Math& 142 – Using Trig Identities (section 7.1) Winter 2016 Name: Trig Identities we know so far…. Reciprocal Identities csc x = 1 sin x sec x = 1 cos x tan x = sin x cos x cot x = cos x sin x cot x = 1 tan x Pythagorean Identities Even-Odd Identities sin 2 x + cos2 x = 1 sin(−x) = −sin x csc(−x) = −csc x tan 2 x +1 = sec 2 x cos(−x) = cos x sec(−x) = sec x 1+ cot 2 x = csc 2 x tan(−x) = − tan x cot(−x) = −cot x Cofunction Identities sin( π2 − x) = cos x tan( π2 − x) = cot x sec( π2 − x) = csc x cos( π2 − x) = sin x cot( π2 − x) = tan x csc( π2 − x) = sec x Use trig identities to simplify each expression (rewrite each expression in a simpler way): 1. cos x + tan x sin x 2. sin x cos x + cos x 1+ sin x 3. tan x sec x sin x 4. 1− sin 2 x 1+ cos x Math& 142 – Using Trig Identities (section 7.1) Winter 2016 Name: Use trig identities to prove each identity (start with one side of the identity and manipulate it - using known identities - until it looks like the other side): 1. sin 3 x + sin x cos2 x = sin x 2. tan x = sec x − cos x csc x 3. 1− cos x sin x − =0 sin x 1+ cos x 4. csc x = cos x tan x + cot x 5. cos x = sec x + tan x 1− sin x 6. 1+ cos x tan 2 x = cos x sec x −1
© Copyright 2026 Paperzz