Chapter-5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 1. Complex numbers and quadratic equations Number of teaching hours Total marks : : 8 10 Blue - Print 1 Mark 1 2 Marks 3 3 Marks 1 Total 10 2 10 2 10 OR - 2 OR 1 1 1 Mark Questions 1. Express the following in the form a + i b a) 2. 3. 4. 5. √ √ b) i-35 Find the real and imaginary part of √3 2− √ a) 4 - 3i b) -1 + √3 Write the complex conjugate of (1 + i )2 Find the real numbers x and y if ( x - iy ) ( 1 + i ) is the conjugate of -3 -2i Write the multiplicative inverse of + 1 6. Evaluate : 7. Find the sqare roots of x2 +3=0 8. Solve : 9. Find the modulus of 10. Find the amplitude of 1 + i 1 2 Marks Questions 1. Express the following in the form a + ib (b) (a) (5 - 3i)3 (c) (e) (g) 2. √ √ √ √ √√ 1 3 + 3 (f) (h) b) (b) + + (2 + 5i)2 If 'n' is any integer find in + in+1 + in+2 + in+3 5. If Z1 = 2 - i, Z2 = -2+i. Find imaginary part of 6. Find the values of x and y if a) ( x + 2y) + i(2x - 3y) = 5 - 4i b) (1-i) x + (1+i)y = 1-3i c) (x-iy) (3+5i) is the conjugate of -6 -24i. ! c) 4. ! + (1 + 2i) (2 - 3i) Find the multiplicative inverse of (a) (d) Find the conjugate of a) 3. (1 + i) (1+2i) 3 (7 + i7) + i (7 + i7) Prove that x2 + y2 = 1. 7. If x + iy = 8. 9. If Z1 = 2 - i, Z2 = 1 + i. Find " 10. Find real and imaginary parts of : 11. Find the least +ve integer m such that 12. If x - iy = If 1 + 4√3 = (a + ib)2 prove that a2 - b2 = 1 and ab = 2√3 ' ! () " . Prove that √ √ (x2 2 + % # y2)2 Also find its modulus. = $ ! ( ) =1 13. 14. Solve : * + * + 1 = 0 √2 Find the modulus and amplitudes of (a) 1. 1+ i (b) -1 + i (d) 3 Marks Questions Express complex numbers in Polar form : (a) 1-i (b) -1 + i © (e) √3 + (d) √ Find the conjugate of : 3. Find 'θ' so that 4. a) Purely real b) Convert complex number (a) /- . √ (b) 6 √ (f) ,- . 2. 5. -√3 − (c) is Purely imaginary 01, 2 3452 into polar form. 7 − 8 = −2 9 + 8 If a + ib = (x + iy)1/3 where a, b, x & y are real. Prove that # . $ 6. If Z1 = 1 - i, & Z2 = -2 + 4i. Find imaginary part of 7. If α and β are different complex numbers with | β |=1 then Prove that 8. 9. If p + iq = Solve : " ;< =; < < < (a) (b) © (d) "=1 show that p2 + q2 = x2 + 3x + 9 = 0 3x2 - 4x + 20/3 = 0 27x2 - 10x + 1 = 0 ix2 - x + 12i = 0 3 < < SOLUTIONS 1 Mark Questions 1. >= a) √ √ = b) @A × = √ √ @ . @ = = √ . @ = = × √ = 2. Z = √3 2 − 3. a) Z = 4 - 3i, Multiplicative inverse of Z = b) Z = -1 + √3 Multiplicative inverse of Z = √ √ ; CD E = √3 2 , GHI. E = − Z = (1 + i)2 = 1 - 1 + 2i = 2i >J = −2 (x - iy) (1 + i) = -3 + 2i (x + y) + i (x - y) = -3 + 2i x + y = -3 x-y=2 ∴ x = −1 2 , 7 = −5 2 4. 5. i18 + # $ 6. ' 7. x = + √3 8. x2 + 3 = 0 9. Z= 10. Z = 1 + i = r ( Cos θ + i sin θ) r = √2, PQR S = 1 X √2 N => x2 = -3 ∴ |z| = || || = √ = 1 √5 TU S = 1 W √2V ∴ Amp θ = Y 4 4 = 1 + √2 = = 0 + 1. J = || √ = . + − = −1 − . = −1 − = ± TWO MARKS 1. a) Z b) 3 (7 + i7) + i (7 + i7) = 21 + 2i i + 7i - 7 = 14 + 28 i c) (1+i) (1+2i) = 1 + 2i + i-2 = -1 + 3i d) e) f) = (5 - 3i)3 = 53 - 3.52 (-3i) + 3.5 (-3i)2 - (3i)3 = 125 - 225i - 135 + 27 i = -10 - 198 i = √√√√ 1 3 + 3 = h) = + = + = √ √ = g) = √√ √ = √ = = √ − 26 = = 1 2 + 1 2 + + − 3 2 + 4 5 + + 1 + = + − 27 − 9 = + 3 . 3 + 3. −9 − 27 = = 9 25 − 2 −3 2 + 1 = 3 2 + 4 5 + 1 + −5 ^ − ^ 5 =0− √ 2)a) b) c) 3.a) Z = 1 + 2 2 − 3 = 2 − 3 + 4 + 6 = 8 + EJ = 8 − E= EJ = × 1 − 7 10 EJ = -21 - 20i = 4. 5. 6.a) z= × = = ^ E= = multiplicative inverse of z= in + in+1 + in+2 + in+3 = = = = = 2 − −2 − = Z1 . > = -4 - 2i + 2i - 1 = -5 ∴ = = −1 5 .a x + 2y = 5 2x - 3y = -4 x+y= 1 - x + y = -3 ∴ y = -1, = × = in (i + i + i2 + i3 ) in ( 1 + i - 1 - i ) = in - 0 0 2x + 4y = 10 2x - 3y = -4 ---------------7y = 14 y = 2, x = 1 b) z = (2 + 5i)2 = 4 ≠ 20i - 25 = -21 + 20 i multiplicative inverse of z = b) = 2y = -2 x=2 6 = ^ c) 3x + 5xi - 3iy + 5y = -6 + 24i (3x + 5y) + i(5x - 3y) = -6 + 24i 3x + 5y = -6 5x - 3y = 24 7. => x + iy = a + ib a - ib ∴ x - iy = a - ib a + ib ∴ (x + iy) (x - iy) = x2 + y2 = 1 8. ! ! × ! ! 1 + 4 √3 = 9 + 8 = 9 − 8 + 298 equating real and imaginary parts. a2 - b2 = 1, ab = 2√3 9. " 10. z= = "= " × = = Re z = 1, Img. z = 1, 11. 9x + 15y = -18 25x - 15y = 120 -------------------34x = 102 x = 102 = 3 34 y = -3 % # $ "= " "= √ = √ = 2√2 = 1 + & |z| = √1 + 1 = √2 % = 1 => b c i2m = 1 = i4 2m = 4 => m = 2 7 % = 1 => # $ =1 12. x – iy = ' ! () ! () 9 − 8 e − f 9 − 8 |* − 7 − 2 *7| = g g e − f ∴ (x – iy)2 = * − 7 − 2 *7 = |9 − 8| |P − f | √9 + 8 h* + 7 − 2* 7 + 4* 7 = √P + f √9 + 8 h* + 7 + 2* 7 = √P + f √9 + 8 h* + 7 = √P + f Ti. QU 8Qjℎ RfDR. 9 + 8 * + 7 = e + f h* − 7 + 4* 7 = 13. * + * + 1 = 0 √2 √2* + * + √2 = 0 *= = ± h√.√ √ ± √ *= √ ± √ √ 14.a) Z = 1 + i = r (Cos θ + isin θ) l = √1 + 1 = √2 PQR S = *⁄l = 1 √2 7 TU S = l = 1 √2 Amp (θ) = Y 4 8 b) Z = -1 +i=r (Cos θ + isin θ) Modulus = √1 + 1 = √2 PQR S = *⁄l = −1 √2 7 TU S = l = 1 √2 Amp (θ) = Y − Y 4 = 3Y 4 c) Z = -√3 − = l eQRS + sin S Modulus = √3 + 1 = 2 PQR S = − √3 2 TU S = −1 2 Amp (θ) = −5Y 6 d) >= = l = √0 + 1 = 1 PQR S = 0 TU S = 1 qHr S = Y 2 = = 9 3 Marks Questions 1. a) Let Z = 1 – i = r ( Cos θ + I sin θ) l = √1 + 1 = √2 1 PQR S = √2 X S = − Y 4 −1 W √2V 1 − = √2 sPQR −Y 4 + sin−Y 4t N TU S = Let Z = -1 + i = r ( Cos θ + I sin θ) l = √1 + 1 = √2 PQR S = −1 X √2 b) N 1 W √2 V TU S = S = Y − Y 4 = 3Y 4 −1 + = √2 PQR 3Y 4 + TU 3Y 4 Let Z = √3 + c) l = √3 + 1 = 2 √3 X 2u PQR S = S = Y 6 1 TU S = 2 W u V √3 + = 2 PQR Y 6 + TU Y 6 N d) Let Z = √ l = v1 4 + 3 4 = 1 PQR S = 1 X 2 u S = − Y 3 3 TU S = − √ 2W u V √ = PQR −Y 3 + sin−Y 3 N 10 e) Let Z = √ l = v1 4 + 3 4 = 1 N − 1 2 X u PQR S = S = Y − Y 3 = 2 Y 3 + √3 2W u V √ = PQR 2Y 3 + sin 2Y 3 TU S = f) Let Z = = × = = -1 + i l = √1 + 1 = √2 N PQR S = TU S = −1 √2X 1 W √2 V S = Y − Y 4 = 3Y 4 > = √2 PQR 3Y 4 + sin 3Y 4 2. >= = = >J = = = = ^ 11 >= 3. /- . × /- . /- . /- . /- . /- . /- . = = a) /- . /- . /- . /- . =0 /- . ‘Z’ is purely real /- . => Sin θ = 0 ∴ θ = n π : n ∈ I. b) Z is purely imaginary /- . /- . => =0 3 – 4 Sin2 θ = 0 Sin2 θ = 3 . 4 = TU ± Y 3 ∴ θ = n π + (-1)n . Y 3 Sin θ = + 4. a) Z = √ √ × √ √ = √ = √ = 4 (-1 + i √3) = 4 + i4 √3 = r (Cos θ + I sin 0) l = √46 + 48 = √64 = 8 N PQR S = TU S = −4 = −1 X 8 2u + √ + √3 2W u V S = Y − Y 3 = 2Y 3 Z = 8 PQR 2Y 3 + sin 2Y 3 12 >= b) = = 2 01, 3452 = √√ √ = # $+ # √ = √ √ √ √ $ × √ √ = l PQR S + sin S √ √ $ + # $ =2 l = '# N √3 − 1 X 2√2 u PQR S = √3 + 1 W u 2√2 V TU S = 5. S = 5Y 12 (a + ib) = (x+iy)1/3 (a+ib)3 = x + iy a3 + 3a2. ib – 3ab2 – ib3 = x+iy (a3 – 3ab2) + i (3a2b – b3) = x + iy ∴ x = a3 – 3ab2 y = 3a2b – b3 x = a2 - 3b2 y = 3a2 – b2 a b x - y = a2 – 3b2 – 3a2 + b2 = - 2 (a2 + b2) a 6. . a J = = b = × = = 4 + 2 Imaginary part of # = . J $=2 |z|2 = z.EJ 13 7. " ; < " =; < = = = |< = ;| = < ;< ; = = < = ; <; xDUeD " ;< " =; < y → ri = + = = |<| |;| < = ;<; = <; = |<w |;| <; =1 < < < < . < < (p+iq) (p-iq) = q2 ;< ;< < = ; < = ; < ∴ r − i = p2 = = = |<| = ; <; < = |<| = ; <; < =1 8. |;<| < < < 9. a) x2 + 3x + 9 = 0 x= = ±√ ± √ = ± √ 14 b) 3x2 – 4x + 20 = 0 3 9x2 – 12x + 20 = 0 *= ±√^ = c) ± ±√ = ^ ±√ 27x2 – 10x + 1 =0 *= ^ ± √^^^ × = d) = ±√ × ix2 – x + 12i=0 x= *= ± √ *= = ± x = -4i x = 3i. 15 = ±
© Copyright 2026 Paperzz