.org/wiki/Input device. [51] Wikipedia. Keypunch. http://en.wikipedia.org/wiki/Keypunch. [52] Wikipedia. Kinect. http://en.wikipedia.org/wiki/Kinect. [53] Wikipedia. Microphone. http://en.wikipedia.org/wiki/Microphone. [54] Wikipedia. Mouse (computing). http://en.wikipedia.org/wiki/Mouse (computing). [55] Wikipedia. Natural User Interface. http://en.wikipedia.org/wiki/Natural user interface. 22 [56] Wikipedia. Sensor. http://en.wikipedia.org/wiki/Sensor. [57] Wikipedia. Smartphone. http://en.wikipedia.org/wiki/Smartphone. [58] Wikipedia. Speaker recognition. http://en.wikipedia.org/wiki/Speaker recognition. [59] Wikipedia. Speech recognition. http://en.wikipedia.org/wiki/Speech recognition. [60] Wikipedia. Tablet. http://en.wikipedia.org/wiki/Tablet computer. [61] Wikipedia. Teleconferencing. http://en.wikipedia.org/wiki/Teleconferencing. [62] Wikipedia. Teleprinter. http://en.wikipedia.org/wiki/Teleprinter. [63] Wikipedia. Touchscreen. http://en.wikipedia.org/wiki/Touch screen. [64] Wikipedia. Transducer. http://en.wikipedia.org/wiki/Transducer. [65] Wikipedia. Video conferencing. http://en.wikipedia.org/wiki/Video conferencing. [66] Wikipedia. Webcam. http://en.wikipedia.org/wiki/Webcam. [67] Wikipedia. Wii. http://en.wikipedia.org/wiki/Wii. [68] Wikipedia. Wii Remote. http://en.wikipedia.org/wiki/Wii Remote. [69] Wikipedia. Windows 8. http://en.wikipedia.org/wiki/Windows 8. [70] Wisegeek.com. What is Electronic Perception Technology http://www.wisegeek.com/what-is-electronic-perception-technology.htm. 23 (EPT)?
© Copyright 2026 Paperzz