Name: ________________________ Class: ___________________ Date: __________ Test 2 Review (Math1650, $3.3-3.7 & Chap.4) Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. Divide P(x) by D(x) and express P(x) in the form P (x ) D (x ) Q (x ) R (x ) . P(x) x 3 3x 2 5x 1, D(x) x 1 Ê ˆ a. P(x) (x 1) ÁÁ x 2 4x 1 ˜˜ 0 Ë ¯ ˆ ÊÁ 2 b. P(x) (x 3) Á 2x 4x 1 ˜˜ 3 ¯ Ë ˆ Ê 2 Á c. P(x) (x 1) Á 2x 4x 2 ˜˜ 1 ¯ Ë ˆ ÊÁ 2 d. P(x) (x 2) Á 2x 3x 2 ˜˜ 1 ¯ Ë ˆ˜ ÊÁ 2 e. P(x) (x 3) Á x 6x 2 ˜ 3 ¯ Ë ____ 2. Divide P (x ) by D (x ) and express P (x ) in the form P (x ) = D (x ) Q (x ) + R (x ) . P (x ) = x 3 + 2x 2 4x + 1, D (x ) = x 1 a. b. c. d. e. ____ Ê ˆ P (x ) (x 3 ) ÁÁÁ 2x 2 3x 1 ˜˜˜ 3 Ë ¯ Ê 2 ˆ Á ˜ P (x ) (x 3 ) ÁÁ x x 2 ˜˜ 3 Ë ¯ ÊÁ 2 ˆ P (x ) (x 1 ) ÁÁ x 3x 1 ˜˜˜ 0 Ë ¯ ÊÁ 2 ˆ P (x ) (x 1 ) ÁÁ 2x 3x 2 ˜˜˜ 1 Ë ¯ ÊÁ 2 ˆ˜ P (x ) (x 2 ) ÁÁ 2x 2x 2 ˜˜ 1 Ë ¯ 3. Find the quotient and remainder using long division. 4x 3 + 6x 2 + 6x 2x 2 + 1 a. b. c. d. e. The quotient is 2x 3; the remainder is 4x 2. The quotient is 4x 3; the remainder is 2x 3. The quotient is 2x + 3; the remainder is 4x 3. The quotient is 4x 3; the remainder is 2x + 3. no solution given 1 ID: A Name: ________________________ ____ ID: A 4. Find the quotient and remainder using long division. 6x 2 7x + 5 2x 2 3x a. b. c. d. e. ____ The quotient is 2x + 5; the remainder is 3. The quotient is 2x 5; the remainder is 3. The quotient is 3; the remainder is 2x 5 . The quotient is 3; the remainder is 2x + 5 . no solution given 5. Find the quotient and remainder using synthetic division. x 4 5x 3 + 7x 2 228x 156 x8 ____ a. The quotient is x 3 3x 2 31x 20 ; the remainder is 4. b. The quotient is x 3 3x 2 31x 20 ; the remainder is 4. c. The quotient is x 3 3x 2 31x 20 ; the remainder is 4. d. The quotient is x 3 3x 2 31x 20 ; the remainder is 4. e. The quotient is x 3 3x 2 31x 20 ; the remainder is 4. 6. Find a polynomial of degree 3 that has zeros 8,8,and 4. a. b. c. d. e. ____ x 3 4x 2 64x 256 x 3 4x 2 64x 256 x 3 4x 2 64x 256 x 3 4x 2 64x 256 x 3 4x 2 64x 256 7. List all possible rational zeros given by the Rational Zeros Theorem (but don't check to see which actually are zeros). U(x) 6x 5 6x 3 2x 12 a. 1, 2, 3, 4, 6, 12 1 3 1 2 4 1 b. –1, –2, –3, –4, –6, –12, , , , , , 2 2 3 3 3 6 1 3 1 2 4 1 c. 1, 2, 3, 4, 6, 12, , , , , , 2 2 3 3 3 6 1 3 1 2 4 1 d. 1, 2, 3, 4, 6, 12, , , , , , 2 2 3 3 3 6 e. –1, –2, –3, –4, –6, –12 2 Name: ________________________ ____ ID: A 8. Find all rational zeros of the polynomial: P(x) = x 3 + 3x 2 4 a. b. c. d. e. ____ x = 1, x = 2 x = 1, x = 2 x = 1, x = 2 x = 1, x = 1 1 1 x = ,x = 1 2 9. Find all rational zeros of the polynomial. P (x) = x 4 20x 2 + 64 a. b. c. d. e. x = 17, x = 17, x = 2, x = 2 x = 4, x = 4, x = 2 x = 3, x = 3, x = 2, x = 2 x = 4, x = 2, x = 2 x = 4, x = 4, x = 2, x = 2 ____ 10. Find integers that are upper and lower bounds for the real zeros of the polynomial. P (x) = x 3 24x 2 + 126x + 16 a. b. c. d. e. x 24, x 1 x 1, x 24 x 1, x 24 x 0, x 1 x 1, x 24 ____ 11. Find the real and imaginary parts of the complex number. 8 a. b. c. Real part 0, imaginary part 8 Real part 8, imaginary part 0 Real part 8, imaginary part 8 ____ 12. Evaluate the expression (9 + 14i) + (7 – 11i) and write the result in the form a + bi. a. 16 + 3i b. 16 – 3i c. 9 + 14i d. 3 + 16i ____ 13. Evaluate the expression (4 + 9i)(11 – 10i) and write the result in the form a + bi. a. 44 + 99i b. –59 – 134i c. 134 + 59i d. 59 + 134i 3 Name: ________________________ ID: A ____ 14. Evaluate the expression i 17 and write the result in the form a + bi. a. –( i ) b. i c. –1 d. 1 ____ 15. Evaluate the expression i 64 and write the result in the form a + bi. a. –( 1 ) b. i c. 1 d. –i ____ 16. Evaluate the expression a. b. c. d. 35 40 and write the result in the form a + bi. 2i 2i 2 + 15i –15 – 2i 2 – 15i 15 – 2i ____ 17. Find the polynomial P (x ) of degree 3 with integer coefficients, and zeros 3 and 2i . a. b. c. d. e. 3x 2 5x 6 x 3 3x 2 4x 3 x 3 5x 2 3x 12 x 3 5x 2 6x x 3 3x 2 4x 12 ____ 18. Find the x- and y-intercepts of the rational function r ( x ) = a. b. c. d. e. x-intercept (–18, 0), y-intercept (0, –2) x-intercept (–3, 0), y-intercept (0, 18) x-intercept (18, 0), y-intercept (0, –3) x-intercept (18, 0), y-intercept (0, –5) x-intercept (–1, 0), y-intercept (0, 18) ____ 19. Find the vertical asymptote of the rational function r ( x ) = a. b. c. d. e. x 18 . x+6 x = 9 x = 1 x = 18 x=1 x=9 4 x2 + 1 . x9 Name: ________________________ ID: A ____ 20. Find the intercepts and asymptotes of the rational function r ( x ) = 9x + 108 . 4x + 12 a. x-int. (–12, 0) y-int. (0, 9) horiz. asymptote vert. asymptote x = –2.25 b. x-int. (–12, 0) y-int. (0, 9) horiz. asymptote vert. asymptote x = –9 c. x-int. (0, –12) y-int. (9, 0) horiz. asymptote vert. asymptote x = 3 d. x-int. (–12, 0) y-int. (0, 9) horiz. asymptote vert. asymptote x = 3 e. x-int. (–12, 0) y-int. (0, 9) horiz. asymptote vert. asymptote x = –2.25 y4 y9 y 2.25 y 2.25 y3 ____ 21. Find the y-intercept and asymptotes of the rational function r ( x ) = a. b. c. d. e. y-intercept (0, 3) y-intercept (0, 5) y-intercept (0, 3) y-intercept (0, 3) y-intercept (0, 5) horizontal y = horizontal y = horizontal y = horizontal y = horizontal y = asymptote 5 asymptote 0 asymptote 0 asymptote 1 asymptote 1 ____ 22. Find the slant asymptote of the function y = a. b. c. d. e. x2 . x1 y=x+1 y=x3 y=x+5 y=x+4 y=x2 5 vertical x vertical x vertical x vertical x vertical x 75 . ( x 5) 2 asymptote = 0 asymptote = 3 asymptote = 5 asymptote = 5 asymptote = 3 Name: ________________________ ID: A ____ 23. Find the exponential function f(x) a x whose graph is given. a. b. c. d. e. f(x) 4 x f(x) 4 x 4 f(x) 4 x f(x) x 4 f(x) 4 x ____ 24. If $1,000 is invested at an interest rate of 10% per year, compounded semiannually, find the value of the investment after 10 years. a. $1629 b. $2653 c. $1000 d. $2753 e. $377 ____ 25. The present value of a sum of money is the amount that must be invested now, at a given rate of interest, to produce the desired sum at a later date. Find the present value of $1,000 if interest is paid at a rate of 6% per year, compounded semiannually, for 8 years. a. $627 b. $623 c. $875 d. $1605 e. $1594 6 Name: ________________________ ID: A ____ 26. Graph the function, not by plotting points, but by starting from the graph in the figure. State the domain, range, and asymptote. y ex 3 4 7 Name: ________________________ a. ID: A d. Domain: (4,). Range: (,). Asymptote: y 3. Domain: (3,). Range: (4,). Asymptote: y 3. e. b. Domain: (3,). Range: (,). Asymptote: x 3. Domain: (,). Range: (4,). Asymptote: y 4. 8 Name: ________________________ ID: A c. Domain: (3,). Range: (,). Asymptote: y 4. ____ 27. A radioactive substance decays in such a way that the amount of mass remaining after t days is given by m(t) 12e 0.011t where m(t) is measured in kilograms. How much of the mass remains after 25 days? a. 9.02 kg b. 15.80 kg c. 12.76 kg d. 9.22 kg e. 9.11 kg ____ 28. The population of a certain species of bird is limited by the type of habitat required for nesting. The population behaves according to the logistic growth model n(t) 500 0.2 21.7e 0.385t where t is measured in years. What size does the population approach as time goes on? a. 2500 b. 7500 c. 5000 d. 500 e. 100 9 Name: ________________________ ID: A ____ 29. Express the equation in exponential form. log 4 16 2 a. b. c. d. e. 2 4 16 4 2 16 none of these 2 16 4 16 2 4 ____ 30. Express the equation ln (x + 1) = 4 in exponential form. a. none of these b. x e 1 4 c. x e 4 1 d. x e 1 4 e. x e 4 1 ____ 31. Express the equation in logarithmic form. 10 3 = 1,000 a. b. c. d. e. log 3 10 = 1,000 log 3 1,000 = 10 log 10 1,000 = 3 log 1,000 10 = 3 none of these ____ 32. Express the equation in logarithmic form. e x 2 0.2 a. x = 0.2 – ln 2 b. x = 0.2 + ln 2 c. x = 2 + ln 0.2 d. x = –2 + ln 0.2 e. none of these ____ 33. Evaluate the expression. e ln 5 a. b. c. d. e. 5e 5 none of these ln5 e5 10 Name: ________________________ ID: A ____ 34. Evaluate the expression. 10 a. b. c. d. e. log log none of these 10 1 ____ 35. Use the definition of the logarithmic function to find x. log x 81 4 a. x = 81 b. none of these c. x = 5 d. x = 4 e. x = 3 ____ 36. Find the function of the form y log a x whose graph is given. a. b. c. d. e. y log 8 (x) none of these y log 2 (x) y log 3 (x) y log 5 (x) 11 Name: ________________________ ID: A ____ 37. Use the graph of y = log 3 x below to help you identify the graph of y = 3 x . a. d. b. e. c. 12 none of these Name: ________________________ ID: A ____ 38. Find the domain of the function. f(x) x 5 log 3 (11 x) a. [–11, –5) b. none of these c. [5, 11] d. [–5, 11] e. [5, 11) ____ 39. Find the domain of the function. ˆ Ê f(x) log 7 ÁÁ x x 10 ˜˜ ¯ Ë a. (–1, 1) b. none of these c. (1,) d. (0,) e. (0, 1) ____ 40. Evaluate the expression. log 3 189 – log 3 7 a. 21 b. ln 189 c. 7 d. 3 e. log 3 182 ____ 41. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient, or power. log 7 a. b. c. d. e. x2 5 ˆ Ê 8log 7 ÁÁ x 2 5 ˜˜ ¯ Ë x2 5 log 7 8 1Ê Á 2log 7 s log 7 5 ˆ˜ ¯ 8Ë Ê ˆ log 7 ÁÁ x 2 5 ˜˜ Ë ¯ 1 ÊÁ 2 ˆ˜ log Á x 5 ˜ 8 7Ë ¯ 8 13 Name: ________________________ ID: A ____ 42. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient, or power. ln a. b. c. d. e. 9 3r 8 s 8 8 8 ln3 lnr lns 9 9 9 8 1 1 ln3 lnr lns 9 9 9 8 1 ln3 lnr ln s 9 9 1 1 1 ln3 lnr lns 9 9 9 8 ln3 ln r ln s 9 ____ 43. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient, or power. ÁÊÁ a 6 log ÁÁÁÁ 3 Áb c Ë a. b. c. d. e. ˜ˆ˜ ˜˜ ˜˜ ˜ ¯ 1 log c 2 1 6 loga 3log b log c 2 c 6 loga 3 logb log 2 1 6 loga log b log c 2 1 log(6a) 3log b logc 2 6 loga 3log b 14 Name: ________________________ ID: A ____ 44. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient, or power. ÊÁ ˆ ÁÁ y ˜˜˜˜ Á 9 ˜ ln ÁÁÁ x z ˜˜˜˜ ÁÁ Ë ¯ 1 1 a. lnx ln y ln z 9 9 1 1 b. lnx ln y ln z 9 9 1 1 c. lnx ln y ln z 9 9 1 d. (ln x lny ln z) 9 1 1 e. lnx ln y ln z 9 9 ____ 45. Use the Laws of Logarithms to rewrite the expression below in a form with no logarithm of a product, quotient, or power. log 6 x 6 y 6 z a. b. c. d. e. 1 1 1 log x log y logz 36 6 216 1Ê Á logx log y log z ˜ˆ ¯ 6Ë 1 1 1 logx log y logz 36 216 6 1 Ê Á log x log y log z ˆ˜ ¯ 216 Ë 1 1 1 log x log y logz 36 6 216 ____ 46. Rewrite the expression below as a single logarithm. d. 1 log3 log2 2 1 log 3 7 ln3 7 1 log 7 3 log 21 e. log7 3 log14 a. b. c. 15 Name: ________________________ ID: A ____ 47. Find the solution of the exponential equation. e 4 2 x = 14 a. b. c. d. e. x = 1.8105 x = 0.6805 x = –0.0963 x = 2.9391 x = 2.7183 ____ 48. Find the solution of the exponential equation, correct to four decimal places. 12 x a. b. c. d. e. 5x 4 x = 7.3547 none of these x = 1.544 x = 7.3535 x = 0.544 ____ 49. Find the solution of the exponential equation, correct to four decimal places. 1.00808 5x 8 a. x = 0.625 b. x = 1.6 c. x = –1.6032 d. x = –51.679 e. x = 51.679 ____ 50. Solve the equation. e 2x 5e x 4 0 a. x = 4, x = 1 b. x = 1.3863, x = 0 c. x = 1.6094 d. x = 0.7213, x = 0 e. x = –4, x = 1 ____ 51. Solve the equation. e 2 x 8e x + 7 = 0 a. b. c. d. e. x = 2.0794 x = –7, x = 1 x = 0.5139, x = 0 x = 7, x = 1 x = 1.9459, x = 0 16 Name: ________________________ ID: A ____ 52. Solve the logarithmic equation for x. log 3 (4 – x) = 7 a. x = –2183 b. x = 2191 c. x = 2187 d. x = –2191 e. x = –2187 ____ 53. Solve the logarithmic equation for x. log 2 2 + log 2 x = log 2 3 + log 2 (x – 5) a. x = 12 b. x = 30 c. x = 15 d. x = 17 e. x = 3.9 ____ 54. For what value of x is the following true? log (x + 9) = log x + log 9 a. x = –7.875 b. x = 0.051 c. x = 4.5 d. x = 1.125 e. x = 10 ____ 55. Solve the inequality. log (x – 2) + log (9 – x) < 1 a. x (2, 9) b. x (4, 7) c. x (, 4) (7, ) d. x (, 2) (9, ) e. x (2, 4) (7, 9) ____ 56. Solve the inequality. x 2 e x 16e x 0 a. b. c. d. e. x (4, 0) x (0, 4) x (4, 4) x (4, 16) x (16, 16) 17 Name: ________________________ ID: A ____ 57. Find the time required for an investment of $3,000 to grow to $8,000 at an interest rate of 8% per year, compounded quarterly. a. 13 years b. none of these c. 12 years d. 50 years e. 3 years ____ 58. How long will it take for an investment of $1,000 to double in value if the interest rate is 7.5% per year, compounded continuously? a. none of these b. 14.65 years c. 0.09 year d. 9.24 years e. 14.39 years ____ 59. A 13-g sample of radioactive iodine decays in such a way that the mass remaining after t days is given by m(t) 13e 0.089t where m( t ) is measured in grams. After how many days is there only 10 g remaining? a. 2 days b. 6 days c. 3 days d. 5 days e. 4 days ____ 60. The population of California was 10,290,518 in 1940 and 23,626,378 in 1985. Assume the population grows exponentially. Find the time required for the population to double (in years). a. 37.53 yr b. 54.14 yr c. 41.23 yr d. 108.28 yr e. 0.83 yr ____ 61. The half-life of cesium-137 is 30 years. Suppose we have a 17-g sample. Find a function that models the mass remaining after t years. a. m ( t ) = 20e - 0.03t b. m ( t ) = 20e - 0.02t c. m ( t ) = 17e - 0.024t d. m ( t ) = 17e - 0.023t e. m ( t ) = 30e - 0.023t ____ 62. Radium-221 has a half-life of 30 s. How long will it take for 95% of a sample to decay? a. 2.22 s b. 44.94 s c. 1.54 s d. 129.66 s e. 89.87 s 18 Name: ________________________ ID: A ____ 63. An unknown substance has a hydrogen ion concentration of ÈÍ ˘˙ ÍÍ H ˙˙ 6.1 10 3 M . ÍÎ ˙˚ Find the pH. a. pH = 2.2 b. pH = 12.9 c. pH = 3.0 d. pH = 5.1 e. none of these 19 ID: A Test 2 Review (Math1650, $3.3-3.7 & Chap.4) Answer Section MULTIPLE CHOICE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: A C C D C B C C E E B A C B C C E C E D B A C B B E E A B E C D B A E C C E D D 1 ID: A 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: ANS: E B A A C E B D E B E A C D E C C D C A D D A 2
© Copyright 2026 Paperzz